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1. INTERPOLATION
In this section we consider a family of functions of a single variable z,
O(x;a0,a,...,a,),

having n + 1 parameters ag, ay, ..., a,, whose values characterize the individual functions in
this family. The interpolation problem for ® consists of determining these parameters a;,
i=20,1,...,n,so that for n+1 given real or complex pairs of numbers (z;, f;),7=0,1,...,n,
with x; # x; for i # j, we have

O(x;a0,a1,...,a,) = fi, 1=0,1,... n.
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1. Interpolation 1.0.

Definition 1.0.0.1 (Support Points). The pairs (x;, f;) are called support points.
Definition 1.0.0.2 (Support Abscissas). The locations x; are called support abscissas.
Definition 1.0.0.3 (Support Ordinates). The values f; are called support ordinates.

Example 1.0.0.4 (Linear Interpolation Problem). A linear interpolation problem is an
interpolation problem where ® is linear in the parameters a;, © = 0,1, ..., n, that s,

O(x; a0, a1, .. ,a,) = agPo(z) + a1 P1(x) + - -+ + @, Py ().

Example 1.0.0.5 (Polynomial Interpolation). Polynomial Interpolation is a linear in-
terpolation such that

2
O(x;a9,a1,...,0,) = ap + a1 + +asx” + -+ - + aa".

Example 1.0.0.6 (Trigonometric Interpolation). Trigonometric interpolation is a linear
interpolation such that

. _ ix 2ix nix
O(x;a9,a1,...,0,) = ag + are® + age™ + - - + a,e™”,

where i? := —1.



1. Interpolation 1.1. Polynomial Interpolation

1.1. Polynomial Interpolation.

1.1.1. The Interpolation Formula of Lagrange.

Remark. We denote by I1" the set of all real or complex polynomials p of degree n or less,
that s,

"= {p: p(x) = ap + a1x + axx® + - - - + a,2",a;,7 € C,i =0,1,...,n}.

Theorem 1.1.1.1 (Existence and Uniqueness of Polynomial Interpolant). For n + 1
arbitrary support points

(xi’fi)7 i:Oa17"'7n7 J:Z#:L’jforz%.]?
there exists a unique polynomial p € 11" such that
p(z;))=fi, i=0,1,...,n.

Proof. We first establish existence by construction. Define

n

w(r) = H(x — ;)

J=0

and note that w(x;) =0 for ¢ = 0,...,n. By the product rule, it follows

Il
=
5

|
QH

Note w'(x;) # 0 for each i = 0,...,n. Define the Lagrange polynomial basis as follows:

__wl) T # T
Li(z) = ¢ (v — zp)w'(x;) 7 T (1.1.1.1)
1, T = ;.

We see that {L;}!", satisfy the conditions

1, i=k,
Li(iUk):(Sik:{o z';é/{:

In the case that x # z;, expanding L; gives
w(z)
(z — i)w'(z;)
(x—z0)...(r—zi1)(x —xiq) ... (x — xp)
(i —x0) . (i — xi1) (i — xi1) - (5 — )
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1. Interpolation 1.1. Polynomial Interpolation

so that L; € II" for 1 =0, ..., n. Lastly, define the polynomial p as follows:

n

p(x) = ZfiLi(x) => 511 j__z (1.1.1.2)

i=0  j=0

Observe, since p is a linear combination of polynomials of degree at most n, we have evidently
p € II". Moreover,

p<xk):Zszz(xk):fk7 kzovlv"'7na
1=0

so that p is a polynomial of degree at most n that interpolates f. This establishes existence.

We now show that such an interpolating polynomial p is unique. Suppose that there exist
p1,p2 € 11" such that

pi(zi) = fi=pa(z;), i=0,...,n.
Define
P = pL—pe

and note p* € TI". Since p*(x;) = p1(x;) — p2(x;) = 0 for each i = 0,...,n, we see that p*
has the (n + 1) distinct zeros at the support abscissas {z;}!,. Since p* is a polynomial of
degree at most n, p* must vanish identically,

pt=0.
It follows p; = po. U
Remark. We call the formula given by
n n n T — T
plx) ==Y fiLi(z) :Zfin'_xJ. (1.1.1.3)
i=0 i=0  j=0 """ J
J#

the Lagrange interpolation formula.
Remark. Note that the coefficients of p depend linearly on the support ordinates f;.

Example 1.1.1.2. Let
;[0 1 3
fill 3 2
We construct the unique polynomial p € 11> such that p(x;) = f;, 1 = 0,1,2. Observe

x(x —3) x(x—1)

1

:§(m2—4m+3 — ~(2* = 32) + =(2* — 7)
5, 17

= 2221 e
6x + 6:c—|—



1. Interpolation 1.1. Polynomial Interpolation

1.1.2. Newville’s Algorithm. Lagrange’s interpolation formula (1.1.1.3) solves the full inter-
polation problem all at once. Instead, we can solve the problem for smaller sets of support
points first and update the solutions to obtain the solution to the full interpolation problem.

Theorem 1.1.2.1 (Neville’s Algorithm). Let {(x;, f;)}7-, be a set of support points and
denote by
DPigir..ir, € 1"
the unique polynomial of degree at most k such that
pioz‘l._.ik(aﬁj):fij, jZO,l,...,/{i, k::O,l,...,n.

Then each p;yi,. i, s given by the following recursion:

(1) pi(z) := fi,

(2) Pisis.in () = (& — @ig )i (¥) — (T — lfz'k)Pioz'l...z'k_l(fE)'

J— x’bo

Proof. First note that, given one support point (z;, f;), ¢ = 0, ..., n, the unique polynomial
p; € I1° that interpolates f; is simply the constant polynomial p;(z) := f;.
Consider now the case of at least two support points (z;, f;). Define

r(z) =

Noting that r is a linear combination of two polynomials of degree k or less, it follows that
r € Ik,

We now show that 7 has the characteristic properties of p;;,. i, , in particular, that T(:Bij) =
fi;» 7 =0,1,... k. Observe that

(v — xio)piliz...ik (z) — (v — fik)Pioil...ik_l(x)

Ly, — Lgy

— (w5 — ffik)l?ioil...z‘kfl(ﬂ?z‘o)

r(wi,) =
’ Lij, — Lig
= Pigir.in_1 (Tio) = fio»
r(zs,) = (i, = Tig)Pirin..it (Ti)
* Lip — Tig
= Diyine.iy(Ti,) = fiys
by the assumption. Moreover, for j =1,2,...,k — 1, we have
T’(ZL" ) _ (%‘j - 37io>pi1i2...ik (l‘z]) - (ﬂcij - l'ik)pioil...ik,l(ll?ij)
’ Liy — Lig
_ (zi; — w3) fi, — (w5, — 23, fi
Ly, — Ty
= fz]
That is, r interpolates f at each of ¢;, 7 = 0,1,...,k. By the uniqueness of polynomial
interpolation, it follows that r = p;,. i, - OJ
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1. Interpolation 1.1. Polynomial Interpolation

Remark. Neville’s algorithm is well-suited for determining the value of the polynomial in-
terpolant p for a single value of x. It is not preferable, however, when multiple evaluations
of p are needed.

We make the observation here that Neville’s algorithm produces a symmetric tableau of
the values of the (partially) interpolating polynomials p;;, s, for a fixed x : (shown here is
the case k = 3)

k=20 1 2 3
To | fo= po(if)
p01(:v)
Ty | fi = pl(ﬂ?) p012(37)
p12(x) p0123(x)
Ty | fo =: pa(x) P123(x)
p23(x)
w3 | f3 =: p3(x)
Example 1.1.2.2. Given
fill 3 2
we have
k=0 2 3
g = 0 f() = p0(2) =1
poi(2) =5
r1=1|fi=p(2)=3 po12(2) = %
p12(2) =2

To = 3 fg = p2(2) =2
Note also that this evaluation of p12(2) coincides with the evaluation of p(2) in the ezample
from the previous section.

1.1.3. Newton’s Interpolation Formula: Divided Differences. Neville’s algorithm (1.1.2.1)) is
aimed at determining specific values of the polynomial interpolant rather than the symbolic
polynomial itself. If the polynomial itself is preferred, or if we want to evaluate several argu-
ments &; of the polynomial interpolant simultaneously, then Newton’s interpolation formula
is preferred.
Given the n+1 support points {(z;, fi) }1, recall from (1.1.1.1)) that there exists a unique
polynomial p € II" that interpolates the points. Write
p(z) = ag + ayx + apx® + - + apa”
=co+c(r—x0)+a(r—xp)(x—21) + -+ ez —x0) (T —21) .. (T — XYy q)
=c+(@x—z)(cr+e(r—az1)+  +(x—zp2)(ch1 +cn(r —2p1))...).
This setup brings us to the so-called Horner scheme for efficiently evaluating polynomials.

Definition 1.1.3.1. [Horner Scheme] Let p € 11". Then the Horner scheme for evaluating
p at an arbitrary point & is given by

p(f) = Qo + (f — $0)((11 + +a2(§ — ZE1) + 6 -+ (5 — l‘n_g)(an_l + an(§ — :L"n_l)) e )



1. Interpolation 1.1. Polynomial Interpolation
It remains to determine the coefficients in ((1.1.3.1). One method is as follows:
Jo= p(xo) = Qo,
fi =p(x1) = ap + a1 (x — x0),

fo=p(z2) = ap + a1 (w2 — x0) + az(z2 — x0) (22 — 21),

This can be done with n divisions and n(n — 1) multiplications. However, there is a better

% divisions and produces useful intermediate results.

method which requires only =
Note that, since piy,..i,_, () and piy, i, () both interpolate the &k support points {(z;;, f;,) }i_o,
they differ by a polynomial of degree k with the k zeros z;,, z;,, ..., z; _,. Thus there exists

a unique coefficient

fioil...ik
such that
k—1
Pigiy...ix (x) = Pigiy..cig—1 (l‘) + fioil---ik H(IL' - ng)
=0

From this and the fact that p;, := f;,, it follows
Pivir...ir (T) = fig = fiois (T = 2ig) + -+ + figiyin (T — Tip) - (T — 24 _,).

We call this form the Newton representation of the interpolating polynomial p;;, ;. ().
The coefficients are called the k—th divided differences.

Theorem 1.1.3.2 (Newton’s Interpolation Formula). Let {(xz;, f;)} be a set of support
points. Define the following recursion

(1) flz] = fi,
flzs] = fld]

(2) flwi,x] = =————,

Tj — T
(3) f[ximmil?-..,xik] = T ! Z;ik _mi:o’ ' LTkt .

Then the unique polynomial p € 11" such that
plz;))=fi, i=0,1,....n

15 given by

p(x) == flxo] + flzo, v1](x — xo) + -+ - + flro, x1 ..., x.](x — xo)(x — 21) ... (T — X q).

Proof. We use induction. If n = 0, then p(z) = f[zo] = fo, as desired. In the case that
n = 1, we have

p(x) = flzo] + flzo, z1](z — o).
Observing that
p(xo) = flzo] = fo

flz1] = flxo]

1 — Zo

and
p(x1) = flzo] + flzo, 21](21 — 20) = fl20] + (1 —x0) = f1,

we see that (1.1.3.2]) holds for n =0, 1.



1. Interpolation 1.1. Polynomial Interpolation

Assume now that (1.1.3.2)) holds for all n = 0,1, ...,k — 1. We show that the result holds
for n = k.

Recall from (1.1.2.1)) that the unique interpolating polynomial p := pg 1
by the recursion

€ IT% is given

-----

p(x) _ (33 - SUO)PLQ ..... k(ﬂﬂik—_(xxo— xk)]?m ..... kq(ﬂi). (1_1.3‘1)

Define a polynomial

r=p—Doa1,..k-1-

-----

a polynomial with k distinct roots, and, since r is a linear combination of two polynomials
of degree k or less, it follows that r is a polynomial of degree precisely k. Therefore, there
exists a unique coefficient a such that

k—1
r(x) = ap [ (@ — ;)
i=0
Now note that

p(x) =poa,. k-1(z) +7(x) (1.1.3.2)

k—1

_ (x $0)p1,2 ..... k—l(x) ($ xk—l)Po,l ..... k—2(33) ta H(x B xz)
Lr—1 — Zo pairy

Noting that po1__x—1, P12,k € [IF71 it follows from the induction hypothesis and ((1.1.3.1)
that

(33 - xo)]?1,2 ..... k(fb’) - (il? - 33k)]?0,1 ..... lcfl(Q:)
T — X

p(x) =

(k;_%)o) (fled] + fler, zo(x — 1) + - - + flon, .. zpa](z —21) .o (2 — Tp—2))
- (%) (flwo] + flwo, m1](x = x0) + -+ + flwo, -, wha](x — wp) - . (z — w43)
+ (2;_%:) Pot,. ke (2)



1. Interpolation 1.1. Polynomial Interpolation

_ flza, - xk] = flro, -+ ] (Iﬁ(x _ xz))

1=0

r— X X — Tp_ T — Lp—_
+ ( - ) P12, k-1(T) — (ﬁ) po1,..k-2(T) + (M) po1,..k—1()
T — o T — o T — Zo

Sl md = fla - wi] <H< - >)

1=0

1
+ (xk - ) (x —z0)p12,.. k—1(2) — (x — 2p—1)po1,. k—2(x) + (T — Th—1)Po1,.. k—1(2)
— X

_ flon i = floos ] (H< - >>

1
+ ( ) (k-1 — To)poa,. k—1(z) + (X — Te—1)Po 1. k—1(x)

T — Lo
_ flza, - xk) — flro, .- ] ’ﬁ(x—x) por (o)
Tk = %o i=0 Z T
Finally, it follows from (|1.1.3.2) that
_ f[xla"'awk] — f[x(]?"')xkfl]
ap = )
T — Lo
which completes the proof. 0]
Recall that the polynomial p;;,. 4, () is uniquely determined by the support points in in-
terpolates, so that the polynomial is invariant to any permutation of the indices ig, i1, . . . , .
Theorem 1.1.3.3. The divided differences f|xiy, Ty, - .., x| are invariant to permutations
of the indices ig, 11, . .. ,ix. More precisely, if

(j()?jla"'7]k) (25072517"'7isk>
1s a permutation of the indices ig, 11, ..., 1, then
f[xjo, e 7xjk] = f[l’io, e ’xlk]

We defer the proof for a later result.

Calculating the divided differences in analogy to Neville’s algorithm gives the following
tableau, called the divided—difference scheme:

k=0 k=1 k=2
zo | flwo]
f[:EO:xl]
T f[$1] f[$0,$1,£52]
f[331,1'2] :
Ty | flag] :




1. Interpolation 1.1. Polynomial Interpolation

Note the entries in the second column are given by

f[(lf(),xl] = M, f[Il,[EQ] =, Sy

X1 — Zo To — 1
those in the third column

o, @1, 2] = f[l"l,ﬁ;i : i(El"o,fEl]? 1, o, 73] = f[%,ﬁ;i : Qﬂfl,ﬁz]’ o

and obviously
p(x) = pos,. . al(T)
= f[x[)] +f[l’0,$1]($ —1'0) T+ +f[l'o,...,Q?n](l'—l'o)---(ilf—%n,l)

is the desired solution to the interpolation problem. The coefficients of the above expression
for p(z) are obtained in the top descending diagonal of the divided—difference scheme.

Example 1.1.3.4. With the same numbers from the previous sections,

z; |0 1 3
fill 3 2
we have
k= k=1 k=2
Ty = 0 f[l’o] =1
f[x()?Il] =2
T = 1 f[l’l] =3 f[wo,l’l,xg] = —g
f[xhx?] = _%
=3 | flr] =2
Thus

5
p(r) =1+2x — ax(w —1)
5 17

2
= —— — 1
6x+6x+,

which coincides with the results from the previous examples.

Note that frequently the support ordinates f; are values f; := f(x;) of a given function
f(z), which we want to approximate by interpolation. The divided differences can then be
viewed as multivariate functions of the support abscissas z;,

f[l'io,CCil, cee 7xik]'

We get the following result, which we prove here.
Theorem 1.1.3.5. The divided differences

f[l'io, e ’xik]

are symmetric functions of their arguments, that is, they are invariant to permutations of

the support abscissas x;,, . .., x;,.

Proof. We use induction.
If n = 0, then there is only one support point (g, fo), and clearly

flzo] = fo.
10



1. Interpolation 1.1. Polynomial Interpolation

In the case n = 1, we observe

floal = fleo) _ Ai—So _ fo—f _ flwo] — flzd]

flzo, x1] = = = fla1, x0).
1 — X 1 — X To — X1 To — X1
Suppose that (|1.1.3.5)) holds for some k, that is,
f[x’ioa e ,.Z'ik] = f[.flfjo, e ’x]k]
for any permutation (jo, ..., Jx) of (ig,...,ix). Considering
f[xio7 s 7xik7xik+1]7
we see that
f[acz-l, e 7Iik+1] — f[ZEZ‘O, e ,ﬂ?ik]
Loy vy Ty Ty | =
f[ 10 ik 'Lk+1] Tig o — Tig
_ f[mim s ,sz‘k] - f[xilv s 7xik+1]
Lig = Ligyq
= flwigs - Ty, T4, )-
Since flz4, ..., x;, ] and flx;,, ..., x;,,,] are invariant to permutations of the indices 4, . . ., 4311

by the hypothesis, (1.1.3.5]) follows. O

The last result of this section applies when the function f(x) is itself a polynomial.
Theorem 1.1.3.6. If f(x) is a polynomial of degree N, then

flzoy - x] =0
for k> N.

Proof. Let k > N and let {(z;, fi)}¥_, be any k + 1 support points. Then p is a polynomial
of degree k or less that interpolates f. Noting that f is itself a polynomial of degree N that
interpolates the k support points, it follows by uniqueness that p = f.

By uniqueness, it follows that the coefficient of 2* in p(x) must vanish for all & > N. This

coefficient is given by f|xo, ..., x| (1.1.3.2)), so that evidently
flxo, ... x] =0
for all &k > N. L]

1.1.4. The Error in Polynomial Interpolation. Once again we are given a function f(x) and
support points {(z;, i)}y, and we interpolate f with the interpolating polynomial p € 11"
such that

plz;)=fi, 1=0,1,... n.
We are interested in how well p(z) reproduces f(x) for arguments z different from the support
abscissas x;, 1 = 0,1,...,n. Note that the error

e(z) .= f(z) — plx)
can clearly become arbitrarily large for functions f unless some restrictions are imposed on
f.
We first recall Rolle’s Theorem, which is essential to the proof of the polynomial interpo-

lation error formula.
11



1. Interpolation 1.1. Polynomial Interpolation

Theorem 1.1.4.1 (Rolle’'s Theorem). Let f be continuous on |a,b] and differentiable on
(a,b), and suppose that f(a) = f(b). Then there exists £ € (a,b) such that

f'(€) =0.

Proof. 1f f(x) = k for some k € R and all € (a,b), then f is constant, and clearly f/'(£) =0
for all £ € (a,b).

We now consider the case that f(x) # f(a) for some z € (a,b). Passing to the consid-
eration of —f(x) as necessary, we assume that f(z) > f(a). Since f is continuous on [a, b],
it follows from the extreme value theorem that f attains a maximum value f(£) at some
¢ € [a,b]. Since f(x) > f(a) for some x € (a,b), we have evidently a < £ < b, so that
¢ € (a,b). Thus f has a local maximum at £ € (a,b). Since f is differentiable, it follows by
Fermat’s Theorem that f/'(£) = 0. This completes the proof. O

Theorem 1.1.4.2 (Error in Polynomial Interpolation). Let p € II™ be the unique poly-
nomial interpolant of f. If the function f has an (n + 1)—st derivative, then for every

argument T there ezists a number £ in the smallest interval I[xy, . . ., x,;T] which contains
T and all support abscissas x;, 1 = 0,1,...,n, satisfying
__ w@ )

(n+1)!

where

Proof. Let p € II" be the unique polynomial that interpolates f at x;, e =0,1,...,n.
First, if T = x; for some i = 0,1,...,n, then
e(T) = e(x;) = f(x;) — p(z;) = 0.
Assume now that T # x; for all i = 0,1,...,n. Then w(T) # 0, so that we may define the

constant . .
. 1@ (@)
w(T)
Further, define a function F' by
F(z) = f(z) = p(z) — Kw().

Note that F' vanishes for x = 7 and x = z;, ¢ = 0,1,...,n, so consequently F' has at least
the n + 2 distinct zeros

20, L1, -, Ty T
in the interval I[zg, x1, ..., 2,; Z|. By Rolle’s Theorem (|1.1.4.1)), applied repeatedly, it follows
that F” has at least n + 1 zeros in I[xg,x1,...,2,;T], F” has at least n zeros, and, finally,
F+1) has at least one zero € € I[xg, 21, ..., 2Tn; 7).

Observe, since w(x) is a polynomial of degree precisely n + 1, we have

W™D (z) = (n+ 1)\
Moreover, since p is a polynomial of degree at most n, consequently

p" ) (x) = 0.
12



1. Interpolation 1.1. Polynomial Interpolation

Thus
FOHD() = F(g) = prH () — K™ (€)= F*V () = K(n+ 1)! = 0.

Rearranging gives

Fr ()
BCEE
Finally, since f(Z) — p(Z) — Kw(Z) = 0, we have
N _y _ w@ ()
[(@) = p(@) = Kw(z) = W,
which completes the proof. 0

The following theorem gives a different error term, derived from Newton’s interpolation

formula (|1.1.3.2)).

Theorem 1.1.4.3. If the function f has an (n + 1)—st derivative, then for every argument
T there exists a number & in the smallest interval I[xg, x1,...,2,;T| containing T and all
support abscissas such that

()

n!

f[[['(),fl?l, . ,[L‘n] =

Proof. In addition to the n+ 1 support points {(z;, fi)}I,, introduce an (n+ 2)—nd support
pOint (anrla fn+1) by
Tntl = T, fn+1 = f(f)

.....

interpolation formula ((1.1.3.2]), we have

f(@) =po1,.nt1(T) =po1,. n(T) + flro, z1,. .. Tn; T)w(T).

Rearranging,
f(T) = pon,..n(T) = floo, 21, .., 20; T|w(T).
Since )
N A (3
1@) = (@) = S e
for some & € I[xg, 21, ..., x,; 7], it follows
(n+1)
f[iL'o, L1y .. ,l‘n,f] = ‘]ZnTl()g')
This also implies
(n)
f[.l’[),l'l,...,l’n]:f '<§>,
n!
which completes the proof. 0

Example 1.1.4.4. Let f(z) := sin(x) and let p € 11 interpolate [ at
;= —j, j=0,1,2,3.
3
We derive an upper bound for the error on the interval [0, 7]. Noting that
fW () = sin(x),
13



1. Interpolation 1.1. Polynomial Interpolation

we have

Observe that
|x|7 ’Q? - 7-[" S 7T

and
21
:L‘ —_— —

3

-3

2
T — =, <

3

o

for all T € [0, ]. Hence,

17(@) - p(@) < P (%w)

24
_ sin(€) [4nt
24 9
m m
= —|si < — = 1.81.
Tlsin(e)] < T~ 18
A common usage for the error formula (1.1.4.2)) is to bound |f(x) — p(x)| by bounding
f (”+1)(:L'). If the support abscissas x, ..., x, are close, say,
max |z; — x| == h <1,
Ji
and if = € I[xg, 21, ..., x,], then we have
D ()
|f(z) = p(z)] = mw(ﬂf)-
If £+ is uniformly bounded, set
(n+1)
M ap M)

2€I[T0,X1 50 ,Tn] <n+1)' ‘

Then
|f(z) = p(2)| < Mw(z) < MA™
Now as n — oo, we have h — 0, and evidently then |f(z) — p(z)| — 0.

Definition 1.1.4.5 (Extrapolation). The use of the interpolating polynomial p € 11" for
approzimating [ outside of the interval I|xg, x4, ..., x,] containing the support abscissas is
called extrapolation.

Note that the theory guarantees |f(x) —p(z)| — 0o as & moves farther and farther outside
the interval I[xg,x1,...,2,)], since |w(x)| — oo as |z| — oo.

On the other hand, it should not be assumed that finer and finer samplings of the function
f will lead to better and better approximations through interpolation even within the interval
I[zg, 21, ..., ).

Consider for example a real-valued function f that is infinitely often differentiable in a
given interval [a, b]. To every interval partition

A={a=zy<z1 < <z =b}
14



1. Interpolation 1.1. Polynomial Interpolation

there is an interpolating polynomial pa € II" with pa(z;) = f; for each z; € A. A sequence
of interval partitions

A, ::{azm(()m)<:L'§m)<~--<x(m):b}

Nm

gives rise to a corresponding sequence of interpolating polynomials pa, . One might expect
the polynomials pa, to converge to f if the fineness

o (m) (m)
A = max [T — x|
of the partitions converges to zero as m — oo. In general, however, this is not true.

Definition 1.1.4.6 (Runge’s Phenomenon). Runge’s phenomenon is a problem of os-
cillation that occurs near xo and x, when using polynomials of high degree with equispaced
support points.

1.2

0475 05 0.0 0.5 1.0

1
FIGURE 1. Runge’s Phenomenon for the Runge Function f(z) := T 2522
x

Example 1.1.4.7. Let f be the Runge function

1
J@) = o5
and let p € 11" interpolate f at the n + 1 equispaced support points
2)

z;==2 -1 j=0,1,...,n
" 15



1. Interpolation 1.1. Polynomial Interpolation

With the equidistant nodes, it may be shown that
lw(z)| < nlh",
where h := % is defined as the step size.
Note that the (n 4 1)—st derivative of f is bounded, so there exists M, .1 such that

sup | f" ()] < My,
—1<a<1

Thus

- M, .
B o M ) — Mns1y
|f(z) = p(@)] < (n+ 1)! n+1

But the magnitude of the (n + 1)—st derivative of f increases as n increases, in particular,
My < (n+ D150 Hence,

(n+ 1)]5(n+1) (n41) 10 n+1
_ <2 pledl) o (n+1) — 1 [ =
(@)~ () < P e ey < (10)

which tends to infinity as n becomes large.

1.1.5. Hermite Interpolation. We consider the support points

(@@, fYm, k=0,1,..,m — 1,
with
Top <1 <+ - < Ty
The Hermite interpolation problem consists of determining a polynomial p € II" where

m
n+1= Z N,
i=0
which satisfies the interpolation conditions

PPy =% i=0,1,....om, k=0,1,...,n —1.

Here we prescribe at each support abscissa not only the value of the function f but also the
first n; — 1 derivatives of the polynomial.
We recall the following fundamental result from linear algebra.

Theorem 1.1.5.1 (Invertible Matrix Theorem). Let A : R" — R™ be linear. Then the
following are equivalent:

(1) Ax = b is solvable for all b € R"™ (existence),

(2) Az, = Axy if and only if x1 = xo (uniqueness),

(3) Az =0 if and only if x =0 (A is nonsingular),

(4) A is invertible.

The following result establishes existence and uniqueness of the Hermite interpolation
problem.

16



1. Interpolation 1.1. Polynomial Interpolation

( R

Theorem 1.1.5.2 (Existence and Uniqueness of the Hermite Interpolant). For arbitrary
numbers xo < x1 < -+ < T, and fi(k), 1=0,1,...,m, k=0,1,... ,n;, — 1, there exists a
unique polynomial

p eI’ n+1:in’w
=0

that satisfies

PP ) =" i=0,1,...,m, k=01,...,n—1.

1

Proof. Let p € II". We may write

forc; e R, 1=0,1,...,n. Then

n dk
k _ l

=0

n
= E CiQq,
=0

where ¢ := k + Zé;t n;, and "1 n; == 0. This yields an (n + 1) x (n + 1) linear system.

By the invertible matrix theorem ([1.1.5.1]), it suffices to show uniqueness.
Suppose that py, po € II" both satisfy the interpolation conditions
pgk)(:vi) = f®(z;) = pgk)(:pi), 1=0,1,....m, k=0,1,...,n; — 1.
Define the difference polynomial
ri=p; —pe € II".
Then
r®(z) =0, i=0,1,....,m, k=0,1,...,n;— 1.

Thus r has at least n + 1 roots, counting multiplicities. Since r is a polynomial of degree at
most n, r must vanish identically,

This proves the theorem. 0

The Hermite interpolating polynomials can be given explicitly in a form analogous to the
Lagrange interpolation formula (1.1.1.1). The polynomial p € II" given by

m n;—1
k
pla) =Y Y S L)
=0 k=0
is the desired polynomial (|1.1.5.2)). The polynomials L;, € II" are called the generalized
Lagrange polynomials and are constructed as follows. Define the auxiliary polynomials

_ N\ e\
lik@:)::MH(u) L 0<i<m, 1<k<n,

k! =0 Ty — Ty
JFi
17



1. Interpolation 1.1. Polynomial Interpolation

Put
Limifl(l’) = l@ni,l(l’), 1= 0, 1, o,y
and recursively for k =n; — 2, n; —3,...,0,
ni—l
Liv(z) = lge(x) = Y 15 (2;) Lo ().
v=k+1

By induction,

1, ifit=jand k=0
Lip(z) ={7 ’
() { 0, otherwise.
Thus the polynomial p € II" given by
m ni—l

p(r) =33 [P Li(x)

i=0 j=0
is the unique Hermite interpolating polynomial (1.1.5.2)).
An alternative way to describe the Hermite interpolation problem is important for Newton—

and Neville- type algorithms to construct the Hermite interpolating polynomial. We gener-
alize divided differences to account for repeated abscissas.

Let v < 21 < --- < x, be a sequence of abscissas. We replace each x; by n; copies of
itself:
IO:...:Z‘O<1‘1:...:$1<...<ajm:...:wm‘
N TV d N Vv 4 N Vv 4
no n1 Nm

The n+1 = >""" n; elements in this sequence are then defined
tOZxOStIS"'Stn:Imu

where the t;’s, ¢ = 0,1,...,n are called the virtual abscissas.

Note that the virtual abscissas g, t1, . .., t, determine the true abscissas x; and the integers
n;, © = 0,1,...,m. Recall that the unique polynomial interpolant pgy;._, is defined by the
n+1=>""  n; interpolation conditions, which are as many as there are index pairs (i, k)
with ¢ = 0,1,...,m, k = 0,1,...,n; — 1, and are as many as there are virtual abscissas
tostis - th.

Observe that the interpolation conditions belonging to the linear ordering of index pairs

(0,0),(0,1),...,(0,n0 —1),(1,0),...,(1,ny — 1),...,(m,0),...,(m,n, — 1),
have the form
Pty = F90(), G=0,1,...,n,
if we define s;, 7 =0,1,...,n to be the number of times each ¢; occurs in the subsequence
to <ty <--- < t.
Also note that
To=tyg =+ =lpg—1 < Ty =lpy =" =lnggni—1 < ...,

and
So=1,...,800-1 =105, = 1, ..., Sngtni—1 = N1y ..,
establishes the equivalence of the above form and ((1.1.5.2)).
18



1. Interpolation 1.1. Polynomial Interpolation

We move to establish (1.1.5.2)) algebraically. Note that any polynomial p(t) € II" can be

written in the form

#
p(t) = bj— =TI(t)b, b= [by,by,....b,]",

Thus by Theorem ({1.1.5.2)), the system
Db = f (), j=0,1,...,n,
has a unique solution b. We get the following corollary, which is equivalent to (1.1.5.2]).

Corollary 1.1.5.3. For any nondecreasing finite sequence
to<t1 <--- <ty
of n + 1 real numbers, the (n +1) x (n+ 1) matriz

Vn(to, tl, e ,tn) =

s nonsingular.

Example 1.1.5.4. For ty =t; < ty, we have

t2

1 t, 8

Vo(to, t1,t2) = [0 1 &
2

1 t, 2

We now formulate a Neville-type algorithm for Hermite interpolation. We associate with
each segment
i <ti1 < - <tiyp, 0<i<i+k<n

of virtual abscissas the solution p; ;1. itk € IT* of the partial Hermite interpolation problem
belonging to this subsequence, that is, the solution of

s;—1 Si— . .o .
pz(,i{H,.)..,iJrk(tj) = [ 1)(tj)7 J=tt+1,...i+k

Recall that the integers s;, i < j <7+ k are defined with respect to the subsequence, that
is, s; is the number of times the value of ¢; occurs within the sequence ¢;,¢;11,...,¢;.

Example 1.1.5.5. Suppose that ng =2, ny = 3, and

Ty = 07 éO) - _]-7 (gl) = _27
T = 17 1(0) = 07 fl(l) = 1Oa f1(2) = 40.

We get the virtual abscissas t;, j = 0,1,2,3,4, with

t():tli:l'[)zo, t2:t3:t4121‘1:1.
19



1. Interpolation 1.1. Polynomial Interpolation

For the subsequence t1 < ty < ts, that is, 1 =1 and k = 2, we have
tih=x9g<tya=1t3=x1, S =8 =183 =2.
Now the interpolating polynomial pio3 € I1? satisfies
pivs () = pis(0) = FO(0) = -1,
Pz (ta) = (1) = fO(1) = 0,
piss (ts) = Phas(1) = F(1) = 10,

The following analogs to Neville’s algorithm ([1.1.2.1)) hold. We find, if t;, =t;; 1 =--- =
ti+k = Iy, then
k

Disit 1, itk () = Z = (x—x)",

and, if t; < tivk,

B (x — t)Pirrive,i+k(T) — (T = tisk)Disitr,ivk—1(T)
Diit1,.itk(T) = bk — b '

In analogy to ((1.1.3.2) we now define the generalized divided differences

Jltitivy, - - tig]
as the coefficient of z* in the polynomial Dijit1,..i+k € ¥, We find, if t; =t 1 = - - = tiyp =
Xy,
L k)
fltistivr, tive) = AL
and if ti < Citk,

f[ti,ti+1,...,ti+k] _ f[ i+1y bit2, ) z-l—k] f[z; i+15 s Uitk 1].

Livrk — 1
As a restatement,
1 .
[ ] Ef(k)(xz)y =ty =" =ty =,
Listiva, oS tivk) = § flt 0 ¢ tigl — flti t; ti
f[ i+1 bi42y - - Z+k] f[ iy bi41y e v vy Z—i—k‘—l]’ Otherwise.
livk — ti

Using the generalized divided differences
ag := fto,t1,.. ., te], k=0,1,...,n,
the solution p € II" of the Hermite interpolation problem can be represented in Newton form
by
p(z) = ag+ ar(x —to) + ag(x —to)(x —t1) + -+ -+ apn(x —to)(x —t1) ... (T — tp_1).

Example 1.1.5.6. We illustrate the use of generalized divided differences by finding the
Hermate interpolant of the following data.

z| f(x)| ['(z) | f"(x)
0] -1 —2
1[0 | 10 | 40

We get the following scheme:
20



1. Interpolation 1.1. Polynomial Interpolation

to = O f[to] = —1
f[thtl] = -2
t1:=0| flt] = -1 fltot1,t2] = 3
f[tl,tg] =1 f[t(],thtg,tg] =6
ty:=1] f[ta] =0 flti,to,ts] =9 fltos tr ta, ts, ta] =5
f[tg,tg] =10 f[tl,tg,tg,t4] =11
t3 = 1 f[tg] = 0 f[tg,tg,t4] = 20
flts, ts) = 10
t4 = 1 f[t4] = 0

Thus the Hermaite interpolating polynomial is then
p(r) = =1 — 22+ 32 + 62%(x — 1) + 5a?(x — 1)

We give a result for the interpolation error incurred by Hermite interpolation.

Theorem 1.1.5.7 (Error in Hermite Interpolation). Let the real function f by n + 1
times differentiable on the interval [a,b], and consider m+1 support abscissas x; € [a,b],

To< Ty <0 < Ty

If the polynomial p(z) is of degree at most n,

n+1l= Z N,
i=0
and satisfies the interpolation conditions
p®(x) = f®(x), i=01,....m, k=0,1,...,n;—1,

then for every T € [a,b] there exists § € I[xg,x1,...,ZTm;T| such that

e w(@) ()
(@) = (@) = () = L,
where .
w(z) = H(a: — ;)™

Proof. The proof of (1.1.5.7)) is entirely analogous to that of the error for standard polynomial
interpolation, see ([1.1.4.2)). U
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1. Interpolation 1.2. Trigonometric Interpolation

1.2. Trigonometric Interpolation.

1.2.1. Basic Facts. Trigonometric interpolation uses linear combinations of the trigonometric
functions sin(kx) and cos(kx) for integer k. We restrict our attention to linear interpolation.
For N = 2M (even) support points {(z, fr)} o g s

Ao

Ay
5t Z (A cos(kz) + By sin(kz)) + o3 cos(Mz), (1.2.1.1)

k=1
and for N = 2M + 1 (odd) support points {(zx, fi) }n—g

U(z) =

Ao

W)= 2

+ Z (Ag cos(kz) + By sin(kzx)). (1.2.1.2)
k=1
Trigonometric interpolation is frequently used for data which are periodic with known period.
We recall the following result from complex analysis.
Theorem 1.2.1.1 (De Moivre’s Formula). For every integer k,
e = cos(kx) + isin(kz).

We consider uniform partitions of the interval [0, 27,
27l
ZE’lZ:W7 lZO,]_,,N—].
For such partitions, the trigonometric interpolation problem becomes a problem of finding a
so—called phase polynomial of order N

p(x) == B + Bre™” + B + -+ 4 By_1eN D7, (1.2.1.3)
with complex coefficients §; such that
plx)=f,, 1=0,1,...,N—1.

By definition of z;, we note that

o—ilen — e—il(%) e2m(—%) o2mik €2m( %) _ o2mik—58) _ ezm% — pi(N=Day.
Therefore i . )
ikx; i(N—Fk)x; ikx; ei N—k)x;
cos(kx;) = c +; , sin(kz;) = < 5 (1.2.1.4)
i

Making these substitutions into ((1.2.1.1)) and ([1.2.1.2)) for W(x) produces the phase polyno-
mial p(x) with coefficients ;, j = 0,1,..., N — 1. Observe for N = (2M + 1) (odd), we
have

Ay T4, | B, . |
\I’(.Z') — 70 + Z 7’“ (ezkz + ez(N—k)r) + 2_: (ezk:c . ez(N—k)x):|

+ i -& (eik:v _'_ei(ka):r) + % (_,Lezkx +Z€1(Nk)x):|
2 2

M -
1 : ikx 1 ; i(N—k)x
+Z §(Ak —sz)ek + §(Ak+ZBk)6 (N=k) :|

22



1. Interpolation 1.2. Trigonometric Interpolation

A &
=5+ z;
Similarly for N = 2M (even), we get

Ay = TA A By, . . Ay (1, |
\I/(l') _ 70 + Z |:7k <ezkx+ez(N—k)w) + 2_;9 (ezka: _GZ(N—k)a:):| + TM (5 (61Mx+€z(N—M)x))
k=1

2M 1
Ak — ZBk ik + Z Ak + ZBk) zka:‘
k= M+1

N)I»—t

_ A

iy | 1 A
9 + Z |:§ (Ak — in)e’kx + 5(14]C -+ ZBk)GZ(Nk)I:| + _MezMx

-1
2
k=1
2M -1
k—ZB zkx ZM:E_|_ E : Ak+ZB zkx‘
k= M+1

l\DI»—

M-1
PR IE
We arrive at the following result.

Lemma 1.2.1.2. If N s odd, then N =2M + 1 and

A 1 . 1 ) )
502707 Bi=5(A; —iBy), By =54 +iB)), j=12... M,

Ao =23y, Ar=0r+Bn-rk, Br=1iBk—Bnk), k=12,...,M.
If N is even, then N = 2M and
A 1 , 1 . .
60:707 ﬂj:§(Aj_ZBj)7 BM:T> BN*j:§(Aj+ZBj)7 ]:1727"'5M_17
Ao =208y, Ax=0Br+Bn-k, Am=208u, Br=1i(0B—Bnrk), k=1,2,....,M—1.
The trigonometric expression W(x) and its corresponding phase polynomial p agree for
all support abscissas zy = 2mk/N of an equispaced partition of the interval [0, 27],

fk:\I/<£L'k):p(£L‘k), kJZO,l,...,N—l.
However W(x) = p(x) need not hold at intermediate points = # xy, k =0,1,..., N — 1. The
two interpolation problems are equivalent in the sense that a solution to one problem will
produce a solution to the other by means of the coefficient relations in ((1.2.1.2]).
We note here that the phase polynomials p in ([1.2.1.3)) are structurally simpler than the
trigonometric expressions W(z). Introduce the notation

Am

W= ez:):’ Wy = etk — erm/N’

p(w) == Bo + Biw + Bow® + - + Byqw™
Since w; # wy for j # k, 0 < 5,k < N — 1, we see that we are faced with a standard
polynomial interpolation problem, that is, we seek to find the complex polynomial p of
degree N — 1 or less such that
p(wk):fk, k?:(),l,...,N—l.

We get the following result.

1
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1. Interpolation 1.2. Trigonometric Interpolation

( R

Theorem 1.2.1.3 (Existence and Uniqueness of Phase Polynomial). For any support
points {(w, fr) ooy, with fi. complex and z), = 2rk/N, there evists a unique phase
polynomial
p(x) = Bo + Bre™ + Bae® + -+ + By_eV 7
with
p(zr) = fr

fork=0,1,...,N — 1.

Proof. The proof follows immediately from the existence and uniqueness of polynomial in-
terpolation, see ((1.1.1.1]). 0

The coefficients 3;, 7 = 0,1,..., N — 1 of the interpolating phase polynomial p can be
expressed in closed form. Note, for 0 < 7,k < N — 1, we have
k 2jkim /N __ eikzj

wj =€’ =e

and, by De Moivre’s formula ((1.2.1.1]),

—ijay, _ ,=2jkin/N _ ,ik(=2j7/N)

. J
= wy,

—J _
w,” =e

= cos(—2kjm/N) + isin(—2kjn/N) = cos(2kjn /N) — isin(2kjn /N)

J—
—(JJk.

More importantly, however, we define the inner product

N-1 N-1
(W, W) = E wiwt = ek . g~k
k=0 k=0

Proof. 1f j =1, then

N-1 N-1
k=0 k=0
Now suppose that j # (. Then
N—-1 N—1 N-1 N—1
(u}j’wl> _ wiwk—l _ Z =Dy — Z eikzi—1 _ Z (eiwj—l)k
k=0 k=0 k=0 =0

k
Since j # [ with 0 < 5,1 < N — 1, we have
Wiy = 627ri(j—l)/N 7& 1.
Note that (w — 1) 30wk = w™ — 1. Thus

N_q_ (627ri(j—l)/N)N —1=eUN _1=1-1=0,
24



1. Interpolation 1.2. Trigonometric Interpolation

so that .
(W W =0.
This completes the proof. 0

Lemma (1.2.1.4) says that the vectors wj form an orthogonal basis for CV¥. From this
orthogonality follows the following result.

( R

Theorem 1.2.1.5 (Closed form of Phase Polynomial Coefficients). The phase polyno-
) N—1 5 i :
mial p(x) = > ;2o B;e”" satisfies
p(xk):fk, kZO,l,...,N—l,
for fi. complex and xy, = 2wk/N, k=0,1,..., N — 1, if and only if

1 N-1 1 N-1
= -Jj _ = —2mijk/N
@—Ngfkwk —N§fke ,

forj=0,1,...,N —1.

., N — 1, we have

v
S
Ry
vy]
@
o
jav}
e
]
@
O
=
=
I
=
—~
S
Bl
- X
Il
k=
\t—‘

O

We return to the original trigonometric expressions ¥(x) and state the main result for
this section.
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1. Interpolation 1.2. Trigonometric Interpolation

-

~N

Theorem 1.2.1.6 (Solution of Trigonometric Interpolation Problem). The trigonomet-
TiC eTPTeSSIONnS

A, M
=3 + Z (A cos(kz) + By sin(kz)),

k=1
Ay = Anm
U(x) = 20 + Z (Ag cos(kx) + By sin(kx)) + 5 M cos(M),
k=1

where N =2M + 1 (odd) and N = 2M (even), respectively, satisfy
\I’(Ik):fk, kZO,l,...,N—l,
for xy = 2wk /N if and only if the coefficients of W(x) are given by

=0 1=0
B = %101 frsin(kay) = %101 fisin <27er1>
Proof. In all cases,

If N = 2M, then

9 oM
= N 12:; f(.l’l) COS < ;TM )

Finally, consider

N-1
1 . ,
Ak B ﬁk + BN—k — N E f({L‘l)(e_kal + e—z(N—k:)zl)'
=0
26



1. Interpolation 1.2. Trigonometric Interpolation

By Euler’s formula (|1.2.1.4)),

g N-1
Ay = N Z f(x;) cos(kxy),
1=0
and
By, =i(Br — By-k)
; V-l
_ N Z f(I )(6 ikxy —i(N k):pl)
1=0
9 N-1
= — f(x;) sin(kxy)
N 1=0
This completes the proof. 0

Example 1.2.1.7. We construct the trigonometric polynomial of degree M = 2 given the

fOHO’U)?;Tlg data pomts
s L) 27 ) ) ) 9 )

Note
Ay = %]j:: f(z;) cos(0)
=52 s
= 1 +3-5+7
A= %]j:: f(zy) cos(x;)
= %gf(xl) cos(x;)
= % {(1 -cos(0)) + <3 - cos (g)) + (=5 cos(m)) + (2 - oS (3;))}
=48 =3,

g N-1
—fol ) cos(2xy)

2

—_

3
—Zf (x;) cos(2x;)

=

\)
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1. Interpolation 1.2. Trigonometric Interpolation

1
= 5[(1 -cos(0)) + (3 - cos(m)) + (=5 - cos(27m)) + (2 - cos(3m))]
1 9
— 2[1-3-5-29]=—=
-3-5-2=—,
g N-1
By =—» f(x)sin(x)
N 1=0
=
=3 f () sin(x;)
1=0
1 . . (3T
=3 (1-sin(0)) + (3 sin (—)) + (=5 -sin(m)) + (2 -sin | —
1 1
==-[3-2]=-.
2[3 ) 2
Hence, the interpolating trigonometric polynomial is
A < A
U(x) = 70 + ;(Ak cos(kx) + By sin(kx)) + 72 cos(2x)
A A
= 70 + A cos(x) + By sin(z) + 72 cos(2x)
1 1 9
=57 3cos(x) + 5 sin(z) — 1 cos(2z).
Moreover, the coefficients of the corresponding phase polynomaial are
Ay 172 1
h=% =g Tr
1 . 1 1. 3 1.
51—5(141—231) —5 <3—§Z) —§—ZZ,
1 1 1 3 1
Bs 2( 1 +iBy) 2(3+22) 2+4’L,
Ay —=9/2 9
T R

Thus, the corresponding phase polynomaial is
p(x) = Bo + Bre” + Bae®™ + P3e™*

—4 9 4'& € 46 5 42 e .
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1. Interpolation 1.3. Interpolation by Spline Functions

1.3. Interpolation by Spline Functions. Spline functions yield smooth interpolating
curves which are less likely to exhibit the large oscillations characteristic of polynomials
of high degree.

Definition 1.3.0.1 (Knot). Let

Ara=xg<t1 < --<xz,=0

be a partition of an interval [a,b]. The points x;, i =0,1,...,n, are called knots.

Given a partition A : a = 2y < 3 < -+ < x, = b of [a,b], splines are piecewise
polynomial functions S : [a,b] — R, with certain smoothness properties that are composed
of polynomials, namely, the restrictions S|I; of S to I; := (x;_1,x;), i = 1,2,...,n, are
polynomials.

In the following sections we describe the case of cubic splines, which are composed of
cubic polynomials, S|I; € II3.

1.3.1. Theoretical Foundations. Throughout this section we let
A={a=ay<x1 < - <xp}
be a partition of the interval [a, b]. We first give the definition of a cubic spline function.

Definition 1.3.1.1 (Cubic Spline Function). A cubic spline function Sx on A is a real-
valued function Sa : [a,b] — R with the properties:
(1) Sa € C?[a,b], that is, Sa is twice continuously differentiable on [a,b].
(2) Sa coincides on each subinterval [x;_1,x;], i = 1,2, ... n with a polynomial of degree
at most three.

We see that a cubic spline function consists of cubic polynomials pieced together so
that their values and those of their first two derivatives coincide at the interior knots z;,
1=1,2,...,n—1.

Definition 1.3.1.2 (Interpolating Spline Function). Let {f;}!', be a finite sequence of n+ 1
real numbers. An interpolating spline function is a spline function

SA(fa')
such that Sa(fi,x;) = fi for each i =0,1,...,n.

Note that an interpolating spline function Sa(f,-) is not uniquely determined by the
sequence f of support ordinates. There are two degrees of freedom left, so we impose
additional requirements on S, known as the side/spline conditions.

Definition 1.3.1.3 (Common Side Conditions). Three common side conditions for an in-
terpolating cubic spline function are as follows:

(1) SX(f,a) = SX(f,b) =0 (natural);
2) SO(f.a) = ST (f.b), for k =0,1,2 (periodic);
(3) S\(f,a) = fl, SA(f,b) = fl, for given numbers fj, f! (clamped).

We show later that each of these conditions ensures uniqueness of the interpolating spline
function Sa(f, ).
We now present definitions that will allow us to establish the above result as well as a

characteristic minimum property of cubic spline functions.
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Definition 1.3.1.4 (Absolutely Continuous). A real-valued function f : [a,b] — R is said
to be absolutely continuous on the interval [a, b] if for every € > 0 there exists § > 0 such

that
Z f(b:) — fla)] < e

for every finite set of intervals [a;, bi] with
a<a <b <ay<by<---<a,<b,=b
and ), |b; — a;| <.
We get the following properties for absolutely continuous functions.

Lemma 1.3.1.5. If f : [a,b] — R is absolutely continuous, then

(1) f is continuous;
(2) f' em’sts almost everywhere;

(3) f( ) )+ [F f/ dt for all x € [a b] (fundamental theorem of calculus);
(4) f f(x ) do = f f(x)g(x) dx (integration by parts).

Definition 1.3.1.6 (Lp—space). The set LQ[a,b] denotes the set of all real-valued square
integrable functions on [a,b], that is,
b
IR

Definition 1.3.1.7 (k™). For a positive integer m, we define
K™ a, b]

to be the set of all real-valued functions f : [a,b] — R for which f'™1) is absolutely contin-
uous on [a,b] and f™ € L?[a,b].

Definition 1.3.1.8 (x;'). We denote by
iy [a, 0]

the subset of all functions f € k™[a,b] such that f*)(a) = f®(b) for each k = 0,1,...,m—1,
that is, f®, k=0,1,...,m —1 is periodic.

exists and 1s finite.

Note that Sx € x*[a,b], and moreover Sa(f,-) € r3a,b] if the periodic side conditions
are satisfied.
The structure of ™[a, b] allows us to endow the function space with a seminorm.

Definition 1.3.1.9 (x? Seminorm). Let f € k*[a,b]. We define the k*[a,b] seminorm | - |,
by

b
P = / @) da.

Note that [f|. > 0 for all f € x*[a,b]. However, | - |2 is not a full norm but only a
seminorm, for |f|.2 = 0 may hold for functions f that are not identically zero, for example,

for all linear functions f(x) := mx + b.
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Theorem 1.3.1.10. If f € k?[a,b], A :={a =29 < 11 < --- < 3, = b} is a partition of the
interval [a,b], and if Sa is a spline function with knots x; € A, then

‘f_SA| _|f|n2_|SA|n2_

n

2 [(f’(ﬂf) — Sa(@)SA(@)l; = D _(f(x) = Sa(2))SA(2)

T,

7
+
Tia

=1

Note that S%¥(x) is piecewise constant, with possible discontinuities at the interior knots
21,%2,...,Tn—1. We indicate by z; and x;r_l in the above theorem the left and right limits
of SX at x; and x;_1, respectively.

Proof. By the definition of | - |, we have
r-ssl= [ 170 - S aa
= /a |[f" (@) = 2f"(2)SK(x) + [SK ()] d
“ 1P Isal 2 [ st da

b
= |f|* = |Sal* - 2/ (f"(x) — Sx(z))SA(x) du.

Recalling that SXC), k=0,1,2,3 is defined piecewise, integrating by parts gives

/ (f"(z) — Sx(2))SA(x) do =

= > (@) - S SKl Z [ @ - siesie as
5 [0 -

= (f'(x) = Sa(2)SA(x)]%

=1

/ i(f(x) — Sa (@) () dx]

Sa(x))SK (@)

le

= (f'(x) = Sa(@)SA(@)l; = Y_(f(2) — Sa(2))SA(2) iftl’
i=1
Since Sgl) =0 on [a,b] and
S ()~ Sae) A
telescopes by the continuity of LZS*:’A’l This completes the proof. 0

We arrive at the minimum-norm property of spline functions.
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1. Interpolation 1.3. Interpolation by Spline Functions

Theorem 1.3.1.11 (Minimum—Norm Property and Uniqueness of Cubic Spline). Given
a partition
A={a=zy<z1 < <z =b}
of the interval [a,b], values {f;}1y, and a function ¢ € k*[a,b] with ¢(x;) = fi for each
1=0,1,...,n, then
|¢|m2 > |SA(f7 ')|n27

and, more precisely,

|6 = Salfs ez = |lre = [Sa(f, )7 > 0

holds for every interpolating spline function Sx(f,-), provided that one of the following
conditions is satisfied:

(1) SX(f,a) = SX(f,b) =0 (natural),
(2) SXC)(f, a) = Sgc)(f, b) for k =0,1,2 (periodic),
(3) S\(f,a) = ¢'(a), S\(f,b) = ¢'(b) (clamped).

In each of these cases, the interpolating spline function Sx(f,-) is uniquely determined.

Proof. We handle existence of the interpolating spline function by construction in the fol-
lowing section.
In each of the above three cases of side conditions, the expressions

(¢'(2) — Sa(@))SK ()] =0

and
n

> (6(x) = Sa(x))SK(z)

1=1

vanish in the identity (1.3.1.10). Thus
|6 = Salf, )52 = llz = [Sa(f, )ie > 0,

T,

74 J—
o, =0

1

so that evidently
|0lee = 1Sa(f )]
This proves the minimum norm property of the interpolating spline function S A(f, ).
To show uniqueness, assume that Sa(f,-) is another interpolating spline function having
the same properties as Sa(f,-). Then Sa(f,-) satisfies the same properties as ¢ in the

statement of (1.3.1.11]), so letting Sa(f,-) play the role of ¢, the minimum norm property
of Sa(f,-) implies that

[Sa(f,) = Salf, ez = [Salf, Mz — 1Sa(f, )% = 0.
Since Sa(f,-) and Sa(f,-) may switch roles, we have similarly

[Sa(f.) = Salf. ) = 1Salf, ) = [Salf. )k > 0.
Evidently [Sa(f,")[%> = [Sa(f,")|%. Thus

— 2
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1. Interpolation 1.3. Interpolation by Spline Functions

By the continuity of S%(f,-) and Sx(f,-), we have
Salf. @) = Sx(f,7)
for all z € [a,b]. Integrating, we obtain
Salf,z) = Sa(fix) +cx +d
for some ¢, d € R. But observe that

SA(f? CL) - SA(f: CL)

SA(f7 b) - SA(fv b)
and this implies that ¢ = d = 0. Hence,

gA(fa [L’) = SA(fa l.)
for all z € [a, b], which completes the proof. d

=0=czr+d|p=,
=0=cz + d|z=s,

1.3.2. Determining Interpolating Cubic Spline Functions. In this section we construct cubic
spline functions which assume prescribed values at their knots and satisfy one of the side
conditions . In doing this we will have proved the existence of such spline functions.
We have already established uniqueness in (1.3.1.11)).
Throughout this section,
A:={x;:i=0,1,...,n}

will be a fixed partition of the interval [a,b] by knots a = xo < 27 < --+ < ,, = b. We put
Y = {yi}?:m
a sequence of n 4 1 prescribed real numbers. Finally, we denote by I; the subinterval
[j = [xj—laxj]a j:1,2,...,n,
and
hjZ:.Z‘j—I'j_l, j:1,2,...,n

will denote the length of each I;.

Definition 1.3.2.1 (Moments). We call the values of the second derivatives at knots x; € A,
M; =S (Y,z;), 7=0,1,....n
of the interpolating spline function Sx(Y,-) the moments M; of SA(Y,-).
We will show that interpolating spline functions are characterized by their moments.
Recall that the second derivative SX (Y, ) coincides with a linear function in each subin-

terval ;41 = [z, 2;41],  =0,1,...,n — 1, and that we can express these linear functions in
terms of the moments M; by

X — X xr — XI;
SA(Y,z) = MjL + M :

)

hja hjt

for © € [z}, z;41]. By integration, we obtain

! o (ijrl - ];)2 g
SA(Y,z) = — M~ =y (T g (1.3.2.1)
2hjs1
(x

3
SA(Y,x) = Mjw + M
611

6hj11
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1. Interpolation 1.3. Interpolation by Spline Functions

for all z € [zj,2;41], 7 = 0,1,...,n — 1, and where A;, B; are constants of integration.
Recalling that SA(Y, z;) = y; and Sa(Y, zj11) = y;+1 by supposition, we have

)3 h2
g = Sa(Vay) = M, =) g g M g

6hj11 6
Yj+1 = SA(Y, $j+1) = Mj_:,_l% + Aj(l‘j.H - Zlfj) + Bj = Mj-i—le—H + Ajhj.H + Bj,
j
so that we arrive at the following equations for A; and B; :
h2
B =y; — M, J6+1, (1.3.2.2)
| 2
Aj = b <yj+1 - MjﬂjT+1 - Bj)
J
Yj+1 hivi hjia
= — M. 1 _ + M.
hign 6 hjy 6
Y =y hyn
— ]+h~+1 I _ J6+ (M4, — M;). (1.3.2.3)
J

This gives the following representation of the interpolating spline function SA(Y,-) in terms
of its moments M; :

SalY,x) = aj + Bz — x5) + vz — 25)* + §;(x — 2;)°, (1.3.2.4)
for all € [z;,2;11], and where

aj = Sa(Y, x5) = vy,

)2 M.h.
Bj = SA(Y, x;) = _MjM + A =4,
2N 41 2
~M:his1  Yis1—vyi  him
= JQﬁ + j+}1j+1 - ]6+ (Mj11 — Mj)
_ Y=y 2Mi+ My
- B hj+17
his 6
1 1
7= 5oaYoxs) = 5 M,
5, = Loy gty = =My My My = My
TR I T 6hyyy | 6hyy 6hj11

This characterizes Sa (Y, -) in terms of its moments M;. It remains to calculate these moments

M;.
Recall from ([1.3.2.2)) that
2 2

SV pp T T ) ()t

A( 7$) J 2hj+1 + Jj+1 2h_j-|—1 + J
Vi1 — Y hip (Tj41 — 95)2 (z — -’173')2
= _ M1 — M) — M, ~2+ ) oy A I

hj+1 6 ( Jj+1 ]) J 2hj+1 + Jj+1 2hj+1

The continuity of S\(Y,-) at the interior knots z = z;, j = 1,2,...,n — 1, namely, the
relations S (Y, 2} ) = Sy (Y, 2} ), yields n — 1 equations for the moments M;. Inserting the
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1. Interpolation 1.3. Interpolation by Spline Functions
values from ((1.3.2.2)) into (|1.3.2.1]) gives for = € [z}, z;11] the following:

i~ Y1 hy Cr )2
R oS Tt L N VSV VA W VAL ki Y i

h; 6 2h;
_ Vi Yo MMy Mo Mhy
h; 6 6 2
Yi —yi-1 | hy hj
=22+ =M, +—=M;_
h, 3Tt
and
Yir1 =Y hin (2501 — x5)°
Sa(Y,z)) = ﬁh, L — ]6+ (M1 — Mj) — Mj%
j+1 J+1
Yir1— Y hjn hj1 hj
= — M, ——M; — ——M,
hj+1 6 Jj+1 + 6 J 2 J
_ Y1 Y hj+1M' _ hj+1M'
Bt 3 0 e U
Since Sy (Y, z;) = Sy(Y, z}),
Yi —Yi-1 | Ny h; Yirr =Y hin hj1
LA et N 1 V/ SR 1) V) — — M. — s
n, 3Tt T T 3 T g M
which implies
h; hjs1 = hy hjti Yir1 =Y Y — Y
IM o+ 2 IM+ M, =2 Jd 2 9 1.3.2.5
6 Jj—1 + 3 J + 6 Jj+1 h/j-|—1 h] ( )
for the interior moments, j = 1,2,...,n—1. These are n — 1 equations for the n+ 1 unknown

moments. We gain two further equations from each of the side conditions (|1.3.1.11]).
Case (1) [Natural spline]: SX(Y,a) = My =0= M, = SX(Y,b).
Case (2) [Periodic spline/: Since SX(Y,a) = SX(Y,b), evidently My = M, so that

h, h,+h h
S/A<Y7b) = ? n71+ 3 1Mn+€1M1
_ Y1 — Yn N Yn — Yn—1
hy hy

The condition S\ (Y, a) is similar, recalling that the periodic case requires yo = y,.
Case (3) [Clamped spline/: Since Si(Y,a) = f'(a),

hy hy Y — Yo
—My+ —M; = — SA(Y.
3 ot 6 1 I A(Y,a)
_ Y1 — Yo o y/
h1 0
and likewise
hn hn Yn — Yn—1
_Mnf _Mn - S, Y, b I —
6 13 aY;0) B
_ y/ N Yn — Yn—1

35
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We can write these equations as well as those in (1.3.2.5)) in the following format:

/Lij_1+2Mj+>\ij+1:dj, j:1,2,...,n—1,

where we define

o hin
I hj + hj+17
h.
Bm 1A=
J J hj + hj+1
4 6 (?Jj+1 —Yi Y~ yj—1>
T+ e \ gt h,

For the side conditions, we proceed as follows for each of the three cases:
Case (1) [Natural spline/:

A =0, dy:=0, p,:=0, d,:=0.
Case (2) [Periodic spline]:

Ay = hl o h"
Ty S

6 Y1 = Yn  Yn — Yn-1
do := - =:d,.
O b+ Iy ( hy B, )

Case (3) [Clamped spline]:

6 _
Xo=1, do: (yl yl—ya), o = 0,

)\n = )\07 ,LLTL = ,UO,

T\ M
6 / Yn — Yn—1
o =1, dy :=h—<yn—h—>, A =0,

(1.3.2.6)

(1.3.2.7)

(1.3.2.8)

(1.3.2.9)

In cases (1) and (3) we get the following (n 4 1) x (n + 1) system of linear equations for

the moments M; :

(1.3.2.10)

(1.3.2.11)

[2 >\0 0 . . 0 7 _MO_ _dO-
pio 20\ : M, dy
O 2 . . _ .
. . O
: * 2 )\n—l . .
Lo - - 0w, 2 ] LM, d,
To avoid singularity in the periodic case (2), we have the following n x n linear system for
case (2):
2 /\21 )(\) ce . 0 1251 -Ml- -dl-
fh2 2 0 ... O My d
0 IU3 _ .
: . . ) 0
0 2 A | '
An 0 . 0 Un, 2 -Mn- _dn_

Solving the systems (1.3.2.10|) and ((1.3.2.11)) gives the moments M;, j = (0,)1,2,...,n.
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1. Interpolation 1.3. Interpolation by Spline Functions

Note in particular that in ((1.3.2.10)) and (1.3.2.11]) we have

and moreover
pj+ A =1
for j =0,1...,n. Also, these coefficients ;1; and A; depend only on the partition A and not

on the prescribed values y; € Y.
The following result guarantees that these systems are always (uniquely) solvable.

Theorem 1.3.2.2 (Existence of Interpolating Spline Function). The systems ((1.3.2.10)) and
(1.3.2.11)) of linear equations are nonsingular for any partition A of |a, b].

Proof. Consider the (n 4 1) x (n 4 1) matrix

(2 X O - - 0 7
pio 200N :
N U :
A= | ' 0
. 2 At
_O : : 0 Hn, 2 _

of the linear system ((1.3.2.10). Since A;, u; > 0 for each j = 0,1,...,n, the matrix A has
the following property:

Az=w = max |z;| < max |wj] (1.3.2.12)
j=0,1,..n §=0,1,..n
for all vectors z,w € R™™, 2z := [20,21,..., 2], w := [wo, w1, ..., w,]". Let r be such that

|2,| = max;_g1,. n|z|. From Az = w, we have
M Zp—1 + 22, + )\rerrl = Wy,

where pg := 0 and A\, := 0 if necessary. By the definition of r and the fact that p, + A\, =1,
it follows

max fw;| > Jw,|
7=0,1,....,n

sy

2 2|Zr| - ,LLT|Z,,«_1| - )\1’|Z'r+1‘
> 2ze| = pel2r] = Arlzr|

=(2— pr — /\T)|Z7’|
= |z| = max |[z].
=

=U,1,...,

By contradiction, suppose that the matrix A were singular. Then there exists a nontriv-
ial solution z # 0 of the homogeneous system Az = 0, from which yields the
contradiction

0 < max |[z] <0,

7=0,1,....,n
so that evidently z = 0. In other words, z = 0 and z # 0 simultaneously, and you should
really be ashamed of yourself for ever supposing the conclusion was not so.
The nonsingularity of the matrix in is shown similarly. This completes the
proof. O
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1.3.3. Conwvergence Properties of Cubic Spline Functions. Recall that interpolating polyno-
mials may not converge to a function f whose values they interpolate, even if the partitions
A are chosen such that the fineness |A|| of the partition converges to zero (see section 1.1.4).
On the other hand, interpolating spline functions do converge towards f as ||A|| approaches
zero, provided mild conditions on f and the partitions A are satisfied.

We first show that the moments of the interpolating spline function Sa(Y, ) converge to
the second derivatives of the given function f. For concreteness, fix a partition

A={a=zy<x1<...,0, =0}

of the interval [a, b], and let
M = [My, My, ... M,]"

be the vector of moments M; of the interpolating spline function Sa(Y,-) with y; := f(x;),
7 =0,1,...,n, as well as the clamped side condition

Sa(Y,a) = f'(a),  SA(Y,b) = f(b).

Note that the vector M of moments satisfies the equation

AM = d,
where

r2 X O - - 0 T

o 200N :

|0 e :

A= ' . 0
) 2 Mg
_0 : : 0 M 2 .

as in (|1.3.2.10) and

6 U1 Yo / 6 / Yn Yn—1
0 hl ( hl y() ’ " hn yn hn ’

6 . e
d = T (yJJ;ijJ Y hjyj 1)7 i=1.2,. .. n—1,

as in of the previous section. Let F' and r be the vectors

e

|’ (f“) . ri=d—AF = A(M — F).

f ()
Denoting by ||z]|oc := max;—g 1., |2;| the infinity norm for vectors z € R™ and

lralloo = _max  |zj41 — 4]

the fineness of the partition A, we get the following result.

Lemma 1.3.3.1 (Convergence of Moments). If f € C*[a,b] and |f®(z)| < L for all z €
la,b], then

3
IM = Flloo < lIrlloo < S LIl
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Proof. We start with rq. Note that
To = do — (AF)O
=do —2f"(z0) — Xof"(21)

§) —
_ h_l (yl hlyO N y[/)) _ 2f”($o) _ f”(xl)a

since A\g + p1o = Ao = 1. Using Taylor’s theorem to express y; = f(z1) and f”(x1) in terms of
f about zy gives

6 [ f(wo) + hif'(wo) + 5 1" (wo) + 5/ (wo) + HSV(r)  flwo) S (w0)
hl hl hl

2" an) = | ") + 1) + 270

_6[m hi
Chy | 2 6

2 2
_ |:3f”($0) + hlfm($0) + %fM) (7-1):| . 3f”(l’0) . h1f’”($0) _ %f(4)(7—2)

3 2
a0 + 5 o)+ G0 | = 28" (an) = ) = ) = 70

h? h?
= 0(m) =10

for some 71, 75 € [z, z1]. Hence,
2

h
Zlf(4)(71)
hi hi
< =L+ —=L
— 4 + 2

3
< ZL||hall%.
< 2Ljihall%

2

h
70| < + éf(‘l)(Tz)

Analogously, we find for
rp=dy — (AF)y = dy — f"(2p-1) — 2f"(20)

that 5
[ral < JLIRAT:
We now turn to the consideration of r; for j =1,2,...,n — 1. Observe
ri=dj = (AF)j = dj — p;Fj1 = 2F; — \jFip = dj — py f"(xj-1) = 2f"(25) — A f"(@44)
6 Yi+1 — Yj Yj — yj—1> hj 1" " hj-i-l "
— _ _ )9 I .
I + by ( I I I, + hj+1f (75-1) f"(x5) Iy + thf (zj41)
_ 6 (f(%‘ﬂ) Cfy) flzy) f(%‘—ﬂ) hy (w5 ) —
hj + hj+1 hj+1 hj—i-l hj hj hj + hj+1 I
I
Q" () — j+1 "ne,. .
) = )
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Applying Taylor’s theorem about z; then gives

h?2 h3 h4
_ 6 (@) + hjf' (@) + 54" (5) + =517 (5) + =57 f O ()
hj + hjia hj

Ty

4

fla) S, (@) = )+ G ) = E ) + 5O ()

hj+1 hj hj
h; " " hz' "
o ) = )+ B0 - 20w -
J J
hj+1 " " hj2'+1 (4)
bt hoo (@) + hja [ () + 5 fH(m)
J J
o 6 hj-i-l " h32+1 " h?Jrl (4) hj " hj2 "
e | ) + )+ ) + ) - ) +
h3 h; " " h2 "
T <Tz>] “hiho [f () = hyf" (;) + ;ﬂ‘“(a)} 2" ()
J J
hj+1 " " h12'+1 (4)
. f (@) + hjd [ (z5) + 5/ (74)
J J
1 h?-i—l (4) h? (4) h? (4) h?-&-l (4)
_hj+hj+1{ L L)+ () = S ) - = f (74)},

for some 7; € [xj_1,2,41], 1 = 1,2, 3,4. Thus

1 B3 B3 3 3
Ir;| < AR Ry SRRl SR At §
Iy + hy

4 4 2 2
_ 1 3k 3R ) 8, [
hj + h’j—i—l 4 4 4 hj + hj—H
3 h: + h;
< ZLhal |t
4 hj+hj+1
3
= —L|lhal/%.
AN

This shows 5
Il < 2ElRal

Recall that since pj, A\; > 0forall 7 =0,1,...,nand p; + \; =1for j=1,2,...,n -1,
we have

§=0,1,..., 01,0,
That is,
1M = Flloo < |7l
Hence,
1M~ Fllso < il < SL0Aa ]2
This completes the proof. O
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We arrive at the main convergence result from this section.

Theorem 1.3.3.2 (Convergence of Interpolating Spline Functions). Suppose that f €
C4a,b] and |f@(z)| < L for all v € [a,b]. Let A be a partition A := {a = 29 < 7, <
o < xy, = b} of the interval [a,b], and K € R a constant such that
[INIES

|21 — @
If SA s the spline function that interpolates the values of the function f at the knots
z; €A, j=0,1,...,n, and satisfies

Sala) = f'(a), Sa(b) = f'(b),

then there exist constants ¢, < 2, which do not depend on the partition A, such that

fO (@) - SO (@) < e LK|hall”, 7=0,1,2,3.

oo )

<K, j=0,1,....,n—1.

We note that the constant K > 1 bounds the deviation of the partition A from uniformity,
that is, K guarantees that there is no clustering of knots.

Proof. We begin with the case r = 3. Recall that, for z € [z;_1, z;],

Sh(w) = My =2 4 MR
A J hj J hj
so that M M M. — M
S/”(.CE) _ -l + e e B J'*l.
. hy h;
Thus for all = € [z;_1,z,],
M; — M;_
$K(a) — () = M )
J

M;— f"(x;)  Mja—f"(xj) 1., "
= , - ; + h L (x5) — f(x) +
(f"(x) = f(xj-0))] — [ (),

Using Taylor’s theorem to express the derivatives of f about x, we have

S/AI/(x) B f”’(x) _ Mj _hf (xj) . Mjfl _hf (xjfl) + hi [f”(l') + (-xj i .Z')f”/(l') +

L, — 22y @ (m) - f”<x>] L) - () +

2 h

(211 = )@ 51— 2P )| - £760)

_ Mj _ f//(‘rj) Mj—l - f//<xj—1) 1 1" 1 2

i [CERIAOR DER AL
(811 = 2)"(0) = 31 = 2P FO () " (o)

_ Mj _hf (:L‘]) . Mj—l _h{ (xj—l) + hi] [(SC] . xj—l)fm(x) B hjfm(SL’) +
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1. Interpolation 1.3. Interpolation by Spline Functions

1 2 r(4 1 2 (4
(25 —2) O () - 5 (zj-1— 1) £ )(Tz)} ,

for some 7,7 € [z;_1,z;]. From (1.3.3.1) and the fact that h; = x; — z;_1, as well as
x —x; < hj, we have

|f///($) _S///( >| < LHhAH2 + 2 LHhAH2 + = LHh ||2
17 h Ta hj
2 2 2
NN N TN
2" h, T2 h h

< 2L||hal|so-
Since K > 1, we conclude that
/(@) = SX(2)| < 2LK|hal -

We now show the case r = 2. Let # € [a,b]. There exists a closest knot x;. Without
loss of generality, assume that z < x;, so that z € [z;_1,z;]. We may also assume that

|z, — 2| < %” < Yhalleo- From (1.3.3.1)) and the result for r = 3, we have

/(@) = Sa(@)] = f"(x;) — Sale;) + /w(f”’() SA(t)) dt

J

3 xT
< ZL|yhAHZo +/ LK || halls dt

_ ZLHhA”go + QLK ||halloo) =,
— ZLHhAHzO +2LK || hall3 (2 — 25)
< 3L\l + LK |hall%.

< =LK|[hall%, + LK |[hallZ,

LK |[hall3,

m\u;lcoq;

since K > 1. Hence,
7
£(z) - SK(@)] < TLK|hall

We next consider » = 1. In addition to the boundary points & := a, &,,1 := b, it follows
by Rolle’s theorem ([I.1.4.1)) that there exist n further points &; € [z;_1,7;], j =1,2,...,n
such that

f/<§j):S/A(xj)7 j:0717-~.,n+1,
by the side conditions. Let = € [a,b]. There exists a closest point &;, for which we have that
[z =&l < [halle-
Thus N
Fi@) = Sao) = [ (77(0) = SK(0) .

&
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1. Interpolation 1.3. Interpolation by Spline Functions

By the result for r = 2,

() = Sala)] <

/ () - SL() dt

&

< / TLK b2, dt
&j 4

7 2
SN

7
< ZLK”hAHio‘

This proves
7

7/() — S (e)| < LK o
Finally, we show r = 0. Let € [a,b] and recall that there exists a closest knot z;.
Without loss of generality, say « < x; such that « € [z;_1, ;] and |z; — 2| < 3||hal|s. Note
that, by the fundamental theorem of calculus,

fla) = Sala) = [ (71(0) = S (0) e

By the result for » = 1, it follows

F(2) = Sae)] < /

7 x
LKt
7

< gLKHhAHgo-

7
~LK||hall?
TLE hal

Hence,
£(2) = Sa(2) < SLK|hallL
which completes the proof. 0
Note that Theorem (|1.3.3.2)) implies that for sequences
A, = {a:xém) <™ <. < zl™ = b}

of partitions with ||ha,,|lcc — 0 which satisfy the conditions of ([1.3.3.2)), the corresponding
interpolating spline functions Sa, that satisfy the hypotheses of ((1.3.3.2)) and their first two
derivatives converge uniformly to f and its first two derivatives on [a, b]. This is much different
from the case of standard polynomial interpolation, where the polynomial interpolant may
not converge even pointwise to f for an arbitrary partition.
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2. Function Approximation 2.1. Least Squares Approximation

2. FUNCTION APPROXIMATION

2.1. Least Squares Approximation. Least squares function approximation seeks to find
for a given f € Cla,b] and positive integer n the polynomial p, € II" which minimizes the
least squares (L?[a, b]) error

If = pull2 = {/ab(f(x) — pa())? dx}m, (2.1.0.1)

so that for all ¢ € 11" we have
b
<{ [ () -ty

{06 - ar)

1/2 1/2
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2. Function Approximation 2.1. Least Squares Approximation

2.1.1. Orthogonal Polynomials and Least Squares Approzimation. Let f € Cla,b] and let
pn € 11" be the polynomial of degree at most n that minimizes the L?[a, b] error

/ (f(2) - pal2))? d.

Since p,, € 11", we may write
n

pu(z) = Z et = co+ ax + ex? + -+ e

k=0
Define the minimizer
b
E(co,c1,...,¢0) :/ (f(x) — pu(x))? da. (2.1.1.1)
Thus, the problem becomes one of finding coefficients ¢, ¢y, ..., ¢, for p, such that

b
E(co,c1y..0y0p) < / (f(z) — q(z))* dz

for all ¢ € II". Evidently, a necessary condition for the coefficients ¢, ¢y, ..., ¢, to minimize

@1.1.1) is that
OE(co,c1,...,Cn)

8cj

=0, foreachj;=0,1,...,n.

Since

Elco.crr- . 00) = /ab(f(x) ~ pu(@)? da
= [rwr a2 [ f@me @+ [ @r o

- [rwr a2 [ 1w [223 | dre [

k=0
b n b b [ n 2
:/[f(x)]2 dm—Qch/ o f(x) dm+/ chxk dx,
a k=0 a @ k=0
we have for each 7 =0,1,...,n that
E b & b
OFE(co,C1,- -, n) :—2/ 2 f(x) d:c—i—ZZCk/ I dr. (2.1.1.2)
aCj a 0 a

Rearranging (2.1.1.2)), we find p, () by setting M(Coa# = 0 for each j =0,1,...,n to get
J

the n + 1 normal equations

n b b
ch/ Itk d$:/ 2 f(x) de, j=0,1,...,n, (2.1.1.3)
k=0

a a

that must be solved to obtain the n + 1 coefficients ¢, cq,...,c,. The normal equations
always have a unique solution, provided that f € Cla,b|.
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2. Function Approximation 2.1. Least Squares Approximation

Example 2.1.1.1. Given f(x) = 2, we calculate the polynomial p € TI' that satisfies

2 2
| @ = s do < [ (@) - ) ds
0 0
for all g € II*. The normal equations for

p(z) == ap + a1z

2 2 2
ao/ d:z:+a1/xdx:/x2dx,
0 0 0
2 2 2
ao/:cdx+a1/ :L'de:/:c?’d:z:.
0 0 0

Performing the integration gives

are.

8
2(10 + 2@1 = g,
2@0 —I— gal = 4
Solving the above system gives
2
ag = —g, a; = 2.
Thus
2
p(z) = -3 + 2.
Moreover,

/j(f(x) _ p(@))? = /02 (g —2x+x2>2 dz = 0.

We now turn to a discussion of methods to solve the n 4+ 1 normal equations ([2.1.1.3]).

Noting that
b b
/ :Ej+k dr = 1 xj-&-k-i-l — 1
a J+k+1 J+k+1

observe that the solutions to the normal equations (2.1.1.3) are of the form

( ikl aj+k+1)

)

n

Z Ck (bj+k+1 Jk+1 _/b k
— —a )= [ 2"f(z) dx. (2.1.1.4)

k:oj+k+1

The matrix of the (n 4+ 1) x (n + 1) linear system obtained by (2.1.1.4) is known as the
Hilbert matrix

_ 12 2 1/pn _ ,n
1 b2 a2 2(() a®) S "(271 a)hl
Lor—am) LSO t—amt) L b—a

A few problems arise:

(1) The Hilbert matrix is notorious for roundoff error difficulties;
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(2) The system is dense (not sparse) and does not have an easily calculated
numerical solution;

(3) There is no indication of how to use the calculation of p, to obtain p,1, that is, the
work done to find p,, does not lessen the amount of work required to find p,, 1.

Thus we are motivated to use a different polynomial basis for II" than
B:={1,z,2%. .. 2"}

Definition 2.1.1.2 (Linear Independence). The set of functions {¢o, ¢1,...,¢n} is said to
be linearly independent on the interval [a,b] if whenever

n

ch%(x) = cogo(z) + c101(z) + -+ + cun(z) =0

k=0
for all x € [a,b], we have ¢c; =0 for all j =0,1,...,n.

Definition 2.1.1.3 (Linear Dependence). The set of functions {¢o, ¢1,...,¢,} is linearly
dependent if it is not linearly independent.

Example 2.1.1.4. We show that the set {1,x,22 ... 2"} is linearly independent on |a, b].
Letc; € R, j =0,1,...,n be such that

p(z) = chxk =c+car+---+cax" =0
k=0

for all x € [a,b]. Note that p is a polynomial of degree at most n such that

p(z) =0
for all x € [a,b]. Since [a,b] is uncountable, p must vanish identically, so that
p(z) =0

on |a,b]. From this it follows that p is the zero polynomial, so that c¢; = 0 for each j =
0,1,...,n.

We get the following generalization of the above example.

Theorem 2.1.1.5. Suppose that, for each j = 0,1,...,n, ¢;(z) is a polynomial of degree
precisely j. Then {¢o, ¢1, ..., ¢n} is linearly independent on any interval [a, b].

Proof. Let {¢o, ¢1,...,0,} be aset of functions that satisfy the assumptions of (2.1.1.5) and
let ¢; €R, j=0,1,...,n be such that
p(x) == copo(z) + c11(x) + -+ - + cpPn(z) =0
for all z € [a,b]. Since {1,x,...,2"} is linearly independent on [a, b], there exist coefficients
Bo, B, ..., Bn € R such that
p(x) = Bo + Pz + Pax + -+ + Baa”.

Thus the polynomial p vanishes identically on [a,b], so that §; = 0 for all j = 0,1,...,n.
In particular, 5, = 0. But ¢,¢,(z) is the only term in p that contains ", so we must have
¢, = B, = 0. Thus

—_

n n—

p(r) = i) =Y axdil).

k=0 0

B
Il
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2. Function Approximation 2.1. Least Squares Approximation

Continuing in such fashion, it may be shown that the remaining constants ¢, _1,¢,_2,..., o
are all zero, from which it follows that {¢g, ¢1, ..., ¢,} is linearly independent on [a,b]. O

We get the following result from linear algebra.

Theorem 2.1.1.6. Suppose that {pg, ¢1,...,dn} is a collection of linearly independent poly-
nomials in I1". Then any polynomial p € II"™ can be written uniquely as a linear combination

Of QSO(:E)v ¢1($), cee 7¢n<x)

Proof. By the invertible matrix theorem ({1.1.5.1)), it suffices to show uniqueness.
Let p € II" and suppose that there exist real coefficients o, 8, j = 0,1,...,n, such that

p(r) =) ardp(r) and p(z) =) Brdu(w)

for all « € [a,b]. Then

(Z Oék¢k($)) - (Z 5k¢k(ﬂf)> = (o — Bi) () = 0.
k=0 k=0 k=0
Since the set {¢g, ¢1,...,¢,} is linearly independent, we must have a; — 5; = 0 for every
Jj=0,1,...,n,s0 that o; = 3; for all j =0,1,...,n.
It follows that any p € II" can be written uniquely as a linear combination of

do(x), d1(x), ..., (). O]

We introduce the concepts of a weight function and orthogonality.

Definition 2.1.1.7 (Weight Function). An integrable function w is called a weight func-
tion on the interval [a,b] if w(x) > 0 for all x € [a,b] and w does not vanish identically on
any subinterval of |a,b], that is, the zero set

Z(w) :=A{x € [a,b] : w(x) =0}
has measure zero.

The purpose of the weight function w is to assign varying degrees of importance to ap-
proximations on certain portions of the interval [a, b]. For instance, the weight function

1
V1—2?
places less emphasis on the center of the interval [—1, 1] and more emphasis when |z| is near
1.

We revisit the least squares problem with the addition of a weight function w. Let
{bo, P1,...,0n} be a set of linearly independent functions on [a,b] and let w be a weight
function on the interval [a, b]. Given f € C|a, b], recall that we want a linear combination

w(x) =

to minimize the L*[a,b] error

b
E(co,cl,...,cn):/ w(x) [f(a:)—
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For each j =0,1,...,n we have

OE(co,c1,...,¢n) b
o —2lium[ﬂm—

Thus the normal equations (2.1.1.3)) become
b n b
/ w(x)f(z)p;(x) doe = ch/ w(x)p(z)g;(z) de, j=0,1,... n (2.1.1.5)
a k=0 a
If we can choose the set of functions {¢g, ¢1, ..., ¢,} such that

/wwmmwwm:{%k¢x

aja k = jv
then the normal equations (2.1.1.5)) reduce to the remarkably simple system

[ @ @) do =Y e [ wl@honla)s o) do

a

n

Ck(ﬁk(x)] ¢j(r) dz = 0.

k=0

(2.1.1.6)

=qlzm%mwﬁm

for each j =0,1,...,n. From (2.1.1.5) and (2.1.1.6) we can solve for each ¢;, 7 =0,1,...,n
easily to find

b
cj_i/ w(@) f(@)dy(x) de, = 0,1,...,n. (2.1.1.7)

We note here that the polynomials {¢g, @1, ..., ¢, } chosen such that (2.1.1.6) holds are said
to satisfy an orthogonality condition, and we can see that this greatly simplifies the least
squares approximation problem.

Definition 2.1.1.8 (Orthogonal Set of Functions). The set of functions {¢po, ¢1,...,dn} is
said to be w—orthogonal on the interval [a,b] with respect to the weight functions w if

b .
/ w(z)or(2)¢;(x) de = {07 k# 7,

Oéj>0, k=j.

Definition 2.1.1.9 (Orthonormal Set of Functions). Let {¢g, ¢1,...,Pn} satisfy the condi-
tions of (2.1.1.8). If, wn addition,

| @i deima; =1

for each j = 0,1,...,n, the set {¢pg, d1,...,Pn} is called w—orthonormal on the interval
la, b].

We get the following theorem.
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Vs

N

Theorem 2.1.1.10 (Construction of Least Squares Approximant). If {¢g, ¢1,...,0n}
is an orthogonal set of functions on [a,b] with respect to the weight function w, then the
least squares approrimation of f with respect to w s
p(x) =Y c;e5(x),
k=0

where, for each 7 =0,1,... n,

@@ de 1t
e s e At

Proof. Let p € II" be the least squares approximant of f,
p(x) =) axdil(x),
k=0

where ¢; and ¢;(x) are defined as in the statement of (2.1.1.10), j =0,1,...,n. If ¢ € II" is
any other polynomial, then

/abw(ﬂf)(f(x) —q(x))* dx (2.1.1.8)
= [ 0@ e + 066 0@ o
- /abw("”(f (2) —p())* do +2 / @) () — pla)) (o) — a(a)) d +
[ @0 - o)

> / w(@)(f(2) - p(a))’ da +2 / w(@)(f(z) - p()) (o) — q(x)) d. (2.1.19)

We pass to the consideration of

b
[ 0@ @)~ p) o) — ale)

First note that p — ¢ € II", so there exist real coefficients a;, j = 0,1,...,n, such that

p(r) = g(z) = ) apgr(x).

Observe
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—Zak/a ) (@ dm—Zak/a ) dx
= Zak/ x)op(x) dx — Zak/ (Z cldn(x)) or(x) dx
—Zak/ 2)op(z) do =) achl/a ) d.

By the orthogonality of the set {¢q, ¢1, . .. ,qbn} and the assumption that

cj = 5 w(z)f(z)p;(x) de, j=0,1,...,n,
we have
[ @)@ = p@) o) @) do = Y aneran) = 3 anleuan) 0.
a k=0 k=0

Returning to (2.1.1.8]) and (2.1.1.9), we have thus

b b
/ w(@)(f(x) — q(a))? de > / w(o)(f(x) - p(a))? de,

which completes the proof. 0
We also have the following characterization of the least squares approximant.

Theorem 2.1.1.11. Let f € Cla,b] and let w be a weight function on [a,b]. Then p is the
least squares approximation to f in II"™ if and only if

/ w(z)(f(z) — pla))a(x) dz =0
for all g € T1".

Proof. First, suppose that

b
/ w(@)(f(z) - pla))q(x) dz = 0

holds for all ¢ € II". Then
b b
/ w(@)(f(x) — q(x)? de = / w(@)(f() - p(a)) + (p(z) — q(2)))? da
= [t = @) de+ 2 [ wle)(f@) - p@)ple) - al)) do+
/ w(@)(f(z) - q(@))? de

b b
> / w(@)(f(x) - p(x)? dr +2 / w(@)(f(z) — p(@))(p(z) — 4(z)) d.
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But since p — ¢ € 11", the assumptions imply that the second term on the RHS is zero. Thus

[ @)@ - a@)? de> [ w@)(f(e) - pla))? da,

which proves that p is the least squares approximation to f.
Now for the converse assume that there exists g € II" such that

/ w()(f(z) - p(a))a(z) dz = a #0.

b= / 2dr > 0.
# 0. Then

5
b
/ w( —plx) — A\g(x))? dx

_ / w(@)(f(x) — p(x))? dz —2 / w(@)(f(z) — p(x))Aq(x) dz +

Then clearly

Put )\ =

[ w@0aw)? s
b
= [ wle)(f@) - plo)? do - 220+ X5

— [ wle) (@) - plo)? do - 25,

by definition of X\. But since A\23 > 0, we conclude that

b b
/ w(x)(f(z) — p(r) — A\g(x))? < / w(x)(f(z) — p(x))? de,

and since p + A\g € II", this implies that p is not the least squares approximation to f, a
contradiction.
This completes the proof. 0]

We next give a formula for the construction of w—orthogonal polynomials. It will be
helpful to first give the precise definition of the inner product on L*[a, b].

Definition 2.1.1.12 (L?— Inner Product). Let f, g € L?[a,b] and let w be a weight function
on [a,b]. We define the weighted inner product (f,g) of f and g by

(f,9) 2=/ w(z)f(x)g(z) de.
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( R

Theorem 2.1.1.13 (Construction of w—Orthogonal Polynomials). There exist polyno-
mials ¢, € 11", n=10,1,..., such that

b
0r.6) = [ 0@y do =0, k]
These polynomaials are uniquely defined by the recursion
¢0(.1') = 1,

b
¢1($) =T — Bl7 Bl = <I’¢07¢0> — fa I['QU(I‘) dr

(%0, Po) [Pw(z) do

and, when k > 2,

where

Bk = = =4

(TPp—1, Pr—1) fb zw(x)[dr_1(2)]? dz
[ ]

(D1, Pr—1) fabw(a;) dp_1(2)]? dz
2. (Pr—1, Pr-1) _ f;w(a:)[qﬁk,l(x)]Z dx
VG2t [Tw(@)éna(@) de

Proof. The proof follows from the Gram—Schmidt orthogonalization process and induction
on n. ]

The last result from this section is the following useful corollary.

Corollary 2.1.1.14. Let {¢g, d1,...,Pn} be the w—orthogonal set of functions given in
(2.1.1.13). Then {¢pg, ¢1,...,dn} is linearly independent on [a,b] and

b
| 0@, @)@u) de =0
for any polynomial Qy(x) of degree k < n.

Proof. First, note by the recursion (2.1.1.13)) that each ¢, k = 0,1,...,n, is a polynomial of
degree precisely k. Since a set of polynomials with such a property is linearly independent

(2.1.1.5), it follows immediately that {¢q, ¢1,. .., ¢, } is a linearly independent set.
Now let @ € II" be a polynomial of degree k < n. Since {¢g, @1, ..., ¢, } forms a basis

for II", there exist real coefficients a;, j = 0,1,..., k such that
k

Qr(r) = Z ardr ().

=0
Since (¢, ¢;) =0 for each j =0,1,..., k, we have
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[ w@n)@ua) do = [ @) (Zajd)j(x)) o

k

Zaj/a w(z)p,(x)p;(x) d

=0

Il
O .

This completes the proof. 0

Example 2.1.1.15. The Legendre polynomials are orthogonal on [—1, 1] with respect to
the weight function w(x) = 1. Using the formulas given in (2.1.1.13)), the first three Legendre

polynomials are

¢o(x) =1,
_ f_llx dx
1- f_ll do 3
$(r) =2 —B=x—-0=uz,
fjlx?’ dx
B2 = % - . =Y
[ x? da
1
02— Joywtde galty _2/3 1
2 fjl dx x|, 2 3
1 1
Ga() == (v — Ba)¢n(x) — 022%(37) = 2¢1(7) — 3 =a” - 3

Example 2.1.1.16. Recalling the first example from this section, given f = x2, we use an
orthogonal basis given by (2.1.1.13) to calculate the polynomial p € TI* that satisfies

/0 (f(a) - pla))? du < / (f(2) - 4(2))? da

for all ¢ € TI*. The orthogonal polynomials are

QS()(ZE) - 17

2

d 1,22

o1(x) =2 — fof ’ =r— 23:2‘0 =r——-—=x-—1
fo dx (g
Now by (2.1.1.10) we find
f02 a? dr 3283 8/3
CO = = = — =

f02 dx |2 2 3’
and ) )
_foxz(x—l)dx_fox?’—xzdx_}lx4—%x3|g 4—%
[Pe—12de 3z =17 2/3 2/3
Hence, the least squares approximation p to f is given by

1

4 4 2
p(x) == copo(x) + 191 () = 3 +2(x—1) = 3 +2r—2= ~3 + 2z,
o4
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Note that this least squares approximant p is precisely the approximant p found in the first
example.

2.1.2. Chebyshev Polynomials and Economization of Power Series. The Chebyshev polyno-
mials {7}(x)}}_, form a w—orthogonal basis for II" on the interval [—1, 1] with respect to
the weight function w(x) := \/1177 They may be constructed using (2.1.1.13)); we construct
them using an alternative method here.

For x € [—1, 1], we define the Chebyshev polynomials by

T, (z) := cos(narccos(x)), n > 0. (2.1.2.1)

First note that
To(x) =cos(0) =1, Ty(z) = cos(arccos(x)) = x.

We introduce the notation 6 := arccos(x). Then we have
T.(0(z)) = T,(0) = cos(ndh), 6 € 0,7].
We obtain a recurrence relation by noting that
Thi1(0) = cos((n + 1)0) = cos(nf + 0) = cos(nh) cos(f) — sin(nd) sin(6),
T,—1(0) = cos((n — 1)0) = cos(nf — 0) = cos(nh) cos(f) + sin(nd) sin().
Adding gives
Thi1(0) = 2cos(nb) cos(8) — T,,—1(0).
Since 6 = arccos(z), evidently x = cos(#), so that
Toi1(x) = 2z cos(narccos(z)) — T—1(x) = 22T, (z) — Ty ().
Hence the recurrence relation for the construction of {7, (z)} is as follows:
To(z) =1,
Ti(z) =z, (2.1.2.2)
To(x) :=22T, 1(x) = T,_2(x), n>2.

Note from ([2.1.2)) that for all n > 0, T;,(z) is a polynomial of degree n, and for n > 1, T,,(z)
has leading coefficient 2" 1.

Example 2.1.2.1. The first five Chebyshev polynomials are
To(z) =1,
Ti(z) =z,
Ty(z) = 22T () — Tp(x) = 2x(x) — 1 = 22 — 1,
Ts(z) = 22Ty(x) — Ti(z) = 22(22% — 1) — x = 42® — 3z,
Ty(z) = 20Ty(x) — Ty(z) = 22(4a® — 32) — (227 — 1) = 82 — 8% + 1.
We now show that {7),(z)} is w—orthogonal with respect to the weight function
1

Va7

w(x) =

n [—1,1]. Consider

/1 To(@)Tw(2) / " cos(n arccos(z)) cos(marceos(x)) , -

Va7 1 V1— 22
55




2. Function Approximation 2.1. Least Squares Approximation

Reintroducing 0 := arccos(x), we have dff = —ﬁdw, and

/ m Ll Tn) dz = — /WO cos(nf) cos(mb) df = /07r cos(nfd) cos(mb) db.

Since
cos(nf) cos(mb) = %[cos((n +m)f) + cos((n —m)0)],
we have
/1 % dr = %/OW cos((n+m)f@) db + % /07r cos((n —m)@) do
If n # m,
! (@) T () ’

since n and m are integers.

Ifn=m
1 T
/ [ 1/ s(2nd) d@—l—l/ do
1—:L’2 2 2 0
11 T 1|
= -_ — 2 J—
2{2 n@] +290
_ |2 sin(2nf) +2
~ " .2
_T
=3

for n > 1. Note if n = 0, then

/1 [To(z)]? /1 1
dr = =7
1 V1 =22 1 V1 =22
The Chebyshev polynomials are frequently used to minimize approximation error. We

first give an important result regarding the zeros of the Chebyshev polynomials and their
first derivatives.
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( R

Theorem 2.1.2.2 (Zeros and Extreme Values of the Chebyshev Polynomials). The
Chebyshev polynomial T,,(x) of degree n > 1 has n simple zeros in [—1,1] at

2k — 1
xk:COS( 7T), k=1,2,...,n.
2n

Moreover, T, (z) assumes its absolute extreme values in [—1,1] at

k
zk:cos(—ﬁ), k=0,1,...,n,

n
with

To(z) = (—=1DF, k=0,1,...,n.

Proof. By definition of T,, and zy, k =1,2,...,n,

T, (zx) = cos(narccos(zy))

(e (e (252) ) )
= cos | narccos | cos T
2n

since k is an integer. Since the zj, are distinct, note that these are distinct zeros. Furthermore

n sin (TL arccos (COS (2k 1 7T) ))

\/1 cos 2’“ L )}

n sin (n (2§—nl))

e - )P

n sin (knr - g)

VT

so that the zj are simple zeros, k =1,2,... n.
Also observe that

T, (x) =

n

7&07

T () = n sin narccos (cos (’%r))) _ nsin (n (%’T))
Y1 [eos ()] sin (5)
_ _ nsin(km) _g
sin (’”) 7

27
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for k=1,2,...,n—1. Since T/ € TI""!, all of the n — 1 zeros of T!, occur at these points z.
Including the endpoints zp := —1 and z, := 1,

()

= cos(km)
= (=D, k=0,1,...,n

Hence, |T,,] < 1 on [—1,1] and has n + 1 extreme values on [—1,1]. This completes the
proof. O

We introduce the notion of a monic polynomial.

Definition 2.1.2.3 (Monic Polynomial). A monic polynomial is a polynomial in which
the leading coefficient is equal to 1, that is,

~1
p(r) =2"+cp 12" 4+ + aqx + o,
for some coefficients cq,c1,...,cn_1 € R.

We will denote by II" the set of all monic polynomials of degree exactly n. More precisely,

n—1
" .= {pEH”:p(a:) ::$”+chxk,cjER,j:O,l,...,n—l}.

k=0

The monic Chebyshev polynomials fn(m) are derived from the Chebyshev polynomials
T, (x) by dividing by the leading coefficient 2"~1. We obtain

. . 1
To(z), and T,(z)= FTH(I), n=12.... (2.1.2.3)
We also get the recurrence
To(z) = 1,
Ti(z) ==
_ - . , 1
Tr(x) = aTy(z) — §T0(x) =" =7, (2.1.2.4)
~ ~ 1~
T (z) =aT,1(x) — 1 n—o(x), n>3,.

Noting that 7,,(z) is just a multiple of T,(z), (2.1.2.2) implies that the zeros of T, (),

n > 1, also occur at
2k —1
.Tk:COS( 7r), k=0,1,...,n,
2n

and the extreme values of Tn(x), n > 1, occur at

k
zk—cos<—7r>, k=0,1,...,n,
n
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where
~ (—1)F
Tn<2k) = 2n—1 s k:O,l,...,n,

by the construction.
From this construction we get an important minimization property of the monic Cheby-
shev polynomials 7,,(x) that distinguishes {7};(x)}}_, from other sets of polynomials in TI".

Theorem 2.1.2.4 (Minimization Property of Monic Chebyshev Polynomials). The
monic Chebyshev polynomials T, (x), n > 1, have the property

1
2n—1 N :cg[l—al},il]

To@)| < max [pa(x)|
z€[—1,1]

for all p, € . Moreover, equality occurs only if p, = Tn In the case n = 0, we have

To(x)| = To(z).

1 = max
ze[—1,1]

Proof. If n = 0, then II° = {p(z) = 1} and Ty(z) = 1, which establishes the result for this
case. B
Now let n > 1. Suppose that p, € II" and

< —
Jnax [pa(v)] < 5o = max

fn(x)‘ .

Define the difference polynomial @) := fn — pn. Since both fn,pn € ﬁ", they are both
monic polynomials of degree precisely n, so that @ is a polynomial of degree at most n — 1,
Q € II"!. At the n + 1 extreme points 2z, k = 0,1,...,n of T, we have

. (-1

Qi) = Tnlzr) = palar) = o= = Palz)-
Since |p,(zx)] < 2,%, k=0,1,...,n by the assumption, we have for k even
Q(zx) 2 0
and for £ odd
Q(z) < 0.
Since @ is continuous, the intermediate value theorem implies that for each j =0,1,... , n—1,

there exists ¢ € [zj, z;41] such that Q(¢) = 0. Thus @ has n zeros in [—1, 1], and since @) has
degree at most n — 1, () must vanish identically,
Q) = 0.
This implies
pn =T,
which completes the proof. [l

We immediately get the following corollary.
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Corollary 2.1.2.5. For any p, € ﬁ”, where n > 1,

1
> .
2y Pelo) = g

In the case n =0,

()| = po(z) = 1.
Jax P ()| = pu(2)

We now show how the Chebyshev polynomials can be used to minimize the error in
polynomial interpolation. Recall the error formula (|1.1.4.2])

_ __w@ i)
f(@) —p(T) = CE

where
n

w(r) = H(x — ;).
j=0
Since n is prescribed and there is generally no control over {, we choose to minimize w.
Noting that w € II"*!, we have just shown that the minimum infinity norm of w on [—1,1]

is obtained when w = fnﬂ.
From ([2.1.2.4]) and the above observations comes the following important theorem regard-
ing the minimization of the error formula for the error in polynomial interpolation ((1.1.4.2)).

Theorem 2.1.2.6 (Error in Polynomial Interpolation at Chebyshev Zeros). Suppose
that p € 11" s the unique interpolating polynomial of degree n of the function f with
support abscissas at the Chebyshev zeros xg, k = 1,2,....,n+ 1, of T,,11(x). Then there
exists a number & € [—1,1] such that

max | f(z) —

i, 1/(@) = p(o)] < g )

Proof. Let p € II" satisfy the hypotheses of (2.1.2.6). Recall from the formula for error in
polynomial interpolation (|1.1.4.2)) that there exists a number £ € [—1, 1] with

w(z) [ (E)

1) = pl)l = Z 0,

Y

where
n

w(z) = H(m — ),

k=0
provided that = € [—1, 1]. But since each x, is the k—th zero of fn+1, k=1,2,...,n+1, we
have that w coincides with T, 1, w = T,, 1. Hence it follows by (2.1.2.4)) that

T (@) F"D()
(n+1)!

=+ ‘f(n+1)(£)| xg[lflfl] |Tn+1(;p)|

| () = p()] =

1 n
= m\f( ()],

which completes the proof. O
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Example 2.1.2.7. Let Ty(x) be the standard Chebyshev polynomial on the domain [—1,1].
Given f(z) = (1 +2v/2)?, define p(x) to be the first-order polynomial that interpolates f at

the roots of Ty. We calculate p.
Recall

Thus the roots of Ty are x = :I:%.
We have

Hence

p(.ﬂ:):3—2\/§+4\/§<x—|—%).

Theorem ([2.1.2.6]) gives us about the tightest upper bound on the error we can achieve
without further knowledge of the function f. Note that we cannot always choose the nodes
in this fashion, however, and that choosing support abscissas at the Chebyshev zeros does
not guarantee that the interpolating polynomial p is the best approximation of f.

We now discuss methods to generalize the Chebyshev polynomials {T,,(z)} to an arbitrary
interval [a, b]. We can generalize the Chebyshev polynomials to the interval [a, b] by applying
an affine mapping

-1

T= 5[(a+b) + (b—a)x]
for numbers « € [—1, 1]. That is, the numbers « € [—1, 1] map to the numbers z € [a, b]. We
get the following theorem.
Theorem 2.1.2.8. The Chebyshev zeros can be generalized from the interval [—1,1] to the

interval [a,b] by applying an affine mapping. In general, T,,(x) has the following n zeros on
the closed interval [a,b] :

1 2k —1
Ek:—[(a—i—b)—i—(b—a)cos( 5 W)}, k=1,2,...,n.

2 n
Proof. Denote the zeros of T, (z) on the interval [—1,1] by

2k —1
xk—cos( 7'('), k=0,1,...,n.

2n
Recall that an affine mapping 7 : [—1,1] — [a, b] has the form
T(z) =Xz +

for all z € [—1,1]. To map the endpoints of [—1, 1] to the endpoints of [a,b], we define this
affine mapping x by

z(—1) :=
z(1):

:_/\—i_ﬁa
A+ 8.

I
oSSt Q
I
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Solving for A and g gives
b—a a+b

so that x is given by

Furthermore, we have

T = F(op) = % (a+b) + (b— a) cos (2"“2; 17r)]

for each k =1,2,...,n, which completes the proof. O

We get the following analog to ([2.1.2.4)).

Theorem 2.1.2.9 (Minimization on Arbitrary Interval). Let p € II" on the interval |a,b] be
such that

p(z) = co + 1w + c2® + - -+ + "

for real coefficients c;, j =0,1,...,n. Then
n (b — a)n
max [p(z)| = max o+ 1 + ® + -+ 1| > |en| .
z€la,b] x€lab 22n—1

Proof. Let p(z) = co + c1x + cox® + - - - + cp,x™. Set

q(x) ::p(a—i-b_a(x—i-l)).

Noting that ¢ is simply p on the interval [—1, 1], we have that

max p(z)| = e |q(2)].
The leading coefficient on ¢ is
(b—a)
Cp————.
2n

Without loss of generality, we assume that p is of degree n, so that evidently ¢, # 0. It
follows that

max Ip(x)| = Jnax, ()]
= max |c ﬂm” +c n—1
= n n-1T° ~ + -+ ax +Co
z€[-1,1] AL

(b—a) -1
= ’cn|—2n max ’l‘ + ap_12" +~"+a133+(10‘

z€[—1,1]
b—a)* (1
>
= ’Cn| on on—1
(b—a)"
= lenl ==

Moreover, equality occurs only if
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This completes the proof. O

We arrive at the following interpolation minimization property for the interval [a, b].

Theorem 2.1.2.10. Suppose that p € 11" is the unique interpolating polynomial of the
function f with support abscissas at the Chebyshev zeros xy, k = 1,2,... ,n+1 of T, 1(x)
generalized to the interval [a,b]. Then there exists a number & € [a,b] such that

bh— n+1
max 11(0) = )] < gz VO

Proof. The proof follows immediately from (2.1.2.6) and (2.1.2.9). U

The last application of the Chebyshev polynomials is in reducing the degree of an ap-
proximating polynomial with minimal increase in error.
Consider approximating an arbitrary polynomial of degree n

() == co + 1@ + cpx® + -+ cpa”

on the interval [—1, 1] with a polynomial of degree at most n—1. We want to find a polynomial
Pn_1 € II"71 so that the quantity

max ‘pn<x) - pnfl(m)l
ze[—1,1]
is minimized.
Note that 1
—(p(z) ~ o)
is a monic polynomial of degree n. By the minimization property of the monic Chebyshev

polynomials (2.1.2.4)), we have
1 1

1 e > .
xg[l—al},cl] Cp (pn(x) b l(x)) -2t

Equality occurs precisely when
1

a(pn(ac) — pua(@)) = T (2).

Rearranging, we see that we should choose

pn—l(x) - pn(x) - Cnfn(x>
Then with this choice of p,_; we have

~ |cn
o [Pn(%) = o (@)] = lea] max Tu(@)] = o7
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2.2. Uniform Approximation.

2.2.1. Best Uniform Approzimation. Let (V|| -||) be a normed linear space and let W be a
subspace of V. The essence of the approximation problem is as follows: given a vector v € V,
find a vector w € W such that the distance from w to v is minimized, that is, find w* € W
such that
|lv —w*|| < |jv—w| forallweW.
We call such a w* the best approximation to v out of W under || - ||.
We get the following theorem.

Theorem 2.2.1.1 (Existence and Uniqueness of Best Approximation). Let (V|| -||) be
a normed linear space and W a finite-dimensional subspace of V. Then, for all v € V,
there exists a unique w* € W such that

lo = w[| < [lv —w]]

for all w e W.
Proof. The proof is attributed to Tonelli. ([l
The space (V| - ||) considered in this section is the space (C|a,b],| - ||«) of continuous

functions on [a, b under the infinity (uniform, supremum) norm

| fllo :== sup |f(z)|, for f e Cla,b].

z€la,b

Note that, letting W be the space 11", (2.2.1.1) immediately gives the following result.
Theorem 2.2.1.2. Let f € Cla,b|. Then there ezists a unique p* in 11" such that

—p* < mi — .
52[% flz) = p*(2)] _;ghggg[%lf(x) p(z)|

Also note ([2.2.1.2)) is equivalent to the Stone—Weierstrass approximation theorem. That is,
given any f € Cla,b], there exists a sequence {p, }°°, of polynomials of degree n =1,2,...,
converging uniformly to f on [a,b]. The remainder of this section characterizes the best
uniform approximation to such an f out of II"™.

Definition 2.2.1.3 (Error Function). Let f € Cla,b] and let p* € II" be the best uniform
approzimation to f out of II". We define the error function by

En(fla,0]) == En(f) = lf = p'lle = max |f(z) = p*(x)].

z€[a
Lemma 2.2.1.4. Let f € Cla,b]. Then
Eo(f) = Ei(f) = Ex(f) = ...

and, moreover,

lim E,(f)=0.

n—-+0o
Proof. Note first that the inequalities
Eo(f) =2 Ei(f) 2 Ex(f) = ...
follow immediately from the nesting of the polynomial spaces

Mcmtcii®>c....
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The fact that

lim E,(f)=0
n——+00
follows from the Stone-Weierstrass approximation theorem, which states that we may ap-
proximate f uniformly by polynomials to any desired tolerance. 0J

Let p* € II" be the best uniform approximation of f € Cla,b]. Define the signed error

e(z) := f(x) = p*(2)
and note |e(z)||oc = En(f). We get the following preliminary result.

Lemma 2.2.1.5. Let f € Cla,b] and let p* € II™ be the best uniform approximation of f.
Then there ezist at least two distinct points x1, x5 € [a,b] such that

le(z1)| = En(f) = le(22)|
and
e(xy) = —e(x2).
Proof. The signed error function e(z) is continuous and bounded by its extreme values at
y = £E,(f) by definition. Moreover, by definition of E,(f), e(z) has at least one extreme
value at +FE,(f), say, without loss of generality, that there is x; € [a, b] such that e(z;) =

En(f).
By contradiction, suppose that e(z) > —FE,(f) throughout [a, b]. Define

min e(x) :=m > —E,(f)
z€[a,b]

and

c:= —En(f; +m > 0.

Since ¢ is a constant, note p := p* 4+ ¢ € II". Then f(z) — p(z) = f(z) — (p*(x) + ¢) =
f(z) —p*(z) —c=e(x) — ¢, and

—(En(f) =) ==((2c=m) —¢) =m —c<e(x) —c < E,(f) —c.

But since e(x) — ¢ = f(x) — p(x), we have evidently

1f = plle = En(f) = ¢,
a contradiction to the assumption that p* is the best uniform approximation of f. Thus there
must exist a point x5 € [a, b] such that e(xs) = —FE,(f). This proves the result. O

As it turns out, for a best approximation p € II", the signed error e(x) oscillates and
must touch the lines y = £ F, (f) alternately n + 2 times. This in fact characterizes the best
uniform approximation and gives the following important theorem.
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( R

Theorem 2.2.1.6 (Chebyshev Equioscillation Theorem). Let f € Cla,b]. Then a poly-
nomial p* € TI" is the best uniform approximation to f out of I on [a,b] if and only if
there exists an alternating set of points xj,5 =1,2,...,n+ 2,

a<x <To<: < Tpio<bh
in [a,b] such that e(x) assumes its extreme values with alternating signs
e(x;) ==xE,(f), j=12,...,n+2,

and
e(xr;) = —e(xj11), j=12,....,n+1

Before proving the theorem, note that it is biconditional. That is, only one polynomial
p € II" may have the equioscillation property as described in the statement of the theorem.
This means that a polynomial p € II" that has such an equioscillation property is a sufficient
condition to conclude that p the best uniform approximation to f out of II".

Proof. ( <= ) Suppose that {z;}"*7 forms an alternating set for the signed error e(z) =

f(z) — p*(x). We show that p* is the best uniform approximation to f out of II" on [a, b].
By contradiction, suppose not. Then there exists p € II" such that
1f = plloe < [If = P"[lo-

In particular, since {z;}%7 forms an alternating set,
[f () = ()| <|If =0l = [f(zj) —p*(z)l, 5=12,....,n+2
Then the difference
[f(xj) = p* ()] = [f(z;) — ()] = p(z;) — p*(z;)
changes signs at x; for each j = 1,2,...,n + 2. Since p — p*x € II", clearly the polynomial
p — p* is continuous, so that the intermediate value theorem implies that p — p* has a zero
in each subinterval [z;,2;11], 7 = 1,2,...,n+ 1. Thus p — p* must vanish identically, so that
p—p =0,

and, moreover,

a contradiction to the hypotheses.
This proves the converse.
( = ) Note that, since e(x) is continuous on the closed interval [a,b], e(x) is uniformly

continuous on [a, b]. Put € := ET(f) and select § > such that
le(x1) —e(z2)| < €
for any 1, x5 € [a,b] such that |x; — x9| < 0. Let a partition
A={a=2z<zn<---<zy=0b}

be such that max;=o,1,.,N—1 |Zj+1 — Zj| < 0.
Note by (2.2.1.5) that there exists at least one subinterval [z;, zj11] such that e(z) = 2e

and at least one subinterval [z;, zj41] such that e(x) = —2e. Denote by I;, j =1,2,...,m the
subintervals [z;, zj4+1] such that e(z) achieves its extreme values £2e. Also note that either
e(x) > € or e(x) < e throughout each [;, j =1,2,...,m.
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Define o7 (e) := sgn (e(x)) for each x € I, j = 1,2,...,m. We wish to show that there are
at least n+ 1 sign changes in the sequence o'(e), 0?(e), ..., 0™ (e). By contradiction, suppose
that there are less than n + 1 sign changes. We show that there is p € I1" with p # p* such
that

|f = plloe = max |f(x) — p(z)] < En(f).

z€[a,b]
Appealing again to (2.2.1.5)), there is at least one sign change in o'(e),0%(e),...,0™(e).
Thus we may group the subintervals I;, j = 1,2,...,m by common sign. Put
Gy=0'(e)=0%e) = =0 (e) = {I,,...,1;},
Gy i=0""e) =07 (e) = - = 0"(e) = {Ljis1, sz, I},
G =oh1t =ghat2 = =gl = {[, 1, L, y0se 1)
with j, = m. Each subset G;, j = 1,2, ...,k contains at least one element, and we have k —1
sign changes. For a contradiction, assume that £ < n + 2, so that there are K —1 < n+1
changes of sign. Since 07 # ¢/it! for i = 1,2,...,k, it is clear that the closed subintervals

I;, # 1, ., are disjoint. We can therefore choose points 1, %, ..., %;_; with the property that

ti>xforallz € I, and t; <z forall x € I, , fori=1,2,... k— 1. Form the polynomial

k—1
q(z) = 1_[(15z —xz)=(t —x)(ta —x) ... (ty_1 — ).
i=1
Since k — 1 < n, we have evidently that ¢ € II¥~! C II". Also note that ¢ vanishes only
at x;, 1 = 1,2,...,k — 1, and is nonzero elsewhere, so that ¢ has constant sign on each I,
7 =1,2,...,m, and thus each group G;, i = 1,2,..., k. Moreover, ¢ has the property that

sgn (q) |+ | — |+
Group [ 1] 2|3

Therefore either sgn (¢) = sgn (e) or sgn (¢) = —sgn (e) for all I, simultaneously. Define

q(z), sgn(q) =sgn(e) throughout Iy,
l(x) = _
—q(z), otherwise.

Then sgn (¢) = sgn (e) on each I;, j =1,2,...,m.
Next, put

S = a,b]] \ <U Ij>

and define

’_
E = max le(z)].

Then E) < E,. Construct
p(z) = p*(z) + M(x),
where )\ is such that

1
0< A< E,— E).
2 MaX,elq |€(x)|( )
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We now show that maxgcp, 4 |f — p| < 2¢ for a contradiction. On any interval [; with
e(x) > 0, then ¢(x) > 0 by the construction, and we have

((x)

0< Mz < E,—E|
) < e @]

<En= By B

< 2 < 2 e\x

on I;, j =1,2,...,m. That is, e(z) — M(x) > 0 throughout /;. Thus
If =Pl = IIf = (0" + AD)|s0

= lle = Ml
=e— M
< B,(f) ~ Aminf(z)
zel;
< Eu(f),
since A > 0 and ¢ does not vanish on I;, j = 1,2,...,m. A similar argument applies in the

case that e(z) < 0 on I;.
It only remains to show that || f — p|le < ||f — p*[|cc 00

S:MM\<UQ)

J=1

Throughout S, we have
1f = plloe = max|e — M|
< max |e| + ¢ max |[{(x)]
zE€S TES
maxgegs |[((z)]

< E, +
2 maXgefa,b] |€(:U)|

(En - E;)

1
< E;L + §(En - E;L)
<k,
since E! < E,. Hence, we have shown that || f — pll < ||f — P*|l«, & contradiction to the

assumption that p* is the best uniform approximation to f out of II" on [a, b].
This completes the proof of the theorem. 0

The next theorem establishes uniqueness of the best uniform approximation.

Theorem 2.2.1.7 (Uniqueness of Best Uniform Approximation). If p* € II" is a best uni-
form approzimation to f € Cla,b] out of TI" on [a,b], then p* is unique. More precisely, if
p € II" and p # p*, then

1f = pllso > 11f = Pllec-

Proof. Suppose that p and p* are both best uniform approximations to f € Cla,b] out of
II", so that

If =Pl = Ilf =P lloc = Enlf)
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Then

ptp
2

q:=

is also a best uniform approximation to f, for

1 1 1 1
IF = dl = |50 =2+ 50 =) <51 =N+ 517 = ol = B

and equality holds since p, p* are both best uniform approximations.
By (2.2.1.6)), there exists an alternating set {x,za,..., 2,12} for f —¢. Thus for some
integer [ = 0, 1, we have

Flay) — qlz;) = o) —pr(xi) | flag) —ples) (—D)™E,(f), j=1,2,....n+2.

2 2
(2.2.1.1)

Since
1 . 1 1 1
can hold only if
flxy) = p*(x;) = fly) —pla;) = (“D)™EL(f), j=12,...,n+2.

Thus we see that
which implies that

This completes the proof. O

Example 2.2.1.8. Let f(z) = H% and p(x)

the best uniform approzimant to f out of 1110,
Observe that

% —x, for x € [0,1]. We show that p is not
1].

ela) = (/ = p){a) = J(@) = pla) = o —
12— (11 —-62)(1 + )
B 6(1+2)
12 — (11 4 5z — 622)
B 6(1+ )
622 — 5 + 1
T 6(1+a)
(1 —3z)(1 —2x)
- 6 + 6z '
However, we note
1
max le(z)] = 5

and e(0) = e(1) = §. Moreover, x = 0,1 are the only values for which this extreme value is
achieved. We conclude that p is not the best uniform approximation to f.
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3. NUMERICAL QUADRATURE

In this section, we wish to calculate the definite integral of a real-valued function f(z)

on the interval [a, ] :
b
/ f(z) du.

Recall that for some simple integrands f(z), the indefinite integral

/ﬂ@M:W%FWFﬂ@

can be obtained in closed form. It then follows from the fundamental theorem of calculus
that

b
/ f(z) de = F(b) — F(a).

As a general rule, however, definite integrals are often computed using discretization
methods which approximate the integral by finite sums corresponding to a partition of the
interval [a, b]. This process is known as numerical quadrature.

3.1. The Integration Formulas of Newton and Cotes.

3.1.1. Newton—Cotes Formulas. We first give the definition of a quadrature rule.

Definition 3.1.1.1 (Quadrature Rule, Quadrature Weights). A quadrature rule is a
method that approximates the definite integral fab f(z) dz by

é%’f(%‘) ~ /abf(x) da.

Moreover, the numbers o, 7 = 0,1,...,n are called the quadrature weights, whose values
may depend only on the choice of n, but not on a,b, or f.

In this section, we consider the definite integral

/a o) de.

We obtain the integration formulas of Newton and Cotes if the integrand f(z) is replaced
by an interpolating polynomial p(x) and then take f; p(z) dr as an approximation for

For the Newton—Cotes formulas, we must have a uniform partition of the interval [a, ],
rj:=a+jh, j=0,1,...,n,

of step length h := ’J’Ta, for n > 0. Let p,, € II" be the interpolating polynomial of degree n
or less with

pa(zy) = flz;) = f;, j=0,1,...,n
By Lagrange’s interpolation formula ((1.1.1.3]),
palr) =) fiL(x)
§=0
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Now let the variable ¢ be such that x = a + th. Then

n

(a+th) — (a+ kh)
Zf]H (a+ jh) — (a+ kh)

k#]
_ th — kh
Z fi H jh — kh
7=0 k=0
k#j
DI
7=0 k=0 J
k#j
Define
Lt —k
pi(t) = Li(x) = [[ —
pngy k
k#j

Integration by substitution x = a + th gives

b b b n
f@) de~ [ pa(x) de= fiLi(@) d
/a xXr ua /GP xr X /ajgo X xr
Ih;fj/o oi(t) dt
=hY_ fiay,
j=0

where the quadrature weights aj, j = 0,1,...,n are such that
ayi= [ et de
0
and «; depends only on n for each j =0,1,...,n.

For any natural number n, the Newton—Cotes formulas

b n —a
/pn(x)dx:hijaj hZf]/H ot [j=fla+jh), h::bn

provide approximate values for fab f(x) dz.
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Theorem 3.1.1.2. If f is a polynomial of degree k, then selectingn > k in the Newton—Cotes

formulas gives
b b
/ f(z) dz :/ pn(x) du.

That 1is, quadrature is exact on II™.

Proof. The proposition follows immediately from the uniqueness of polynomial interpolation
(1.1.1.1)), noting that choosing n > k gives

p=f
on [a,b]. O

Theorem 3.1.1.3. Let o, j = 0,1,...,n be the weights for a Newton-Cotes quadrature
rule. Then

Z a; =mn.

j=0

Proof. By (13.1.1.2)), choosing any integer n > 0 implies that the Newton—Cotes formulas
integrate f(z) = 1 exactly. Moreover, in the case f(z) = 1, we have evidently that f; =1

for each 7 =0,1,...,n. Thus
b b
b—a:/dw:/f(x)d:p
=0 fia
§=0
5=0

That is,

b—a:hiaj.
§=0

Recalling that h = 22, we have

n

If s is a common denominator for the weights «; so that the numbers
o;j:=sa;, j=0,1,....n

are integers, then the Newton—Cotes formulas may be written

b b n
/ f(z) dox =~ / pn(z) do = hijOéj
a a =0




3. Topics in Integration 3.1. The Integration Formulas of Newton and Cotes

Example 3.1.1.4 (Trapezoid Rule). The trapezoid rule is obtained by the Newton—Cotes
formulas in the case n = 1. Then h = b — a, so that fo = a and f; = b. Observe that

t—1 1 1.0 1 1
aoz/—dt /1—tdt:t——t2 =1—-==
0—1 0 2" |, 2 2
and . .
1 1
— —dt= | tdt==t* =-.
‘e /1—0 /0 2" |, 2

Hence we have the approximation

/f(x) da:%/pl(x) da:—(b—a)ijozj—b;a(f(a)—i-f(b)).

This is the trapezoid rule.

Example 3.1.1.5 (Simpson’s Rule). Simpson’s Rule is obtained by the Newton—Cotes
formulas in the case n = 2. Then h = b_T“, so that foy = a, f1 = “TH’, and fo = b. Observe
further

2 2 2
(t—1)(t —2) 1/ , 171, 3, 1[8
= SR TS o Pt 2dt =< |- 2242t = | —644] =
0‘0/0(0—1)(0— 2 J, + 23" T2 T, T30
(t
1

_ 2 72 - .
—Q)dt:—/ t2—2tdt:—[%t3—t2 L :%l,
0 -

lo
and

Wl =

2 (t—0)(t—1) 1 [? 11 1,]° 17[8
S AL VA Ctdt=< |- =2 |2 2] =
“ /0(2—0)(2—1) 2/0 2{3 2 |, 2|3

Hence we have the appm:cz'mation

f d:c~/bp2< b_ang%
e IO —f<a+b>+%f(b)},

[ 1@t = 50 s ar (5 + s

This is Simpson’s rule.

or

Example 3.1.1.6. We discuss more rigorous methods for deriving the error in Newton—
Cotes quadrature in the following section, but observe, for the trapezoid rule, that by (|1.1.4.2))

we have
(2)
(F = mta) = 58

for some & € [a,b]. Letting I(f) = fabf(x) dz and I,(f) the trapezoidal approzimation, we
have

(x —a)(z —b)

I(f) = L(f f”f (x —a)(x —b) dmz%/bf"(ﬁ)(x—a)(x—b) d.
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Since (x — a)(x — b) does not change sign on [a,b], we have by the weighted mean value
theorem for integrals that

[(f)_jl(f):%(g)/ v — (a +b)x + ab dx

_ ") [lxs _atb
2 3 2
e [_ (b— a>3]

b
2+ abx}

a

2 6
hB

—-51©.

Example 3.1.1.7. Similarly to the previous example, we see that for Simpson’s rule, (1.1.4.2))

implies that
/") a+b
(=) = F -0 (o= 5 ) -0

for some £ € [a,b]. Thus

I(f) = b(f /f (z—a ( —a;—b)(x—b)dx

/ £7(6) x—a)(—a;_b)(x—b)dx—i—

a+b

5 f/"(f)(l‘—a) (x— 5 )(x—b) dz.

a+b

By the weighted mean value theorem for integrals,

a+b

100 =3 [T e (a- ) @ty ars

6 2

(S /a;(x —a) (:v - a;b) (x—b) dx

6
_L18) (Goaty , £ (6=

h4 " ua
= (P& - (&),

for some & € (a “—”’) and & € (“T“’, b) . If we assume that f € C*[a,b], then the mean value
theorem implies that there exists & € (a,b) such that
FO () = f"(&1) — f’"(fb’z)_
§1— &

Thus ,
109~ b == g

We show in the next section that a higher—order error term for Simpson’s rule may be derived.
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The Newton—Cotes formulas are generally not applied to the entire interval [a, b], since the
resulting quadrature error may be very large. Instead, we apply Newton—Cotes to a partition
of [a,b] and then approximate the full integral by taking the sum of approximations to the
subintegrals. The resulting quadrature rule is called a composite rule.

Example 3.1.1.8 (Composite Trapezoid Rule). Let

b_
v =a+jh, j=01,...,n, hi=-—"2

n
be a partition of the interval [a,b]. The trapezoid rule provides the approzimation

/a:j+1 f(2) do ~ g[f(x]> + f(a:j+1)] =: ]Ng(f)

J

on each subinterval [xj,z;41], 7 =0,1,...,n — 1. For the entire interval |a,b], we have

[f(a)+2f(a+h)+2f(a+2h)+---+2f(b—h)+ f(b)].
This is the composite trapezoid rule.

Example 3.1.1.9 (Total Error for Composite Trapezoid Rule). In the next section, we will
show that in each subinterval [xj,x;41], 7 =0,1,...,n — 1 there exists §; € (x;,xj11) with

LU~ () = 357()

for f € C*a,b]. Summing these individual error terms gives

SR R (b—a) w ,,
E%ﬁ@ﬁﬁﬂ:n);f@»

Since
n—1

SRS

. 1! . <
jooin [ (z;) <

.....

5=0
and f" is continuous on [a,b], the intermediate value theorem implies that there exists & €
(a,b) such that

6 =3 (6.
=0

Hence the total error for the composite trapezoid rule is

1)~ 1) = "),
for some & € (a,b).
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Example 3.1.1.10 (Composite Simpson’s Rule). We take n to be even. Then we may apply
Simpson’s rule to each subinterval
, n
[ij,x2j+2], ]:071,,5—1
Simpson’s rule provides the approximation

/I.%+2 f(x) dx =~ g[f(xzj) +4f (@251) + flazj)] = I (f)

on each subinterval [xo;, xoj+2]. Then for the entire interval |a,b], we have

/f dm—Z/x27+2

[f(@j) +4f(22541) + f(22542)]

Q

w| >
M\

= —[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+... +
4f(b—3h) +2f(b—2h)+4f(b—h)+ f(b)],

w| s

where the step size h s
1 b—a
h = §($2j+2 — Tg5) = :

This is the composite Simpson’s rule.

Example 3.1.1.11 (Total Error in Composite Simpson’s Rule). In each subinterval [xa;, x9;42],
there exists &; € (Toj, Toj42) with

. Lo
Ly (f) — I(f) = %f(4)(§2j),
or f € a,b|. Summing these individual error terms gives
for f € C*a,b]. S g th dividual g
n_q 2-1
h® 3 h* (b—a)\ <
90 (&) = 90 < - > > (&)
j=0 Jj=0

Proceeding similarly to the error for the composite trapezoid rule, since

L

minij,l,...,g—lf (&) < — Zf (&) < _ max, FD (&)

, ,,,,, 2

and f™ is continuous on [a, b] by the assumption, it follows by the intermediate value theorem
that there exists £ € (a,b) such that

€ = 3 (e,
=0

Hence the total error for the composite Simpson’s rule is

1(F) — I(5) = 2= nt p g,
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3. Topics in Integration 3.1. The Integration Formulas of Newton and Cotes

for some £ € (a,b).

Additional quadrature rules may be derived using Hermite interpolating polynomials of
the integrand f.

Example 3.1.1.12 (Hermite Cubic Quadrature). Let p € II* be such that
p(a) = f(a), p(b) = f(b),
p'(a) = f'(a), p'(b) = f(b).

In the special case a =0, b =1, observe

x; f
to =01 f(0)
f'(0)
t1:=0 f(0) f(1) = f(0) = f(0)
f(1) = f(0) (1) =2f(1) +2£(0) + £(0)
ty:=1|f(1) (1) = f(1) + £(0)
f1(1)
t3:=1] f(1)

p(x) = f(0) + f(0)z + [f(1) = £(0) = f(0)]a* + [f'(1) — 2f (1) + 2f(0) + f'(0)]2*(= — 1).

Integration gives

[ #lo) do = [ 10+ 3700+ 5070) = 10 - 70D +
LU10) = 270) +2£0) + FO)*  S(7/(1) +27(0) — 27(1) + F(0)a?
:ﬂ>+§ﬂ> S () = 2F(0) = S £1(0) + 1£/(1) = () + S (0) +
P10 = 2£0) = 2£0) + 2 £(1) - 3 £(0)

:—ﬂ>+1ﬂn+3¢«»—ﬁf<>

2
1 1., ,
— f(1)].
= SO+ ()] + S 1£(0) ~ £ 1)
From this expression we can generalize to any interval [a,b] by introducing
t:=a+xz(b—a).

Note that dt = (b — a)dx. Then

| e = 2500 + 50+ 5 | alinn Ao

=+ o)+ Ly

by the chain rule.
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Example 3.1.1.13 (Composite Hermite Cubic Quadrature). Let

h—
rj:=a+jh, j=0,1,...,n, h:= a

n

be a partition of [a,b]. On each subinterval [xj,x;41], 7 =0,1,...,n, Hermite cubic quadra-
ture provides the approximation

/:.Cj+1 f(x) do = g[f(mj) + f(@j40)] + %[f'(fﬂj) — ['(x:0)] = ().

Summing these n terms over the entire interval [a,b] gives

/ab f(x) de = g/ f(z) da

=32 |5 )+ fesn)) g () S o)

hls o :
=3 Lgomxj) (g | + (@) = ()
:g[f(a)+2f(a+h)—|—2f(a—|—2h)+-~+2f(b—h)+f(b)]—|—
h2 !/ !
Bl (@ = £,

since Z;:S [f'(z;) — f'(xj41)] telescopes. This is the composite Hermite cubic quadra-
ture rule.
Example 3.1.1.14. Similar methods to the trapezoid and Simpson’s rules in the previous
examples may be used to show that the total error for composite Hermite cubic quadrature is
~ b—a
I(f) = I(f) = ———h*f®
(f) = () = =0 FO(e)

for some & € (a,b), provided that f € C*[a,b].

In comparison to the trapezoid rule, note that the composite Hermite cubic quadrature
has improved the order of the method by 2 with minimal effort, namely, the computation of
the two derivatives f’(a) and f’(b). Moreover, if these two boundary derivatives are known

to agree, for instance, if f is periodic, then the trapezoid rule itself is a method of order 4.
This discussion prompts the following definition.

Definition 3.1.1.15 (Superconvergence). A superconvergent method is a method that
converges faster than generally expected.

3.2. Peano’s Error Representation.
3.2.1. Peano’s Error Representation. The quadrature rules considered so far are of the form

I(f) = Zakof(xko) + Z ag, f(Ty) + -+ iaknf(n)(xkn)-
k=0 k=0 k=0
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The quadrature error
b

R(f) =1(f) = 1(f)=1(f)~ | f(z)da

is a linear operator
R(af + Bg) = aR(f) + BR(g)
on some normed linear function space V, where «, € R and f, g € V. For instance, we may

have V' = C"[a,b] or V = II"[a,b]. The following integral representation of the quadrature
error R(f) is attributed to Peano.

Theorem 3.2.1.1 (Peano’s Error Representation). Suppose that R(p) = 0 holds for all
polynomials p € II", that s, every polynomial of degree at most n is integrated exactly

by I(f). Then for all functions f € C™D[a, b],

R = [ @K ()

where

K(t) = ~ Rl — 07, (o) = {

n:

(x—t)", x=>t,
0, x<t,

and
Ry[(z —t)%]

denotes the error of (x —t)" considered as a function of x.

Definition 3.2.1.2 (Peano Kernel). The function
1 n
K(1) =~ Rel(w — 1)2]
15 called the Peano kernel of the operator R.

Proof. We first consider the Taylor series expansion of f(x) about z = a,

"(a (") (q
@) = @)+ 1@ -+ E0 o L0

where 7, is taken to be the integral remainder
I I
_ (n+1) _n\n _ (n+1) _ \n
ra(a) = — / frO @) @ -0 dt = — / FO (@) (@ — )" dt.

Applying the linear operator R to f(x) then gives

R() = R = he ([ 1006 - o )

since all terms preceding r,, in the Taylor series expansion belong to I1™.
In order to prove the theorem, we must show that we may safely interchange the operator
R, with integration. We first show that

[ o -ona] = [ e [ -]
79
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for £ =1,2,...,n. For k < n this follows immediately from the fact that (z —¢)7 isn —1
times continuously differentiable. For £ = n — 1, in particular, we have

dr— 1 b dn+1
e |:/ f n+1 — t)ql_ dt:| = / f(n-‘rl) ('[;) Jpni [(ZL‘ — t)i]dt,

n b
e e | Bl LT

=nl! /m fOY @) (@ —t) dt.

and thus

Then, by the fundamental theorem of calculus,

- { / FED () (2 — ) dt} _d {dwn : l / FOD () (@ — 1) dt”

[n! /a Fr (@) (z — t) dt}
! / " RO gt ) F () — )

SIE

This proves that the differential operators
dk
dak’

commute with integration. Since I(f) is a linear combination of these differential operators,
it also commutes with integration. Particularly, observe that

r( [ 006 - o a)
=71 (/b SOV @) (e — ) dt) — /b /bf<n+1>(t)(x — )" dt dx

mo b
= g%/a FOD @) (g — )7 dt+ - +Zakn/ Fo( {% [(x—t)ﬂr:mk} dt —

/ | / FO ) e — 1) dt da

mo b mn dn b
= a, / F@) (@ — ) dt+ -+ a, (d—n { / FUE ) (@ — )% dt] ) -
k=0 a k=0 X a r=x}

/ b / ’ FO @) (e — ) dt da.

k=1,2,...,n,
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Since

/f"+1 (@ — 1) ]dt = mo ak/f("“ ) (e —1)) dt 4 -+
k=0

Zakn/f”“) { —(z — 1)} } dt—/f"+1> /x—t)idxdt,

it only remains to show that

b pb b b
[ [ s = deas= [ 5000 [0y doar

By Fubini’s Theorem, it follows

/ab /: fO @) (z — ) dt de = /ab /ab OV (=) da di
= /abf(”“)(t) /ab(x — )" dz dt.

This shows that the entire operator R, commutes with integration.
It follows that

R = [ A @RI = o) de= [ oK@ de

a

This proves the theorem. ([l

Example 3.2.1.3 (Trapezoid Rule). We find the Peano kernel for the trapezoid rule on the

interval [0, 1]. Recall that

~ 1
i) = L) + £

Clearly f(f) is exact on 11, so we may apply (3.2.1.1)) with n = 1. The Peano kernel K (t)
becomes

K(t) = el — 1),] = Tl(e — 1),] — I — 1))
_ %(0—t)++%(1—t)+—/0 (x—1), dr.

By definition of (x —t),, we have for t € [0,1] that
0—=t)+=0, (I—-t)y=1—t

and

1
= 2’ —tx
2 =t
1 1
= —t——t* + ¢
2 2 +
ey ]
2 2
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1
= —(1—1t)%
Sa-1)
Hence the Peano kernel for the trapezoid rule on the interval [0, 1] is
1 1
Kt)==(1—1t)—=(1—1t)?
() =501 501-1)
1
= S1-0)(—(1-1)
1
=—(1-1%)t
2( )’
1 1,
= t— 2 0<t<l.
2 2

Example 3.2.1.4 (Simpson’s Rule). We find the Peano kernel for Simpson’s rule on the
interval [—1,1]. Recall that

~ 1

I(f) = 3lf(=1) + 4£(0) + F(1)]
Clearly I(f) is exact on 1%, we show that I(f) is exact on TI%.

Consider integrating a polynomial p of degree three, p € I13. Let q € I1? be such that
q(=1) = p(=1), q(0) =p(0), q(1)=p(1).
Define the polynomial
S:=p—qell
Then S vanishes at the points v = —1,0,1. Since S € II* and has the three roots —1,0,1, S
1s evidently of the form
S(x)=ax(r +1)(z—1)=a(2®*+z)(x —1) =a(2® — 2* + 2% — 2) = ar® — ax.
Since q € 1%, R(q) = 0. Thus
R(p) = R(p) — R(q) = R(p — q) = R(S) = I(S) — I(S)
1

= 315(=1) +45(0) + S(1)] - /1 S(z) dx

1
:/ ax® — azx dx = 0.

1

Thus we may apply (3.2.1.1) with n = 3. The Peano kernel becomes

K(1) = 5 Rel(r — 1))
= -0t -+ -0 -5 [ @-olar

-1
By definition of (x —t)3, we have fort € [-1,1] that

(-1=8)3 =0, Q-1 =01-1)

<0—t)i=—ti={
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/_ll(x—t)i da::/tl(a:—t)3

1

and

= i(x —t)? »
= 0-1*
Thus the Peano kernel for Simpson’s rule for t € [0,1] is
K(t) = 1i8(1 P iu oy
= (= B4 - 31— 1)
= %(1 —1)3(1 + 3t).

Likewise, the Peano kernel fort € [—1,0] is

K(t) = 1—18(—4t3 + (1=t — iu e
_ %(1 — (1 +31) — gt?’
_ %(1 1)1 — 38).

Thus we see that on [—1,1] we have

To show how Peano’s error formula is commonly used, we recall the following result from
calculus.

Theorem 3.2.1.5 (Weighted Mean Value Theorem for Integrals). If f is continuous on the
interval [a,b] and g is an integrable function that does not change sign on |[a,b], then there
exists a number £ € (a,b) such that

[ ey ar =5 [ o) a

For a large class of quadrature rules, the Peano kernel K(t) has constant sign on [a, b]. In
particular, the Peano kernels for every Newton-Cotes quadrature rule have constant sign on
their respective intervals of integration. In this situation, the weighted mean value theorem

for integral calculus (3.2.1.5)) gives
b b
R(f) = / FOYOK () dt = fHD(€) / K(t) dt (3.2.1.1)
for some ¢ € (a,b), provided that f € C"*![a, b]. Moreover, since K (t) does not depend on f,

we may determine the integral by applying the operator R, for instance, to the polynomial
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p(x) = 2™ This gives
b
R(x™) = (n + 1)!/ K(t) dt.

Rearranging this expression, we obtain

b B R(x™t)
Alﬂﬂﬁ_%n+DV

and inserting for the integral in (3.2.1.1]) gives
b
R n+1
R(f) = f"0() / K(t) dt = T

( n+1
S NLANO]

for some £ € (a,b).
That is, once we determine that the Peano kernel K (t) has constant sign on [a, b], we no
longer need it to determine the quadrature error R(f). In summary,

Theorem 3.2.1.6 (Quadrature Error Formula). Suppose that R(p) = 0 holds for all
polynomials p € 11", that is, every polynomial of degree at most n is integrated exactly
by I(f). If the Peano kernel

K(t) = ~Ry[(z — )"

n!
has constant sign on [a,b], then for all functions f € C™[a,b] there exists a number
¢ € (a,b) such that
B R(xn+1>

S LA

Example 3.2.1.7 (Error for Trapezoid Rule). We find the error for the trapezoid rule on
the interval [0,1]. Recall that the Peano kernel in this situation is

1
K(t)=gt(l—1), 0<t<1,

which is nonnegative throughout [0,1]. We find

R@%:RﬁyJu%:%m+u—Auﬁm
o
!
T2 3 6
Hence, for f € C?[0,1], there exists £ € (0,1) such that
_ R(xZ) " o L.,
R(f) = o) 1(6) = 2 7(6)

Note that, if we assume that the Peano kernel has constant sign throughout the arbitrary
interval |a,b], we have thus

R(z?) = I(2%) — I(2*) = b
84
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b—a b
|
b—a 1
=— [a2+b2] —3 [b3—a3]
(b—=aP W
6 6’
for step size h := b — a. Hence if f € C?[a,b], then there is £ € (a,b) such that
_ R('rZ) " _ h? "
R(f) = 2 (€)= 15."(€).

which was assumed in the previous section.

Example 3.2.1.8 (Error for Simpson’s Rule). We find the error for Simpson’s rule on the
interval [—1,1]. Recall that the Peano kernel was found to be

L(1—=1)3(1+ 3t <t<l1
K(t): 72( )( +3)7 O_ = b
K(-t), —-1<t<0,

which is nonnegative throughout [—1,1]. We find
- 1 1
R@ﬂz]@ﬂ—]@ﬂ:§ﬂ+0+ﬂ—/jfdw

1

2 1.
35|,
2 2 4
T3 5 15
Thus for any f € CY—1,1] there is £ € (—1,1) such that
R(z%) 4 L
R(f) = Tf( (&) = %f( ().

Assuming that the Peano kernel has constant sign throughout [a,b], we have
- bh— b\ 4 b
R(x*) = I(2z*) — I(z*) = 5 ¢ [a4—|—4 (%) +b! —/ zt dw
_b—a
-6
for step size h := b_T“ Hence if f € C*a,b], then there is £ € (a,b) such that
R(f) = @) =
(=" g - 1o

b—a | a+b 1
— b4 .5
6 ( ) * 5"
¥l
b4 — ===
)+ 55
(b a) B
1200 15
R(z%) h? ()
T 519
Note that this is a higher—order error term than was derived in the previous section.
85




3. Topics in Integration 3.2. Peano’s Error Representation

In general, the Newton—Cotes formulas of degree n integrate without error on II" if n is
odd and II"*! if n is even. The Peano kernels for the Newton—Cotes formulas are of constant
sign, and we have for the n—th degree Newton-Cotes formula

%ﬂ”“)(f), n is odd,
R.(f) = Rn($n+2')
mf(”“) (£), mniseven.

Example 3.2.1.9 (Hermite Cubic Quadrature). Lastly, we derive the error induced by Her-
mite cubic quadrature. Recall

~ h h?

I1(f) = 5(f(@) + f(0)) + 5 (f(@) = ['(B)),  h:=b—a,

which clearly integrates exactly polynomials p € 113, For n = 3, we obtain the following Peano
kernel K(t) :

K() = gRallx — 0]
= i3t om0+ -0t - 0= 02 - [0t adl
_ é :g(b— B %Q(b—t)Q - /tb(x gy dm}
_ é :g(b - %2(17 1 o t)4]
= g (b= 12— h— 1) = (b 12— 1),

which is clearly nonpositive throughout [a,b], so that we may apply (3.2.1.6). We find

_b-a (b

R(z*) = I(z%) — I(z*) (a* +b") + _—a>2(4a3 — 4b%) — / rt dx

12

(b ) 4 4 ( a)2 3 3 1)’
n 2 (a”+07) 3 (a ) 5|,
( ), 4 4 ( )2 3 3 °a
= (a® +0b%) + (a® —b°) ( —3)
(b—a)® h?
30 30’

for step size h := b — a. Hence if f € C*[a,b], then there exists £ € (a,b) such that

r() = T poey - g

which was assumed in the previous section.
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3.3. Gaussian Integration Methods.
3.3.1. Gaussian Quadrature. We recall the definition of a weight function.

Definition 3.3.1.1 (Weight Function). A weight function on the interval [a,b] is a func-
tion w(x) that satisfies the following properties:

(1) w(z) > 0 is measurable on |a, b,

(2) All moments py, = fab 2fw(z) do, k= 0,1,..., exist and are finite,

(3) [Pw(zx) dz > 0.

We note that the conditions for a weight function w(x) are met if w(x) is positive and

continuous on an interval with finite measure.
In this section we consider integrals of the form

1(f) = / w()f(x) dr,

where w(x) is a given nonnegative weight function on [a,b]. We again examine quadrature
rules of the type

I(f) = ijf(xj).

For Newton—Cotes rules, the abscissas were required to form a uniform partition of the
interval [a,b]. Here, we try to choose the nodes z; and weights w; so as to maximize the
order of the quadrature method. This leads to a class of quadrature rules known as the
Gaussian quadrature formulas.

We will define

0" = {p: p(x) = ap + a1x + asx® + - - - + a,z"}

to be the set of all normed polynomials of degree n.

We recall the following definitions from the section regarding approximation theory, par-
ticularly, see the section on least squares function approximation.

Definition 3.3.1.2 (L? Inner Product). Let f,g € L*[a,b]. We define the weighted inner
product (f,g) of f and g by

(f.9) = / w(z) f(z)g(z) da.

Definition 3.3.1.3 (L? Norm). Let f € L?[a,b]. We define the norm || f| of f on L*[a,b]
by

111 := VA{F ) = \// w(x)[f(2)]? de.

Definition 3.3.1.4 (w—Orthogonal). The functions f, g € L*[a,b] are said to be w—orthogonal
on la,b] if
(f.9) =0.

We also recall the following result regarding the construction of w—orthogonal polynomials

from ([2.1.1.13)).
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( R

Theorem 3.3.1.5 (Construction of w—Orthogonal Polynomials). There exist polyno-
mials ¢, € 11", n=10,1,..., such that

(¢i,05) =0, fori#j.

These polynomaials ¢, are uniquely defined by the recursion

¢0($) = 1,
le(l') =T — Bl, Bl =

and, when k > 2,
br(w) := (. — Bi)pp—1(z) — 013%72(33),

where
By, = (T Pr-1, Pr1) _ f; zw(z)[Pp—1(z))* dx
B d) [Tw(@)]e e (2)]2 do
C? .= (Pr—1, Pr—1) _ :w(x)kal(fL')]Q dx
k=

(Or-2, Ph—2) fabw 2)[6 +i_s (2)]? dz

Corollary 3.3.1.6. If{¢g, ¢1,...,dn} are the w—orthogonal polynomials as given by (2.1.1.13)),
then for any p € II"™', we have

Proof. This corollary is equivalent to (2.1.1.14]). 0

We arrive at the following result regarding the roots of the n — th orthogonal polynomial

Pn-

Theorem 3.3.1.7 (Roots of ¢,). The roots z;, i = 1,2,...,n of ¢,(x) are real and
simple. Moreover, each x; lies in the open interval (a,b).

Proof. First note that ¢g = 1 has no roots. Thus, assume that n > 1, for otherwise the

theorem follows vacuously.
If ¢n(x) > 0 for all x € (a,b), then

/abw(x)¢n(:c)¢o(:c) de = /abw(:l;)¢n(:c) dx > 0,

but, by the orthogonality condition, ffw(x)qﬁn(x)qﬁo(a:) dx = 0. Thus ¢,(x) changes sign at
least once on (a,b).
Let

A< <zm<- <z, <b
be the distinct real roots of ¢, with odd multiplicity. Define the polynomial
k

g(w) = [[(x - 2).

j=1
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Then clearly ¢ € IT¥. Moreover, the polynomial ¢, (z)g(z) does not change sign on (a,b). It
follows that

b
| w@sn@ate) de 0.
Since k < n, we have by the orthogonality condition that k = n, for otherwise, fab w(x) o, (z)g(x)
would equal zero. Hence, ¢,(x) has n zeros at zx, k = 1,2,...,n, where each zj lies in the
interval (a, b).
This proves the theorem. O
Theorem 3.3.1.8. The n X n matrix
do(t1) ... ¢o(tr)
A= : o :
¢n71(tn) L ¢n71(tn)
is nonsingular for mutually distinct arguments t;, j =1,2,...,n.

Proof. By contradiction, suppose that A is singular. Then there exists a vector

c:=lco,c1,. .. 0] #0

such that ¢" A = 0. The polynomial
n—1
g(x) == c;0;(x)
=0

has the n distinct roots t1,ts,...,t,. That is,
n—1
qt) = cjdi(te) =0, k=12, n
§=0
But since each ¢;, 7 =0,1,...,n— 1 is a polynomial of degree precisely j, ¢ € II""! and has
n distinct roots and thus vanishes identically,
q=0.

Since the polynomials {¢g, ¢1,..., ¢, 1} are linearly independent, ¢(z) = 0 implies that
¢ = 0, a contradiction to the assumption.
This completes the proof. O

The Theorem ([3.3.1.8]), together with the invertible matrix theorem ([1.1.5.1)), shows that
the interpolation problem of finding a function of the form

pa) = 3 cstn(o)

is always solvable, with p(t;) = f;, 7 = 1,2,...,n. The condition that the arguments ¢;,
j = 1,2,...,n are mutually distinct is known as the Haar condition. Any sequence of
functions fo, f1,..., that satisfy this Haar condition is said to form a Chebyshev system. In
particular, Theorem ([3.3.1.8)) states that sequences of w—orthogonal polynomials ¢q, ¢1, . ..,
for instance, those w—orthogonal polynomials constructed via form Chebyshev
systems.

We arrive at the main result of this section.
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-

~N

Theorem 3.3.1.9 (Characterization of Nodes and Weights).
(1) Let x1,2a,...,x, be the roots of the n—th w—orthogonal polynomial ¢, (x), and

let wy,ws, ..., w, be the solution of the nonsingular system of equations
g f k=0
> orlziw; = (Do, G0),  if ’ (3.3.1.1)
— 0, otherwise.

Then w; > 0 for each i =1,2,...,n, and

b n
/ w(z)p(z) do = szp(%) (3.3.1.2)

holds for all polynomials p € H2n_1

(2) Conversely, if the numbers x;, w;, t = 1,2,...,n are such that holds for
all p € II?" L, then the x;, i =1,2,...,n are the roots of the n—th w—orthogonal
polynomial qbn and the weights w;, z' =1, 2 N satisfy (13.3.1.1)).

(3) It is not possible to find numbers x;, w;, i 1 2,...,n such that (3.3.1.2)) holds
for all polynomials p € 11?71,

Proof. Since the roots x;, i = 1,2,...,n of ¢, are real mutually distinct arguments in (a, b)

(3.3.1.7)), the matrix

d)g(.il?l) Ca gbo(:cn)
A= : : :

¢n—1<x1) ce an—l(xn)
is nonsingular (3.3.1.8). Thus the system (3.3.1.1]) has a unique solution.

Let p € I1?"~! be arbitrary. By polynomial division, we may write

p(x) := dn(w)q(2) +7(2),

for some ¢q,r € TI""!. since {Pg, P1,...,P, 1} forms a basis for II""! there exist unique
coefficients 7;,¢; € R, i =0,1,...,n — 1 such that

n—1
= qidi(x)
=0

3
,_.

Tz(bz( )

<
—~
8
~—
I
<.
|
o

It follows
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=y [0l @) de

1,2,...,n, we have by (3.3.1.1)) that

On the other hand, since ¢, (z;) =0, i

Z wip(@

wildn (i) q(2:) + ()]

MWM:

1(](:52 Cbn 1:7, + Zwl ZBZ

=1 =1
n n—1
- E wy E Tkgbk: xz
i=1 k=0
n—1 n
= E z¢kz xz
k= i=1

0
/ dx,
which proves (3.3.1.2)).

We now show that w; > 0 for each i« = 1,2,...,n. Define the polynomials p;(z), j =

1.2,...,n as follows:

p;(z) = H(m —ap)? € "2,
=4

Since p; > 0 on [a, b] and clearly does not vanish identically, applying (3.3.1.2), it follows

0 </ w(x)p;(z) dx
= Zwipj(%)

(7 — xp)°.

’:]:

:w]

bk
Sl

1
J

Noting that the product is strictly positive, we have w; > 0 for each j =1,2,...,n
This completes the proof of (3.3.1.9)[1]

We now show ([3.3.1.9)[2]. By contradiction, suppose that there exist numbers x;, w;,
i=1,2,...,n such that (3.3.1.2) holds for all polynomials p € II?". Put
H (x — xj e I1*".
Then since p > 0 on [a, b] and does not vanish identically, it follows from (3.3.1.2)) that

0</ w(x)p(x) dx
"ol
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which implies that 0 < fb w(z)p(x) dz = 0, which is clearly absurd. This proves (3.3.1.9)(3].
Lastly, we show [2] Suppose that the numbers x;, w;, i = 1,2,...,n are such
that holds for all p € II?"~!. Note that the abscissas z;, i = 1,2,...,n must be
distinct, for otherwise, we may reformulate terms and sum to obtain a quadrature rule that
is exact on IT?"~! with less than n points, a contradiction to (3.3.1.9)[3].
Recall that if holds and the z;, ¢« = 1,2, ..., n are distinct, then w; > 0 for each

i=1,2,....n.

We apply (3.3.1.2)) to each ¢;, j =0,1,...,n —1 to find
n b
> wityw) = [ wla)syo) da
i=1 a

- / w(z); (@) olz) dz
_ {f;’wm) (go(2)]? dz, j =0,

0, otherwise.

This proves (3.3.1.1)).

It remains to show that ¢, (z;) = 0 for each z;, i = 1,2,...,n. Since ¢;¢, € II*"~! for
7=0,1,....,n—1, (3.3.1.2)) gives

n b
> (e () = / ()¢ (x) 5 () d

=0.
That is, the vector
C:= [w1¢n($1), w2¢n($2), st 7wn¢n(xn)]—r
solves the homogeneous system Ac = 0, with
¢0(I’1) . ¢0<In)
A= : : :

¢n—1(x1) s ¢n—1(£n)-
Since the abscissas x;, © = 1,2, ..., n are distinct, A is nonsingular (3.3.1.8)). Thus ¢ = 0, so
that w;¢,(z) = 0 for each i = 1,2,...,n. Furthermore, since w; > 0 for each i = 1,2,...,n,
it follows that
Gu(r;) =0, i=1,2,... n.
This completes the proof. 0
Note that by Theorem ({3.3.1.9)), we have characterized the quantities x; and w; which enter

the Gaussian quadrature rules for given weight functions w(x), but it remains to discuss their
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actual calculation. We assume that the coefficients B;, C; of the w— orthogonal polynomial

recursion ([2.1.1.13)) are given.

We consider the tridiagonal matrices

(B, Cy

02 Bl CQ
: e

L On Bn_

as well as their principal submatrices
‘B, C, -
Co By Cy
Jj = Cg Bg . y

. SRe)

I ¢ Bjl

where By, Cy, are such that
or(2) = (¢ — By)op—1(x) — Cidpa(),

that is,
By e do 0O (@) dr
[ w(@)[dp—1(x)]? dx
- f;w($)[¢k—1(ﬂﬁ)]2 dx
fabw(x)[(ﬁka(l')]Q dx

We have the following result regarding the roots of ¢, (z) and the eigenvalues of J,.

Theorem 3.3.1.10. The roots x;, © = 1,2,...,n of the n—th w—orthogonal polynomial ¢,
are the eigenvalues of the tridiagonal matriz J,.

Proof. We use induction. Recall that ¢o(z) = 1 has no roots and corresponds to the empty
matrix Jy. Observe

Let I,, denote the n x n identity matrix. Now
$2(2) = (x — Ba)¢(x) — C3¢0(2)
= (v — By)(x — By) — C3
= (B —)(B1 — ) — C3
= det ([Blc; ! BQCE xD
det(Jy — Lrx).
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This shows the base cases j = 0,1, 2.
We show by induction on j that

¢;(x) = (1) det(J; — Lz).

Note

[ Bl — X CQ 0 |

02 BQ — X Cg
03 Bg — X
Jj — ]jl’ = :
Bj_g — T Cj_l
Cj_l Bj_l — X Cj

i 0 Cj Bj — T ]

so that

det(Jj - I]I> = (B] - JI) det(Jj_l - Ij_1I>—
Bl — X 02
02 BQ — X Cg
Cj det T
Cj_g Bj_g — X Cj_l
0 C
= (BJ — .ﬁli') det(Jj,1 — ijll’) — CJZ det([j,g — Jj,Q.T)
= (Bj —x)(=1) g1 (x) — CF(—1) 29, _5(x),

by the induction hypothesis. Thus,
(=1) det(l; — Jjz) = (=1) " (B; — 2)¢j-1(x) — (=1)7CF¢;-2(2)
= (1) (z = Bj)gj1(z) — Cip; o(x)
= (v = Bj)pj-1(x) — Cidj-a(x)

= ¢(x),
by the recursion (2.1.1.13)).
Hence,
On(z) = (—1)"det(J, — I,x) =0
if and only if x is an eigenvalue of J,,. This proves the theorem. U

We note here that since the roots of ¢, are real and distinct ([3.3.1.7)), it follows im-
mediately by (3.3.1.10) that the tridiagonal matrices J, (3.3.1.3) have n real and distinct

eigenvalues.
We present a few prerequisite definitions from linear algebra.

Definition 3.3.1.11 (Unitary Matrix). A square matriz U is said to be unitary if
URU =1,

where UM .= (U)7, the conjugate transpose of U.
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Definition 3.3.1.12 (Similar Matrices). Let A, B be square matrices. If there exists a
nonsingular matriz T such that

T AT = B,
then we say that A is similar to B, and write A ~ B.
Definition 3.3.1.13 (Unitarily Similar). Let A be similar to B,
T-'AT = B.
If T is a unitary matriz, then we say that A and B are unitarily similar.

We recall the following important result from linear algebra.

Lemma 3.3.1.14. If A and B are similar matrices, then the eigenvalues of A are precisely
the eigenvalues of B.

Proof. Let A and B be similar matrices. Then there exists T nonsingular such that
T 'AT = B.
Recalling that det(AB) = det(A) det(B), it follows for all A € C that
det(B — M) = det(T AT — M)
=det(T'AT — \T™'T)
=det(T (AT — \T))
=det(T" (A - \IT)
= det(T ") det(A — \I) det(T)
= det(T~'T) det(A — \I)
= det(A — \I).
OJ

Theorem 3.3.1.15 (Schur Normal Form). For every n x n matriz A, there exists a unitary
n X n matriz U such that

A O* L. %
viag = |0 X
0 ... 0 M\
where \j, 7 =1,2,...,n are the eigenvalues of A.

We call the form of the matrix U7 AU in (3.3.1.15) the Schur Normal Form (also Schur
Canonical Form).

Proof. We use induction.

For the case n = 1, we choose U := [1] and we're done.

For the induction hypothesis, assume that holds for matrices up to size (n —
1) x (n — 1) for some integer n > 1. Let A be n x n. Further, let A; be an eigenvalue for A
with associated eigenvector #; # 0. We may rescale Z; as needed, so that =1

We apply the Gram—Schmidt orthogonalization process to generate vectors s, T3, ..., T,
that form an orthonormal basis for C". Then the matrix

X = [fl ZZ"Q fn]
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is an n x n unitary matrix, for X7 X has entries

e 1=y
ZL{IZC] — ) ) .
0, otherwise.

Denote by

j—th entry

the standard basis vectors for C". Further, given a matrix B, denote by éj the j—th column

of B. Note that evidently Bé; = B;.
Now the first column of X7 AX is

(X7TAX)e, = XPA(Xe) = XPAD, = X\ = W XP7, = \é,

since 77 is an eigenvector of A and X is unitary. It follows

where A; is an (n — 1) X (n — 1) matrix and @ € C""!. By the induction hypothesis, there
exists an (n — 1) X (n — 1) unitary matrix U; such that

)\2 X *
U1HA1U1: O )\2
s L%
0 0 A,
Define the n x n matrix
1\0 0
0
U=X| .
: U1
0
Then U is unitary, for
110 07 1\0 0
0 0
Ui = | . XHEX |
: UlH : Ur
L 0 i 0
110 07 1‘0 0
0
B UH Uy
| O 1 L0
110 0
; I
| UHy v
| O
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since X and U; are both unitary. Moreover,

110 07 1 \ 0 0
0 0
UTAU = | XTAX
U# Ui
0 i 0
110 07T M \ at 1 \ 0 0
0 0 0
B Ul A : U
L 0 L0 0
[ A1 all 1 \ 0 0
0 0
L 0 0
[ A\ altu,
0
| uEAL,
L 0
B3 alu, i
0 )\2 * *
— 0 /\3
* . .-' *
| 010 . 0 A |
)\1 * *
10 A
. -.‘ * ’
| 0 0 A\
which completes the proof. 0

Definition 3.3.1.16 (Hermitian Matrix). A square matriz A is said to be Hermitian if
Af = A,
Theorem 3.3.1.17. For every n x n Hermitian matriz A = AM there ewists a unitary
matriz
with UR AU = diag(Ay, Ms, . . .
(1) The eigenvalues A, j =1,2,...,n of A are all real-valued;
(2) AZ; = \;, that is, the columns of U are the eigenvectors of A;
(3) Since U is unitary,
1
SH - )
T =
K3 J {0’

, An). Moreover,

=17,
otherwise.
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Proof. Let A be an n x n Hermitian matrix. By (3.3.1.15)), there exists an n x n unitary
matrix U such that

)\1 * *
Ay = |0 A
0 ... 0 A\,

But since A is Hermitian,

(UH AU = U AR (UM = UP AP U = U AU,

so that
(A1 % « 17
wiavyt = |0 A
T *
[0 ... 0 Ay
A 0 0]
EERY
’ 0
| * x A
B *
10 A
a . L% ’
[0 ... 0 Ay

from which it follows that all off-diagonal entries are zeros. It also immediately follows
Aj = Ajforeach j =1,2,...,n,so that \;, j =1,2,...,n are real-valued.
Finally,

A0 ...0
viay = |0 M ,
S .0
0 ... 0 M\,
so that
A0 ... 0 A0 L0
AU = (UH)™! 0 As =U O A
' 0 s 0
0 0 A\ 0 0 A
Hence,
[AZ) AZy ... AT, = [MT1 ATy ... N,
and thus it follows AZ; = \;2;, 7 =1,2,...,n. O

Note by definition that if A is a symmetric (A = AT) real-valued matrix, then con-
sequently A = A so that A is Hermitian. Also recall that the tridiagonal matrices J,
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(3.3.1.3]) are symmetric and real-valued. Thus by Theorems (3.3.1.10) and (3.3.1.17]) there

exists a unitary matrix

with U# J,U = diag(z1, xa, ..., z,), where the z;, j = 1,2,...,n are the roots of the n—th
w—orthogonal polynomial ¢,, and consequently are real and distinct. The eigenvectors
{u; };?:1 are orthogonal here, and we rescale these to obtain the quadrature weights w;.

Theorem 3.3.1.18 (Weights for Gaussian Quadrature). Let @) := [ﬁgi), ﬁg), . ,ﬁg)]T
be an eigenvector of J, for the eigenvalue x;, i = 1,2,...,n. Suppose that @) is scaled
n such a way that

‘ ) ) n N\ 2 b
Hﬁ(z)”i — (ﬁ(%))Hg(%) = Z (ﬁ,@) = / w(zx) d.
k=1 a
Then the weights w;, i = 1,2,...,n of the n—point Gaussian quadrature rule are given
by

Proof. We first verify that the vector

@ = [podo(x:) pron () - pa1dnr(z:)]’

where
1

P 00y . O30
j=0,1,...,n —11is an eigenvector of .J,, for the eigenvalue z;. By the recursion for ¢;, the
first row of J,a¥ is, for any «,

C:
Bupnon(z) + Capr(z) = on(a) + o610
= B1 + ¢1(x)
=z
= Tpodo().

Similarly, for j = 2,...,n — 1, the j—th entry of J,a® is
Cipj-29j-2(x) + Bjpj-10j-1(x) + Cjy1p;0;(x)

= Cj(Cjpj—1)9j-2(x) + Bjpj-10j-1(x) + pj-16;(z)

= pj1[Ci¢j_a(x) + Bjoj—1(x) + ¢;(x)]

= pj1[Cl¢j_a(x) + Bjoj1(x) + ((x — B;)gj_1(x) — Cipj_s())]

= zpj-10j-1(2).
Finally, the last entry of J,a( is

Pr1|Cion—2(2) + Budn-1(2)] = 2pn-10n-1(x) = pn-1¢n(z),
so that
TiPn-1Pn-1(T5) = Pn10n(Ti) = Tipn_10n-1(s).

Thus J,0% = z;a® for each i = 1,2, ..., n. This shows that @) is an eigenvector of .J,.
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Recall from (3.3.1.1]) that
n b
w(x) dr, k=0,
zywmmz{ﬁ o dr.
i=1

0, otherwise.

Define @ := [wy, ws, ..., w,]" and
podo(r1) podo(za) ... podo(n)
U — [ﬂ,(l) ’ ’27,(2) | ’ ~(n)] _ p1¢1<$1) p1¢1<$2) s p1¢1($n)
,On—1¢7;—1($1) ,On—1¢7;—1($2) .- pn—lgbr;—l(xn)

For each k =1,2,...,n, row k of U is given by

[pr—10(21) pr—10r-1(72) - pr-10k-1(Tn)] = pr-1[Pr-1(z1) r—1(x2) ... drp-1(xn)].
Thus, the k—th entry of U is

(Uzﬁ)k = Pk-1 Z wi¢k71(wi)-

i=1
We now solve for the weights w;, i = 1,2,...,n by observing that
T

b
Uw = {/ w(x) dx,O,...,()} ,

since pg = 1. Since the eigenvectors of .J,, are orthogonal, we have

(am)T Uil — (~('>)T i@,
([ o)
= ([ vt ar) oty

/a i) d.

By the hypothesis,
b
(@) (@) = [ w(o) ds,

and we have already shown that @? and @) are both eigenvectors of J, with the associated
eigenvalue ;. Since there are n distinct eigenvalues, @ is a multiple of @®. the first entry
of 4 is popo(x) = 1, so that

Finally, observe that
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This completes the proof. 0

Remark. Suppose that {1;}}_, is a set of eigenvectors for J,. Recall that we want to con-
struct a set {i;}7_, of eigenvectors such that

b
il = [ wie) do

for each 5 =1,2,...,n. We may write
fbj - ]{Zjﬁj
for some k; € R, so that then
~ 2 - 12 — 12
4|5 = N[kl = k5 (|1l ,
which tmplies that taking
b
]{?2 o fa 'lU(I’) de
P T T e
125113

will scale the eigenvectors as needed.

Example 3.3.1.19. We derive the abscissa x; and weights w; for w(z) := 1 on the interval
[—1,1].
Note that the first three orthogonal polynomials are

¢0($) = 17
1
x dx
qbl(:v):x—f_ll—:x,
f_l dx
1
Jaatde) o [Latdr o, [0, 1
— B S g 23 Al 2 T (e — 0 _ - )
62(x) ( ) T T g - 06e) — )
Thus the zeros of ¢o and thus the abscissas x;, 1 = 1,2 are
1 1
T]i=———, Tgi= ——.
1 V3T V3
Moreover, the matriz Jo is given by
B, C 0 -
Ot R L
2 2 V3
Finding the eigenvectors of Jo, we obtain
1 X = 1
Jo—Lxy=Jo+ —=0= {f f:| = u; =k |:_1:| ,
V3 V3 V3B
and
1 -5 7 1
J2_IQ$2:J2_ﬁ]2:|:i/§ _\/i:| :ﬁ2:k2|:1:|
V3 V3
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Noting that filw(a:) dr = fjl dx = 2, choosing ki = ko = 1 scales the eigenvectors as
needed. Hence,

The quadrature rule is

- 1 1
If)=fl—-—|+f|—|-
n=1(-7) ()
Example 3.3.1.20. We derive a quadrature rule I(f) that will integrate

1= [ () de

1

exactly whenever f is a polynomial of degree 2 or less.
The first three orthogonal polynomials are

¢0($) = 17
L3
x> dx
¢1($)=$—f}1—=$,
[ x? dx
f11x5dx f11x4dx > 2/5 2 3 3
— — — — — — —_— = _—— = — 0 —_ = .
Po(x) (x f_ll e x f_ll e x 23 - (x — 0)py(x) 5gb0(x)
Thus the zeros of ¢o and therefore the quadrature abscissas x;, 1 = 1,2 are
3 3
Ty = —/= =1/=.
1 57 T2 5
Further, the matriz Js s
gy = |Br G2 :
2 CQ BQ 0

Finding the eigenvectors of Jy, we obtain

3
J2 —121'1 = J2+ \/gIQ =
3 J—
J2 —IQLEQ = JQ — \/;IQ =

Note that ||u;||3 = 2 for j = 1,2. Moreover,

1 1 1 2
_ 2 I e
/_lw(x)dw—/_lx dx {31’] 3
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3. Topics in Integration 3.3. Gaussian Integration Methods

Put
k::‘/Q_/B:\ﬁ
2 3

and note u; := ku; is the required basis. We obtain

w, = Wy = (ﬂgl))Q = 1
3

Hence, the quadrature rule is

-3 () + 1 (12).

Theorem 3.3.1.21 (Error in Gaussian Quadrature). If f € C*"[a,b], then

b n (2n) b
[ wsa@ e => wiptey =1 (%ff) [ v a,

for some £ € (a,b).

Proof. Let p € II?"~! be the unique Hermite interpolating polynomial satisfying

p(xz) :f(xz)a p/<xz> :f,(xz)7 1= 1,2,771,
Since the Gaussian quadrature rule is exact on II*"~!, we have

/ w(x)p(z) de = Zwlp(xl) = Zwlf(:r;z)

Therefore, the error term has the integral representation

1) =19 = [ w@)f@) de= Y wf(w)

:/abw(x)f(x) dx—/abw(x)p(:l:) dr
= [ @) - pia) a

Since the z;, i = 1,2,...,n are the roots of ¢,, it follows from the error in Hermite interpo-

lation that there exists ¢ € (a,b) such that
(2n) n (2n)
) =pte) = T Tt =07 = Friontor

(2n)!

Next, the function
fe () _ f(z) —pl=)
(2n)! [¢n(@)]?
is continuous on [a, b]. Since w > 0 on [a, b], by the weighted mean value theorem for integrals,
it follows
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1 b
= a1 | @O da
(2n) b
Lot [ vl da
for some £ € (a,b). This completes the proof. O
Example 3.3.1.22. In the case
f(z) =a,

we derive the explicit formula for the quadrature error I(f) — I(f) from the first example.
Recalln = 2, w(x) = 1, and ¢o(x) = 2> — % Hence, applying (3.3.1.21)), we have

-in=4[ (#-3) @

1 1
= —x5—gx3+lx

5 9 37,
2 4+2_§
5 9 3 45
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4. Systems of Linear Equations 4.1. Gaussian Elimination

4. SYSTEMS OF LINEAR EQUATIONS

In this section we consider direct methods for solving systems of linear equations

ay ... Qip bl

Ap1 ... QAp1 bn

Here A is a given square n X n matrix and ba given vector. The direct methods discussed
in this section produce the solution to the system Ax = b in finitely many steps, assuming
computations without roundoff errors.

This problem is closely related to that of computing the inverse A~! of the matrix A
provided that this inverse exists. For if A™! is known, the solution ¥ of A% = b can be
obtained by matrix—vector multiplication,

Z=A"'.
Conversely, the i—th column @; of A™! = [ay,...,a,]" is the solution of the linear system
AT = ¢&;, where € =[0,...,0,1,0,...,0]" is the i—th unit vector.

4.1. Gaussian Elimination: The Triangular Decomposition of a Matrix.

4.1.1. Gaussian Elimination. We seek a solution to a system of linear equations

aij; Qi ... Qip bl
- as1 «Q ce. Qop R b
AZ=b A= | » B oo | (4.1.1.1)
Ap1 QAp2 ... Qpp bn

Here, A is a square m x n matrix and b € R". The system (4.1.1.1)) is transformed by
rearrangements and linear combinations into a system of the form

M1 Ti2 ... T1n
0 T2 ... Tnn

Ri=¢ R= ,
0O ... 0 7rwm

which has the same solution # as A% = b. Here, R is an upper triangular matrix, so we can
solve R¥ = C easily by back substitution

n
(Ci_ Z Tikxk)
k=i+1

T; = , t=nn—1,..., 1.
Tii

In the first step of the algorithm we subtract a multiple of the first equation from all other
equations so that the coefficients of x; vanish in these equations. Thus x; remains only in
the first equation, which is possible only if a;; # 0, which can be achieved by swapping rows
as necessary, so long as at least one a;; # 0. The operations are carried out on the matrix

a1 a2 ... A1p b1

- 21 A29 ... (Q2pn bQ
(A7 b) - .

An1 Gpo .. Gpp by
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4. Systems of Linear Equations 4.1. Gaussian Elimination

The first step of the Gaussian elimination process leads to a matrix (A’, v ) of the form

/ / / /

ay @y ... ay, b

/ / /

(A’ l;/) |0 ayn o ay, by
Y - . . .

!/ / /

0 a,y ... a,, b,

We may describe this step formally as follows:

Algorithm 4.1.1.1.
(1) Determine an element a,1 # 0 and proceed with (2). If no such r exists, then A is
singular. Set (A’, E’) = (A, l;) and stop. B
(2) Interchange rows r and 1 of (A, g) The result is the matriz (A,b).
(3) Fori=2,3,...,n, subtract the multiple

_an

Ly =

an
of row 1 from row i of the matriz (A,i). The desired matriz (A’,l;/) is obtained as
the result.

-

The transition (A, b) — (A, l?) — (A’, ) can be described by using matrix multiplications

(A,b) = Pi(AD), (A0)=Gi(A,b) =G Pi(A,D), (4.1.1.2)
where P, is a permutation matrix
[0 0 10 0]
1
1
Pl — 1 0
1
and G is a lower triangular matrix
1 0 0
Gl — _l21 1
: 0
e T U |

Matrices such as G that differ in at most one column from an identity matrix are called
Frobenius matrices. Both matrices P, and G are nonsingular:

1 0 ... 0
Pl_lzpla G1_1: l2,1 !

: 0

lhi O 1
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Thus, the equation systems AZ = b and A’Z = b have the same solution 7 :
AT=b = A'7=GPAT=GPb=10,
A=V = Ai=P'G'A'7=P'G{'W =b.
The element a,q; = a1 determined in (4.1.1.1)[1] is called the pivot element, and step (1)

is called pivot selection. Note that in pivot selection we may choose any a,; # 0 as the pivot.
For reasons of numerical stability, usually the choice

la,1| = miax|a,~1|

is made. It is assumed in making this choice that the orders of magnitudes of the elements
of A are roughly equal (in this situation A is said to be equilibrated). This sort of pivot
selection is called partial pivot selection.

We replace (1) and (2) in (4.1.1.1)) as follows:

Algorithm 4.1.1.2.

(1) Determine r so that
la,1| = max la1]
and continue with (2) if a,1 # 0. Otherwise, A is singular; set (A, IE’) = (A, I;), stop.

=

(2) Interchange rows 1 and r of (A, E) Let the resulting matriz be (A, D).

After the first elimination step, the resulting matrix has the form
. / a b
ALY = ap |a 15
( ) 0| A|b
with an (n — 1)—row matrix A. The next elimination step consists of simply applying the

same algorithm to the smaller matrix (A,i)) Carrying on in this fashion, a sequence of
matrices

(A, b) == (AD Oy 5 (AW FDy ... 5 (AP p=Dy = (R, &)

-,

is obtained which begins with the given matrix (A,b) and ends with the desired matrix
(R, €). In this sequence the j—th intermediate matrix has the form

. G | AG) | 70
(A(j),g(j)) _ 10 TR I R A ‘Afz ‘lllj
0 ... 0fx * | % ‘Agg‘bgj)

L0 o 0% k]

with a j—row upper triangular matrix Aﬁ). The matrix (A®, 59 is obtained from (AU, pl-1))
by applying the elimination algorithm (4.1.1.1)) on the (n — j + 1) x (n — j + 2) matrix
(Agj;l),gg _1)). The elements of Agji), A%), and ng ) do not change from this step on, and
thus they agree with the corresponding elements of (R, ¢). Moreover, the ensuing steps can

be described using matrix multiplication. That is,

(A(j), gm) — G],pj(A(j—l)’ g(j—l))’
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4. Systems of Linear Equations 4.1. Gaussian Elimination

=,

(R7 E) - Gn—IPn—lGn—ZPn—Z cee GIPI(A7 b)a

with permutation matrices P; and nonsingular Frobenius matrices G, j =1,2,...,n —1 of

the form

1 0
1
Gj = —liy1y 1
0 ~l,; 0 1

In the j—th elimination step (AU~ pl=D) — (A, 1)), the elements below the diagonal in
the j—th column vanish. For implementation of this algorithm on a computer, the locations
which were once occupied by these elements may be used for the storage of the quantities
lij;i=7+1,74+2,...,n, of Gj, that is, we work with a matrix of the form

-7"11 12 715 71,541 Tin C1
Ao1 T2 T9j 72,541 Ton Co
A31 Az : :
T = Tij o Tig+l Tjn G
Aj+1,j a§21,j+1 aﬁ)l,n b§‘21
Mt Ao At dD Al b

Here, the subdiagonal elements Agi1k, Akt2k, - - -, Ak Of the k—th column are a certain per-
mutation of the elements ly11 k, k2.4, - - -, ok 10 Gy

The j—th step 70D — TU, j = 1,2,...,n — 1 can be described as follows, where
the elements of U~V are denoted by t;,, and those of TV by t,, i = 1,2,....,n, k =
1,2,....n+1:

Algorithm 4.1.1.3.
(1) Partial pivot selection: Determine r so that
[tr5] = max |ti;].
Ift,; =0, set TW := TU=Y: A is singular, stop. Otherwise, continue with (2).

(2) Interchange rows r and j of TU=Y | and denote the result by T = (L;1,).
(3) Replace

~+~
<.

, fori=j54+1,742,...,n,

ij ‘=

~+

ji
fori=j4+17+2,....nandk=5+1,7+2,...,n,

otherwise.

t;k = t_ik — lz‘jfjka

We note that in (3) the elements l;11 ;,lj+2, ..., l,; of G, are store in their natural order
as i, ;5 05, t,;- This order, however, may be changed in the subsequent elimination
steps T — T+ L > j because in (2) the rows of the entire matrix 7®) are rearranged.

108
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This has the following effect: the lower triangular matrix L and the upper triangular matrix
R,

1 0 o 0 tiy tiz ... tin
L t?I 1 T  R= O 7'522 | t2.n 7
: . 0 : . . .
tog oo tpng 1 0 ... 0 tu,

which are contained in the final matrix 7"~1) = (t;;,), provide a triangular decomposition of

the matrix PA :
LR = PA.

In this decomposition, P is the product of all of the permutations

P:Pnflpnfg...ngl.

Example 4.1.1.4.

3 1 6 T 2
2 1 3| x| = |7
11 IE3_ _4
3* 1 6|2 (3 1 6|2 ] 31 6|2
2 1 17 12 10
SEHR =] R
L3 3 T 173 4 3 3 13
(3 1 6|2
12 10
-5 5 —1|5
L S
L 3 2 2
Thus the triangular equation system is
3 1 6 T 2
2 0
0 3 = To| = 1?
0 0 —% x3 4

Its solution is

1 1
xr] = 5(2 —6x3 —x9) = =(2—6(—8) — (7)) = =(57) = 19.
Further ) )
1 00 316
pP=1{0 0 1|, PA=|1 1 1],
0 1 0] 2 1 3]
and the matrix PA has the triangular decomposition PA = LR with
100 31 6]
L=|; 10/, R=|0 3 -1
L 00 —3
3 2 2.
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If the lower—upper triangular decomposition is known for a matrix A, that is, if
PA=LR
is known, then the equation system Az = b can be solved immediately with any right-hand
side b, for it follows that
PAZ = LR% = Pb,
from which 7 can be found by solving both of the triangular systems
L(RZ) = Lij = Pb (using forward substitution),
RZ =1y (using back substitution).

Thus, with the help fo the Gaussian elimination algorithm, it can be shown constructively
that each square nonsingular matrix A has a triangular decomposition of the form

PA =LR.

We also note that Gaussian elimination and direct triangular decomposition differ only
in the ordering of operations. Both algorithms are, theoretically and numerically, entirely
equivalent. In Gaussian elimination, the scalar products are formed only in pieces, with
temporary storing of the intermediate results. Direct triangular decomposition forms each
scalar product as a whole.

A second result pertains to the determinant of A. Suppose that we are given a triangular
decomposition

PA = LR.
Note that det(P) = £1 and det(L) = 1. Thus it follows
det(A) = £ det(PA)
= +det(LR)
= +det(L) det(R)
= +det(R)

L
L

n
=+ H Tkk-
k=1

Hence, we may get +det(A) by:

(1) Factor PA = LR,

(2) Take [;_; 7k

A further practical property of the method of triangular decomposition is that, for banded
matrices with bandwidth m,

x ... *x 0 ... 0]

A=|" 0 . a;; =0, for [i — j| >m,
0 *
10 0 = *
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the matrices L and R of the decomposition PA = LR are not full: R is a banded upper
triangular matrix with bandwidth 2m — 1,

[« ... *x 0 ... O]

*

and in each column of L there are at most m elements different from zero. In contrast, the
inverses A~! of banded matrices are usually filled with nonzero entries. Thus, if m << n (A

is n X n), using the triangular decomposition of A to solve A7 = b results in a considerable
savings in computation and storage over using AL

4.2. The Gauss—Jordan Algorithm.

4.2.1. Gauss—Jordan Algorithm. In the event that we want to find the inverse A~! of a
nonsingular matrix A, we may use triangular decomposition or the Gauss—Jordan algorithm.
Both methods require the same amount of work.

If the triangular decomposition PA = LR is known, then the i—th column a; of A™! is
obtained as the solution of the system

LRa; = Pe;,
where €; is the i—th coordinate vector. The Gauss—Jordan method is obtained if we attempt

to invert the mapping ¥ — AZ = 3, &,y € R", determined by A in a systematic manner.
Consider the system A¥ = :

a11r1 + -+ a1y, = Y1,

Ap1T1 + -+ AppTy = Yn-

In the first step of the Gauss—Jordan method, we switch x; for one of the variables y,. To
do this, an a,; # 0 is found, for example by partial pivot selection

|a,1] == max |a;],
1
and equations 7 and 1 are interchanged. In this way, a system

anry + -+ a1y = Y,

(4.2.1.1)

Up1T1 + -+ + QupTn = Yn
is obtained in which the variables ¥, ..., ¥, are some permutation of the variables yi,...,y,
and a;; = a1, 71 = ¥y, holds. Now a;; # 0, for otherwise we would have a;; = 0 for all
1=1,2,...,n, which means A is singular, a contradiction. By solving the first equation of

(4.2.1.1)) for x; and substituting the result into the remaining equations, the system
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! — / /
a1 Y1 + Q%2+« 00+ A1 Ty = T4,

! - /! / _
A1 Y1 + QT2 + + - + Uy Ty = Yo,
! = / / — 3
a1 + Q02 +oe-t AppnTn = Yn
is obtained with
CLI L 1 a/ L a1k a/ L a;1
1 -— = 1k -— — = il T =
11 11 a11
_ ai1Q1k .
ay, = ag, — ——, forik=2,3,...,n.
a11
In the next step, the variable x; is exchanged for one of the variables s, ..., #,, then x3 is

exchanged for one of the remaining y variables, and so on. If the successive equation systems
are represented by their matrices, then starting from A© := A, a sequence

AO 5 AD ... 5 A

is obtained. The matrix AW = (agi)) stands for the matrix of a “mixed equation system” of
the form

)

aP)g + -+

1j

y; + ag{;—&-lxj-&-l +otal)e, = o,

ag + -+ alg +a

()

() _
: inTn = Tj,

DT+ +a

aﬂl,lgl +oee G§Ql,j@?j + a§‘]+)1,j+1xj+1 +oee Tt aﬁl,nxn = Ui+,

() ()~

0+ + )G + o)

DT o al), = .
In this system (%1,...,7j, Uj+1,.--,Un) is a certain permutation of the original variables
(Y1, ..., yn). In the transition AU=Y — AU the variable z; is swapped according to the

rules given below. For simplicity, the elements of AU~Y are denoted by a;,, and those of
AY by al,.

Algorithm 4.2.1.1.
(1) Partial pivot selection: Determine r so that
|arj| = max|ag;|.
If a,; =0, A is singular, stop.

(2) Interchange rows r and j of AU~ and call the result A = (ag,).
(3) Compute AY) = (a!)) according to the formulas

S b
JjicT 5.0
Qjj
! I J / ‘_ Z] . .
Ajp = ——= Qg = — fOTZ,k'#],
Qjj ajj
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aly = g, — —22%
jj
Note that
A(n)g:fa Z): [gla"'agn]T
where 91, ...,%, is a certain permutation of the original variables 1, ..., 4., ¥ = Py which,
since it corresponds to the interchange step (4.2.1.1))[2], can easily be determined. It follows

(AMP)f =1,

Y

and therefore, since A7 = v/,

Al =AMP
Example 4.2.1.2.
1 1 1 1 -1 -1
A=A0 =1 2 3| 5 AD=|1 1+ 2
1 3 6 1 2 5
2 -1 1 3 -3 1
S AP =1 1 2| 52A4A® = |-3 5 -2
-1 2 1* 1 -2 1
=A!

4.3. The Choleski Decomposition.

4.3.1. The Choleski Decomposition. The methods discussed thus far for solving equations
can fail if no pivot selection is carried out, that is, if we restrict ourselves to taking the
diagonal elements in order as pivots. However, there is an important class of matrices for
which no pivot selection is necessary in computing triangular factors: the choice of each
diagonal element in order always yields a nonzero pivot. Furthermore, it is numerically
stable to use these pivots. We refer to the class of positive definite matrices.

Definition 4.3.1.1 (Positive Definite Matrix). A (possibly complex) n x n matriz A is said
to be positive definite if it satisfies:

(1) A = A" that is, A is Hermitian,

(2) Z7 AT >0 for all T € C*, Z # 0.

We call a matrix A = A positive semidefinite if % AZ > 0 holds for all ¥ € C".

Theorem 4.3.1.2. For any positive definite matriz A the matriz A~ exists and is positive
definite. All principal submatrices of a positive definite matrixz are also positive definite, and
all principal minors of a positive definite matrixz are positive.

Proof. The inverse of a positive definite matrix A exists: if it were not so, then  # ( exists
with AZ = 0. Consequently
ZPAz =710 =0,
a contradiction to the assumption that A is positive definite.
Moreover, A~! is positive definite: we have

(ATH" = (A" = AT,
113



4. Systems of Linear Equations 4.3. The Choleski Decomposition

and if ¢ # 0 it follows
T=A"'7+#0.
Hence,
FIA Y = (AD)"z = 70 APy = 77 AT > 0,
which shows that A~! is indeed positive definite.
Every principal submatrix

Airiq - - A4
k

A =
Qipiy - Qi
of a positive definite matrix A is also positive definite: clearly A# = A. Moreover, every
ii=[%,..., % €CF, T#0,
can be expanded to
Ti=[r1,...,2,] €C", ZT#D0,

where

L .i'j, ,u:ij,jzl,Q,...,k,
T, = ,
0, otherwise.

From this construction it follows that
Az =77AT7 > 0.

To complete the proof, it suffices to show that det(A) > 0 for any matrix A that is
positive definite. We use induction.

Case n =1 is trivial.

Now assume for the induction hypothesis that the theorem holds for positive definite
matrices up to size (n — 1) x (n — 1), and let A be a positive definite n x n matrix. Then

@11 ... O1p
Al =

Ap1 .. Opp

is also positive definite, and consequently a;; = e#A~1é; > 0. Also, since
p 9 q y 1 9

aq1
A = é'lv
(07751
we have by Cramer’s Rule
1 a1 ... Qin
0 A922 ... Q92pn
det
0 Ap2 ... Qpp
(0% =
H det(A)
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aig ... Qip
det
. Apo ... Qpp
det(A) ’
where
a2 ... Qin
det Do >0
Apo2 ... Qpp
by the induction hypothesis. Since aj; > 0, we get det(A) > 0, which proves the theorem.

O

Theorem 4.3.1.3. For each n X n positive definite matrix A there is a unique n x n lower
triangular matriz L, l;;, = 0 for k >4, with l; > 0,1 =1,2,...,n, satisfying LL. Moreover,
if A is real, then so is L.

Note that l;; = 1 if not required here. The matrix L is called the Choleski factor of A,
and A = LLY its Choleski decomposition.

Proof. We use induction on n.
For case n = 1 the theorem is trivial: A positive definite 1 x 1 matrix A := («a) is a
positive number o > 0, which can be written uniquely in the form

a:=lnl, =+
Now assume for the induction hypothesis that the theorem holds for positive definite

matrices up to size (n — 1) x (n — 1). Let A be a positive definite n X n matrix. We may
partition A into

A, .| b
A: n
[ b | an, ]’

where b € C"! and A,,_, is a positive definite (n—1) x (n— 1) matrix by (4.3.1.2)). By the
induction hypothesis, there is a unique matrix L,y of size (n — 1) x (n — 1) satisfying

A, =L, L7 liw =0 for k >i, Iz >0.

n—1»
We consider a matrix L of the form

L:[LI.H O},

C (0%

and try to determine ¢ € C"!, o > 0 such that

tU - [ Lo [0 T [ €] [ Ll | L | | Aus b
T 0 |a| | ALL, [e+a® | | BH ’

where

This implies that we must have
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The first equation must have a unique solution ¢ = L;ill;, since L,,_1, as a triangular matrix
with strictly positive diagonal entries, has det(L,_;) > 0. As for the second equation, define
a = Vay, — ¢ We need only show that a,, — ¢?¢ > 0 so that a € R, a > 0. But since
¢+ o? = apy, holds in any case,
det(A) = det(L) det(U) = det(L,_1) det(L? )a? > 0,
since A is positive definite by the hypothesis. But A,,_; is also positive definite (4.3.1.2)) so
that
det(L,,_;) det(LY ) = det(A,_;) > 0.

Hence, o? = a,, — ¢ > 0, as required.

This completes the proof. O

2

Check notes for how to compute entries /;; of L. We note here than an important impli-
cation of this computation of the entries [;; is that

|lij|§\/a/n'7 j:172,...7k’ k:172’...7n_

That is, the elements of L cannot grow too large.

4.4. Error Bounds.

4.4.1. Error Bounds. In general the solution # € C" to the system A7 = b is not computed
exactly. We get

F=F+AZ, ATH40.
We want to discuss the error

A

Definition 4.4.1.1 (Norm). A norm is a function || - || : C* — R which assigns to each
vector & € C" a real value ||Z||, which serves as a measure for the “size” of ¥. A norm
satisfies the following three properties:

(1) ||Z]| > 0 for all Z € C*, £+ 0 (positivity);

(2) ||aZ|| = |a|||Z]] for all a« € C, & € C* (homogeneity);

(3) 17+ gl < |2l + [|g]] for all Z,5 € C".

=T — T

81

Theorem 4.4.1.2 (Reverse Triangle Inequality). For each norm || - || the inequality

1 =1l = 2] = 71l
for all Z,4 € C", holds.

Proof. Observe that
2] = [1(Z = 4) + gl < | =1l + [[9]]

Consequently,

12 = 71l < 112 = #1l.
Similarly

17 =gl = Iy =2l = 7]l — |1,

which gives

17 =1l = Izl = 7]l
which proves the result. 0

Example 4.4.1.3 (Vector Norms). Some common vector norms on C" are as follows:
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(1) The Euclidean norm:

n
\mh:VW%=(2]mﬁ-
=1

(2) The mazimum (infinity) norm:

e 2= ma .

Theorem 4.4.1.4 (Norms are Uniformly Continuous). Fach norm || - | in C" is a

uniformly continuous function with respect to the metric p(Z,y) := max; |x; — y;| on C".

Proof. Let T := [x1,...,2,]" € C" and i := [y1,...,y,] € C". By the reverse triangle
inequality,
1z + gl = 12l < [[(Z +7) — 2] = [[7]]

Now ¢ = Y"1 | y:€;, where €;, i = 1,2,...,n are the usual unit vectors. Therefore
n
171 <> lwallléll
i=1

n
< maxy| Y[
=1
< M max|yl.
K3

with M :=>""  ||&]l. Note that M depends only on || - || and n.
Fix € > 0. Then for all § € C" satisfying

. €
o < 77,
I <

it follows

=25 - o €
Hm+yW4mmsHM<ww(M):6

Hence || - || is uniformly continuous. O

Theorem 4.4.1.5 (Equivalence of Norms). All norms on C" are equivalent in the fol-
lowing sense: for each pair of norms ||« ||a, || - |o, there are positive constants m and M
satisfying

m|Zy < [|7]la < MIZe,
for all ¥ € C".

- J

Proof. We show that any norm || - || is equivalent to the infinity norm,
m|Z]ee < |7 < MI7]|oo,

so that any pair of norms || - ||, || - ||», are thus equivalent to || - ||sc-
By the homogeneity of vector norms, it suffices to consider only those vectors in the set

S:={FeC": ||7]| = 1},
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which is compact in C". Since S is compact and || - || is uniformly continuous (4.4.1.4), it
follows from the extreme value theorem that

M :=max ||Z|| >0, m :=min|Z|| >0
zes Fes

—

exist. Thus, for all i # 0, Hﬂ'ﬁoo € S, and we have
-7
1Glloo |l 15100

m < 19l < M,

which shows
m|[flle < (|91 < M4l
This proves the theorem. O

For matrices A € M(m,n) of fixed dimensions, norms ||A| can be introduced. The
properties

(1) ||A]l > 0 for all A # 0,

(2) oAl = Ja[[A]],

(3) A+ Bl < [|A] +[B]

hold.
Definition 4.4.1.6 (Consistent Matrix Norm). The matriz norm || - || is said to be consis-
tent with the vector norms || - ||, on C" and || - ||, on C™ if

[AZ], < A7
for all ¥ € C" and A € M(m,n).

Definition 4.4.1.7 (Submultiplicative Matrix Norm). A matriz norm || - || for square ma-
trices A € M(n,n) is called submultiplicative if

IAB[| < [|A[|IB]|
for all A,B € M(n,n).
Note that choosing B := I implies that |||| > 1 for submultiplicative matrix norms.
Example 4.4.1.8 (Matrix Norms).

(1) Row-sum norm (also infinity norm):

Al = m?X{Z |aik|}.

k=1
(2) Schur—Norm (also Frobenius norm):

n 1/2
IAlF = (Z !aik!2> :

ik=1
(3) Mazx norm:
| Al maz = max ||

(4) Column-sum norm (also 1—norm):

= mkax{z |az-k|}.

=1
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Norms (1), (2), and (4) are submultiplicative, (3) is not. Norm (2) is consistent with the
Euclidean vector norm.

Definition 4.4.1.9 (Least Upper Bound Norm). Given a vector norm || - || on C", a corre-
sponding matriz norm for square matrices, the least upper bound norm or subordinate
matrix norm, can be defined by

lub(A) := max HA_,IH
70 || 7|

Theorem 4.4.1.10. Each subordinate matriz norm lub,(A) is consistent with the vector
norm || - ||, used to define it. Moreover, lub,(A) is the smallest of all the matriz norms
|A|| which are consistent with the vector norm ||-||,. Also, each subordinate matriz norm
lub, (A) is submultiplicative.

Proof. The norm lub,(A) is consistent with || - ||, : Observe for all # # 0 that

- ||Af||’U — ||Af||’U - —
Iazl, - { i, < max 7] = b (A)]12].

1] 1711
The norm lub,(A) is the smallest of all matrix norms ||A|| consistent with || - ||, : Note
that for a given matrix norm || - || and & # 0, we have

[AZ]l, < [lA[[||Z]..
Thus for Z # 0,

[AZ],
—— < [A]
1]
This is for all # # 0, so that finally
lub,(A) < ||A].
Each subordinate matrix norm lub, (A) is submultiplicative: Since lub,(A) is the smallest
matrix norm consistent with || - [|,, we have evidently that
ABZ|, Bz,
lub, (AB) = Igaxu < maxlub,(A) 1Bl _ o, (A )b, (B),
70 |7l 70 1]
This completes the proof. 0
Also note that -
lub(I) = max M =
720 |||

The consistency of lub(A) shows that lub(A) is the greatest magnification which a vector
may attain under the mapping determined by A. That is, it shows how much ||[AZ||, the
norm of an image point, can exceed ||Z]|, the norm of a source point.

Example 4.4.1.11. For the maximum norm || - ||« = max, |¥|,, the subordinate matriz
norm is the row-sum norm. Observe for any matric A = (a;) and T # 0,

n
Z Qi Tk

k=1
7] max ||
119
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n
max; » . |ajxTyl
k=1

maxy. |£L‘k|

n
max; » . |aix||xg
k=1

maxy, |z|

n
{maxy, |zx|} max; > |ai]
k=1

maxy, |z

<

= [[All-

This shows lubss(A) < ||Allsc-
To see that luby(A) > ||Alls, suppose that

n n
[Alloe = max {Z |aik|} = Z |k
R k=1

that is, say i* is the maximum row. Define a vector

Y

To= (11,00, .. 0]

{]—a Qi Z 07
T - —

as follows:

—1, otherwise.

Clearly ||Z||oo = 1. Thus
[AZ]oo

170

n
g Qi T

k=1

— A% = max
1

1
E Qi Tk
k=1
n
= E Qi Tk
k=1
n
= E |ai*k
k=1

= [[Alloe-

It follows that luby (A) > || Al -

Example 4.4.1.12. For the Euclidean vector norm || - |2 = VZHZ we have the subordinate
matriz norm

A7
luby(A) = max | _,33”2
w20 || 7],
NH —
R (AZ)H(AZ)
##0 T
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e VIEAHAT
= X —
M Ve
=V )\ma:p(AHA>>

where Aoz (AT A) denotes the largest eigenvalue of the matriz A7 A.

In the following we assume that ||Z]| is an arbitrary vector norm an ||A|| is a consistent
submultiplicative matrix norm. Specifically, we can always take the subordinate norm lub(A)

as [|A].

Theorem 4.4.1.13. Let & be the solution to the system
AZ=0
and suppose that T := ¥ + AX is an approrimation to T such that
A(Z+ AT) = b+ Ab.

Then

IAZ] < [|AT[] Ab-

Proof. Observe that

where AAT = Ab. Presumably A is invertible, so that
AT = ATIAD.
It follows
IAZ] < AT AB] < [[A]]1]-
O

Definition 4.4.1.14 (Condition Number). For a nonsingular square matriz A, the condi-
tion number x(A) is defined by

K(A) = [A[AT].

Theorem 4.4.1.15. Let & be the solution to the system
AZ=0b
and assume that T := ¥ + AT is an approximation to X such that
A(Z+ AT) = b+ Ab.
Then
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Proof. By [@4.1.13), we have |AZ| < ||A~!||||Ab]|. Thus
1Az _ JAZH[[1AD]

[ — 1Z]]
_[[Af[JAT Ab||
Al Z]]
| AD]|
< K(A)—r
|AZ]|
Ab
:KuwHﬁH.
0]l

U
For the case that k(A) := lub(A)lub(A™'), the condition of A is a measure of the

sensitivity of th relative error in the solution to relative changes in the RHS. Moreover, since
AA' =T, k(A) satisfies
1 = lub(I) = lub(AA™") < lub(A)lub(A™1) = k(A).

Note that this also holds for all submultiplicative matrix norms.

Definition 4.4.1.16 (Residual Operator). For a system AZ = l;, we define a residual oper-

ator 7(+) by
™y) =b— Ay
for all y € C™.

For the true solution to AZ = b, we have evidently that 7(§) = 0. Otherwise, ||7(Z)| > 0.

Note that we can express the error in (4.4.1.13)) is terms of the residual 7(-). To see this,
let T := ¥+ AZ be an approximate solution to the system AZ = b with residual
F(@) :=b— Ai = A(T — 7).
Then 7 is the exact solution of
Az =b-—7(Z),
so that 7(Z) = —Ab. Hence, it follows
[AZ] < [JATHI7(@)]-

To motivate the following result, set B := A + AA. If A~! exists, then we may find F
such that

AF = AA.

Moreover, in this situation,
B=A+AF =A(I+F).
Then A-'B =1+F.

Lemma 4.4.1.17. If F is an n x n matriz with ||F|| < 1, then (I+ F)~! exists and satisfies

L]

IT+F)7 < :
1—|[F]]
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Proof. By the reverse triangle inequality,
[T+ )] = |2+ Fz]| > ||7]] - [[FZ]| > [[2]| - [|Fz]
> |2 = [[F[I{=] = (1 = [FDIZ]
holds for all Z. From 1 — ||F|| > 0, it follows that ||(I 4+ F)Z|| > 0 for all # # 0, that is,

(I+F)Z = 0 has only the trivial solution Z = 0, so that I + F is nonsingular.
To prove the inequality, observe that

1T = [[(T+ F)(T+F)~|
=|0+F) " +FI+F)!
> [T+ F)H = [FI(T+F) |
> [(T+F) 7 = [F[IT+F)7
= (I@+F)~")) (1 = [[F[) >0,

from which we have
1]
1L—[|F|

This completes the proof. 0]

IT+F)7) <

Before stating the next theorem, recall that matrix norms are submultiplicative for these
results.

( R

Theorem 4.4.1.18. Let A be a nonsingular n x n matriz, B=A(I+F), |F|| < 1, and
Z and AZ be defined by AZ = b, B(Z + AZ) = b. It follows that

| AZ]| ||
ol < )
1] ||
as well as HA_;H 9
%
HIII
[ —
where IB_A|
0 := k(A)"———1
Al

provided that 6 < 1.

Recall that we defined
B-A=AF=AA.

Thus
IB—All [JAA]

[N |

gives a relative error for A.
Proof. The matrix B! exists by (4.4.1.17] , and
AT=B b—Z=B h—A%=B"'-A
=B '(A-B)A™'},
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where # = A~'b. Furthermore,

1Az _ [IB~(A —B)A~'|

. |A-15)
< IB~HA = B)[[[A~"d]
[A=10]
B (A -B).
Now B! = (I+F)!A~! and A — B = —AF, so that by (4.4.1.17) we have
AZ
“Hfl"ln S H _ (I—i—F)flA*lAFH
= |I+F)"'F|
< [@+F)F]|
|IF]]
< 1T}
1—|F||
Moreover, since F = A71(B — A) and
_ _ _ B-A B-A
IFl = A~ (B - )] < a8 - Al = A~ a) B A ) AL
[A]] JA]
it follows IB_ A
. k(A= 21
jlaz MR
[ (— IB—A[ ™"
1—k(A)———
IA]
which completes the proof. [l

According to (4.4.1.18)), k(A) also measures the sensitivity of the solution & of A¥ = b to
perturbations of the matrix A.

If we put

C=I+F)'=B'A, F=A'B-1I,

it then follows from (4.4.1.17)) that
_ Ij
B 'A| < | :
I s 1= T— AT
If further we assume that A = B(I + F) for some F with |F|| < 1, then interchanging A
and B and noting that A= = A"'BB~! gives

il
IT—B-tAf

lA7H < [AB]IB] < B~
1—

In particular, the residual estimate
|AZ] < AT [I7@)]]
leads us to the bound 1B
I|[||B~ .
HI _ B,lAH ||T(x)||7
124
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where #(%) = b — AZ, and where B is an approximate inverse to A with ||[I — B~A| < 1.

The estimates up to this point give bounds on the error Ax := T — &, but the evaluation
of the bounds requires at least an approximate knowledge of A~!. The estimates given next
do not require any knowledge of A~

In general, the given data Ao,go of an equation system A,¥ = l;g are inexact, being
tainted, for example, by measurement errors AA, Ab. Thus, it is reasonable to accept an
approximate solution  to the system as “correct” if 7 is the exact solution to a “neighboring”
system

AZ =0,
with
AcA:={A:]|A-A) <AA},
beB:={b:|b—by| < Ab}.
The notation used here is
|A| = (|ai|), where A = (a;),
6] = (|b1], o], .., [ba])T,  where b= (b1, bs,...,by)",

and the relation < between vectors and matrices is to be understood as holding componen-
twise.

Theorem 4.4.1.19. Let AA > 0 and Ab > 0. Associated with any approrimate solution T
of the system AyX = by, there is a matriz A € A and vector b € B satisfying

AZ=1b
if and only if B
7(z)] < AA|Z|+ Ab,
where 7(T) 1= bo — Ao7 is the residual of .
Proof. (=) Assume that AZ = b for some A € A and b € B. Then
A=Ag+0A, b=by+ db,

where . B
|0A] < AA and |60 < Ab.
It follows

|7(#)| = [bo — Ao
= |(b—0b) — (A — 0A) |
— |b—6b— AZ + 6AZ|
= |6AZ — 6b|
< |6A[[Z] + [5b]
< AA|Z| + Ab,

which completes the proof for this case.
( <) For the converse, suppose that

7(7)| < AA|Z| 4 Ab.
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We introduce the following notation:

(1) 7 =: (z1,72,...,2,)",

(2) bo =: (by, by, ..., bn)T,

(3) a :F('i;> (T17T27"' ) )

()ngb+AA|JZ|>O §=: (81,82,...,Sn)T.

We construct 6b, 0A as follows. Fori=1,2,...,n,if s;, = 0, then set (55)Z = 0 and set
(0A);; =0 for all j =1,2,...,n. Otherwise, s; > 0. In this case, put

((5A)ZJ _ Ti(AA)ijsgn ([L’l)
S5
for j=1,2,...,n, and
= —TZ(Ab)l
(0b); = ——.
S
Since |7(Z)| < AA|F| + Ab = 3,
Iril 1
E

when s; > 0.

Now take A := Ay + 0A, b := by + db. Note by the construction that [§A| < AA,
06| < Ab, which implies that A € A, b € B.

We verify that b= AZ. For any ¢ = 1,2,...,n, there are two cases.

If s; =0, then

I7(Z)] < AA|E| + Ab=§
implies that
ri = 0= (by — Agi);.
Furthermore, (6b); = 0 and (0A);; = 0for j =1,2,...,n, so that b, = (b); and (A);; =
(Ag);;. Thus
(b— AZ); = (by — Api); = 0.
Now consider the case that s; > 0. We may write

(bo — AoZ); = 1i = ?7"1
[(AE)Z- + D (AA)ij |z

S .

+Z { (AA); sgn(ajj) x;

—(6b); + Z@A)zj%’
j=1
= (A% — 0b);,
so that evidently (by + 6b); = ((Ag + 0A)Z);. Hence,
(b): = (AZ);.

This completes the proof. O
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The criterion expressed in Theorem (4.4.1.19) allows us to draw conclusions about the
fitness of a solution from the smallness of its residual. For instance, if all components of A

and l;o have the same relative accuracy e,
AA = e|lAg|, Ab=e|by),
then Theorem (4.4.1.19) is satisfied if
|7(2)| = |AoZ — bo| < AAT + Ab = €(|bo| + | Ao |]).

From this inequality, the smallest € can be computed for which a given Z can still be accepted
as a usable solution.

4.5. Orthogonalization Techniques of Householder and Gram—Schmidt.

4.5.1. Orthogonalization Techniques of Householder and Gram—Schmidt. Recall that the
methods discussed thus far for solving

AZ =10

have consisted of multiplying AZ by approximate matrices PY), j = 1,2,...,n, so that the
system obtained by the outcome

A 3 — [

may be solved directly. The sensitivity of Z to changes in the arrays of the intermediate
systems

AWz = p0), [AD), go] = pWD[AUD), 5071)]’
is given by
r(AW) = lub(A)lub((AW)1).
Denote the roundoff error incurred in the j—th step of this process by €\ :
D) .= [AU-D pU-1] -5 [AD) pU)).

These roundoff errors are amplified by the factors £(AW) in their effect on #, and we have

—

IAT] - N~ ), A0,

1]

<
Il
o

If there exists AY) with

K(AD) >> k(AO),
then evidently the sequence of computations is not numerically stable. That is, €9 has a
stronger influence that the initial error €®). Our goal is to choose PY) so that

K(A(.FU) > /@(A(j)).

Lemma 4.5.1.1. Let U € M(n,n) be unitary. Then
(1) |UZ||y = ||Z]|2 for all ¥ € C™;
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Proof. Let U € M (n,n) be unitary. Then
1073 = (U2)"(U7) = #7007 = 77 = ||7]3,

which proves (1).
For (2), observe that

Uzl 1112

lubs(U) = max ——— = max =1.
(=08 .~ g,
Since U* is also unitary, this completes the proof. 0
Lemma 4.5.1.2. Let A € M(n,n) and let U € M(n,n) be unitary. Then
k(A) = k(UA),

where K(-) denotes the condition number of - with respect to the subordinate matriz norm
lubs(+). induced by the vector 2—mnorm.

Proof. Since luby(-) is submultiplicative, we have
luby(A) = luby(UHUA)

= luby (U™)luby(UA)

< luby(UA)

< luby(U)luby(A)

= luby(A).
Thus

luby(A) = luby(UA).
Analogously,
luby(UA)™1) = lub (A1)

Hence,

K(A) = luby(A)lubs(A ™) = luby(UA)luby((UA) 1) = k(UA).
0

In this section we choose the transformation matrices PY) to be unitary. From this
property it follows that the condition numbers associated with the systems

Az — p)
do not change. Furthermore, the matrices PY) should be chosen so that the AY) become
simpler, in this case, to reduce A to upper triangular form.

Definition 4.5.1.3 (Householder Matrix). A Householder Matrix P is a matriz
P =1-2ww",
with W@ = 1, @ € C™.

We get the following important properties for Householder matrices P.
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( R

Theorem 4.5.1.4 (Properties of Householder Matrices). Let P be a Householder matriz.
Then P satisfies the following properties:

(1) P = P" (P is Hermitian);

(2) PEP =1 (P is unitary);

(3) P2 =1 (P is involutory).

Proof. P is Hermitian: Observe
PH = (I - 2ww™)?
=17 — 2(ww™)?
=1 2(a!)H gt
=1-2ww" = P.
P is unitary and involutory: We have
PEP = P? = (I — 2ww™)(I — 2ww")
=1 — 2L — 2L + 4(wa™) (W)
=1 — 4" + 4 (™ )™
=1 — 405" + 40"
=L
This completes the proof. 0

— 2(wH Z)w describes a reflection of @ with
i/ then satisfy:

Geometrically, the map ¥ — y =: P¥ =
respect to the plane {7: w7 =0} and 7 a
(1) g = (P7)"(PT) = & P1E = fo?;
(2) Hy = 70 Py = (7 P2)H,
and 777 is real.
The remainder of this section deals with the construction of the Householder matrix P.
We wish to determine a vector w, and thereby P, so that a given vector

Q&

To= [y, 29,..., 25"

is transformed into a multiple of the first coordinate vector € :
key = Pz,

for then we may use P to eliminate every entry below the diagonal in a column of a given
matrix. Note that

17|35 = 2" % = 7" PP P7 = (P?)" P7 = (ke)) ke, = |k|*ef e) = |k|*.
Also,
kife, = 7 (key) = 77 (Px) = 2 PPz = (2" P7)" € R,
which implies that kxf e, is real.
Put z; =: e"*|x1]. Then

kagl =kx, = k’ll‘1|€_ia € R,
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so that
k = £|kle™.
Recalling that
|13 = 27 = |kP?,

we have ‘
k = +£||&]|2e™.
Now note
o _ T
| 1]
by definition. Thus we arrive at
T
k= 4|22
| 1]
In the case x; = 0, we put k = %||Z||.
We now define
. T — ké;
W= 75— -
| — kel
We verify that this choice of & suffices. Clearly ||@||; = 1. Also,
20z 22" — (key)™)T
17 — ke 17 — ke[|
B 278 7 — 2eM k¥
17 — keéi 3
N~ Fe
[
N E A
THE — kxy — kTy + |k]?
N ETEREED
2(|713 F =113
= 1,
since B
_ 1, . _
kry = iﬁ”ﬂb(@"l) = |z |[| 7]z = k71
1
Moreover,
T — key
20w ) = 2wt F———
W kel
I, T — ke
= (|7 — ke — -
(” 1H2> H _ k'€1H2
=T — ke
Hence,

Pi = — 2(w? ¥)w = ke).
We now turn to a consideration of the roundoff error induced by this process. Observe
that

|2 — ké1[|5 = |1 — K[> + |22 + - + |z,]?
130



4. Systems of Linear Equations 4.5. Q R—Decomposition and Gram—Schmidt

T1 o
= |71+ —1\|$H2
’$1|

= o1 " F 2z || 72 + |23 + |22f* + - + |2
= (Jza| F [1712)" + ol + -+ + |zl

In order to avoid roundoff-related cancellation error in the computation of |zi| F ||Z]|2, we
choose the sign in the definition of k£ to be negative:
L1 5
bi= =L
|1]

2
+ o+ + |zl

In this case,
2

X1 - =
T = |z + 2|2 [[|Z]13 + (1213,

|21 — k[* =
|21

T+

B[P
from which it follows that
12— ke |15 = 2[| 215 + 2]z [|1Z]]2,

which can only be near zero when ||Z||2 &~ 0, in which case we would have a nearly singular
matrix P.
Furthermore,

P =1- 2ww!

(T — kéy) (& — ken)"
|7 — kér|l3

(7 — kéy) (7 — ke

212113 + 2|2 [[|7]]2

(7 — kéy) (& — key)”

1213 + |l [1£]]2

=1-2

—I1-2

—1—

Y

which we can now write as
P =1-Baa?,
with
z1 + 172

u:=x— ke = = — —.
: : 1213 + || 1]]2

Y

Tn

An n x n matrix A = A© can be reduced step by step using these unitary Householder
matrices P,
AU — P(J')A(J'*l)’

into an upper triangular matrix

11 ... Tn
pr=b  pPUAO = A — R =

0 Trn
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To do this, the n x n unitary matrix P®) is determined so that
P(l) = ke,

where al ) denotes the first column of A©. From this step we obtain

(1) (1)
A(l) = P(l)A(O) _ O Aoy . as,
0 oy ... o)
If the matrix AU~Y obtained after j — 1 steps has the form
[ * P ES * o % -
, 0 ... *x| = . * Dl B
(J_l) B == q
i “gjg D = { Ol i } |
0 : )
a(jfl) a(j 1
- n‘] .. nn ]

then we determine the (n — j 4+ 1) x (n — j + 1) unitary matrix P so that
(-1) 1
. i 0
PUgul — pur | | =k || eCrIT
(-1) ;

anj

Using PY the desired n X n unitary matrix is constructed as

- I 0
pU) .— J=1
V= [ o | pU } )

After forming AW = PWAU-D the elements a ) for i > j are annihilated, and the rows
above the horizontal line remain untouched In th1s way an upper triangular matrix

R:=A"Y

is obtained after n — 1 steps.
On a computer, the transformation of a matrix by

PO =1 - p;iyull
is carried out as follows:

PUWOAGD — AU- ii;(8; *HA i=1) ) A=Y g

I

with o = BjﬁfA(j_l), that is, the vector @; is computed first, and then AU~V is modified
as indicated.

The Householder reduction of an n X n matrix into triangular form requires about 2n?/3
operations. In this process one usually stores the data ; and #; so that the n x n unitary
matrix

p=prt. pW
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consisting of Householder matrices P9, j =1,2,...,n — 1, can be inverted:
p~t = (pt=b  pH-t

Py (P

pHYE (p=hH

pn=b  pUHH

= P

~—~ N —~

Hence,
PA =R,
or
A=PIR=QR, Q:=P'=PpP"

This is known as a () R—decomposition of the matrix A into a product of ) unitary and R
upper triangular,

A =QR.
Example 4.5.1.5. We apply Householder transformations to the 3 X 3 matrix

12 10 4
A=1]10 8 =5
4 =5 3

to produce a (Q R—decomposition,
A =QR.
For the first step we have
a” =1[12,10,4].
Hence we take

k= —3(2\/@ = —2V/65.

|12]
We take
] 12 + 24/65 0.9339
0= ; 10 = 10.3320
30.838 4 0.1328
Thus,
(1 0 0] [0.9339
PO =10 1 0| —210.3320] - [0.9339,0.3320,0.1328]
0 0 1 0.1328
(1 0 0] [0.8721 0.3101 0.1240
= ({0 1 0| —210.3101 0.1103 0.0441
0 0 1 0.1240  0.0441 0.0176
[—0.7442 —0.6202 —0.2481
= [—0.6202 0.7795 —0.0882
| —0.2481 —0.0882  0.9647
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Thus

—0.7442 —0.6202 —0.24817 [12 10 4
AW = pMWA = | -0.6202 0.7795 —0.0882| [10 8 -5
—0.2481 —0.0882 0.9647 4 -5 3

—16.1245 —-11.1631 —0.6202
= 0 0.4752  —6.6428
0 —8.0099  2.3429

For the second step we have
@ = [0.4752, —8.0099] .

Hence we take

0.4752
k= —————(8.0240) = —8.0240.
|0.4752|( )
We take
. 0.4752 +8.0240] [ 0.7277
- 11.6788 —&.0099 ~ |—0.6858]| -
Thus,
~ (1 0 0.7277
@ _ _ . _
P = 0 1} 2{_0.6858} [0.7277, —0.6858]
_[1 0] _,[0529 —0.4991
01 —0.4991  0.4704
~ [-0.0592 0.9982
~ 109982 0.0592]
So
1 0 0
P® .= [0 —0.0592 0.9982] ,
0 0.9982 0.0592
and
1 0 0 —16.1245 —11.1631 —0.6202
R=A®=pPOAML = 10 —0.0592 0.9982 0 04752  —6.6428
0 0.9982 0.0592 0 —8.0099  2.3429
—16.1245 —11.1631 —0.6202
= 0 —8.0240  2.7319
0 0 —6.4921
Moreover,
1 0 0 —0.7442 —0.6202 —0.2481

P=pPPpM = 10 —0.0592 0.9982| |—0.6202 0.7795 —0.0882
0 09982 0.0592| [—0.2481 —0.0882 0.9647

—0.7442 —0.6242 —0.2481
= | —0.2109 —0.1342 0.9682
—0.6338 0.7729 —0.0309
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Thus we take
—0.7442 —0.2109 —0.6338
Q=P =|-06242 —0.1342 0.7729
—0.2481 0.9682 —0.0309

Y

and we see that

(12 10 4
A=1|10 8 -5
4 =5 3
[—0.7442 —0.2109 —0.6338] [—16.1245 —11.1631 —0.6202
= |—0.6242 —0.1342 0.7729 0 —8.0240  2.7319
| —0.2481  0.9682  —0.0309 0 0 —6.4921
= QR.
Example 4.5.1.6. We apply Householder transformations to the 2 X 2 matrix
3 5
A= LL —12}
to produce a QQ R—decomposition,
A =QR.
Note that we have @ = [3,4]". Hence we take
3
k=——(5)=-5.
3]
We take )
1 ~
o219
45 4 7
Thus,
P =1-2wi"”
- 2
B P Y v B B
0 1) 2L :
L 75 5 Vb
1 0 2 2
-lo 128 ]
(3 _4
=|_1 §5} :
5 5
We find
-3 4113 5
_ — 5
e = B
—5 33 ]
— 5
3
Also,



4. Systems of Linear Equations 4.6. Data Fitting

and we see that

3 5
A= [4 —12

_3 _4)[_5 33
—[—é %5Ho —]

Note that the columns of () are orthonormal. To solve A7 = I;, we see
AZ=QRi=0b = Ri=Q 'b=Pb,

which means one matrix—vector product and a back—substitution solve.
Also recall that Householder matrices help reduce roundoff error effects as compared to
Gaussian elimination.

4.6. Data Fitting.

4.6.1. The Data Fitting Problem. In many applications we are concerned with determining
the values of certain constants

T1,L9y...,Tp.
Often it is difficult to measure the x;, « = 1,2,...,n, directly. In such cases another more

easily measurable quantity y is sampled, which depends in some way on the x; and on further
controllable experimental conditions z :

y= f(z;21,29,...,2,).

In order to determine the z;, experiments are carried out under m different conditions
21, 29, . .., Zzm and the corresponding results

e = f(zry 21,20, .. x,), k=1,2,...,m, (4.6.1.1)

are measured. In general, at least n experiments, m > n, must be carried out so that the
x; can be uniquely determined. If m > n, however, then the equations form an
overdetermined system for the unknown parameters xq,xs,...,x,, which does not usually
have a solution because the observed quantities y; are perturbed by measurement errors.

Consequently, instead of finding an exact solution to (4.6.1.1)), the problem becomes one of
(.6.1.1]

finding the “best possible solution.” Such a solution to (4.6.1.1)) is taken to mean a set of
values for the unknown parameters for which the expression

m

Z(yk — fr(z1, 20, .. axn))z

k=1

is minimized, where fi(-) := f(zx; ).
Put rx := yx — fi(:) for each k = 1,2,...,m. The ry are called residuals, and the data
fitting problem becomes one of minimizing

m
> Il
k=1
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which in turn minimizes

m
D lirelle,
k=1

for ||rk|l2 > 0.

If the functions fy(x1, zs, ..., x,) have continuous partial derivatives in all of the variables
x;, i = 1,2,...,n, then we may give a necessary conditions for Z := (z1,29,...,2,)" to
minimize the data fitting problem:

a m
s ;(yk — fulw, 20, ..., 2,))2 =0, i=1,2,...,n.

These are called the normal equations for .
An important special case is the linear least squares problem, where all of the functions

fr(x1,xo,... x,) are linear in the parameters z;. In this case there is an m X n matrix A
with
f1<l’1, Lo, ... ,In)
Ar = :
fm(.iEl, Loy ... ,l’n)
Putting & := (y1,¥2,...,¥m) , the normal equations reduce to a linear system

Vo((§ — AD) (7 — AD)) = V. (7" — (AD)")( — AT))
= V. (77— AT — (AZ) i + (AZ)TAZ)
=2ATAZ—2ATj=0,

or equivalently,

b=

fk L1, T2y 7$n))2 = 22 [(yk - Zaijj> (_akz)]
k=1 Jj=1

=0
In any case, we get that
ATAZ=ATy
are the normal equations.
4.6.2. Linear Least Squares: The Normal Equations. In the following || - || will always denote

the Euclidean norm
2]} = (| 2|2 = vV ZH T,
Let a real m x n matrix A and a vector § € R™ be given, and let
17— AZ|2 = (7 - AD)T (7 - AT) (4.6.2.1)

be minimized as a function of . We want to show that © € R™ is a solution to the normal
equations

ATAZ=A"y
if and only if 7 is also a minimum point of .
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Theorem 4.6.2.1. The linear least squares problem

min ||y — AT

min |7 - A%

has at least one minimum point To. If 1 is another minimum point, then Axy = AZ;.
The residual 7:= vy — ATy is uniquely determined and satisfies the equation

AT =0.
FEvery minimum point Ty is also a solution of the normal equations
ATAZ=ATy

and conversely.

Proof. We first show that every minimum point 7 is a solution to the normal equations and
conversely. Let R C R™ be the linear subspace (column space) of the matrix A :

R(A) .= {AZ:7 € R"},
which is spanned by the columns of A, and let R+ be its orthogonal complement
Rt :={F:7"Z=0forall € R(A)}
= {7: 7T A =0}
Note that R™ = R @ R*. The vector § €
J=5§+7 §e€R, TeR,

and there is at least one Zy with

R™ can be written uniquely in the form

AZy =35
Now AT#= (FTA)T =07 =0, so @, satisfies
ATf=AT(5+7)=AT5+AT7=AT5=ATAZ,
that is, ¥y is a solution of the normal equations. In other words, the normal equations are
solvable. Conversely, each solution #; of the normal equations corresponds to a representation
y=8§4+71, §:=Ar, 7:=9y— A1,
§e€ R, TeR
Since this representation is unique, it follows that
AZy =A%,

for all solutions ¥y, Z; of the normal equations.

We now show that each solution 7y of the normal equations is a minimum point for the

problem

in |7 — AZ].
min |7 — AZ|

To see this, let © € R™ be arbitrary, and set
7:=A¥ — ATy, T:=1y— AZx).
Now Z € Rt, so that 7' Z = 0. Thus,
17— AZ)? < |[[(§ — AZo) + (AZy — AD)|?
= |7 2|I*
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= (7" = Z")(7-2)
— i Z

= 17 + 12 =7 2= (7 )T

= 711" + 121 > |71)°
= [|§ — Az,
that is, Ty is a minimum point of the problem

in || — AZ|.
min ||y — AZ]|

Since we have shown that the normal equations are solvable, we have shown the existence
of a solution to the linear least squares problem.
This completes the proof. O

If the columns of A are linearly independent, that is, if Z # 0 implies AZ # 0, then the
matrix AT A is positive definite, and thus, nonsingular. If this were not the case, then there
would exist Z # 0 satisfying AT AZ = 0, from which

0=7"(ATAZ) = (AZ)" (A7) = | A7
would yield a contradiction, for AZ # 0. Therefore the normal equations
ATAZ=A"y
have a unique solution
= (ATA)'ATY,

which may be computed using for instance the Choleski factorization of ATA.

4.6.3. The Use of Orthogonalization in Solving Linear Least—Squares Problems. The linear
least—squares problem of determining an ¥ € R” that minimizes

ly — AZ||, A € Mat(m,n), m>n,

can be solved using the orthogonalization techniques (QR—factorization, Gram—Schmidt)
discussed in the previous section. Let the matrix A =: A© and the vector ¥ =: 79 be

—

transformed by a sequence of Householder transformations P, A® = POAGD ¢ =
P@Og=1) 5 =2 . n. The final matrix A™ has the form

R 1 -+ Tnn
Al — [0} . with R=: S (4.6.3.1)

0 Ton

since m > n (here R is n x n and 0 is (m — n) x (m — n).). Let the vector i := 7™ be
partitioned correspondingly:
h= {%1} . h  €R", hy e R™™. (4.6.3.2)
2
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Note that the matrix P = P™ ... P is a product of unitary matrices and thus is unitary
itself:

pip = (P (pm)pm  po) 1
and satisfies
AW = PA h=Pj.
Recall that unitary matrices U leave the Euclidean norm ||Z]|2 of a vector & invariant:
1073 = (U2)"(U7) = #7007 = 777 = [|7])..
Thus,
17— AZ|| = ||P(7 - AD)|| = |7 — AWz
However, from (4.6.3.1)) and ([4.6.3.2)), the vector 7™ — A7 has the structure
g — Az — || B g RE
ha 0 ha
Hence, ||§ — AZ|| is minimized if Z is chosen so that
hl - Rf

The matrix R, being upper triangular, is nonsingular if and only if the columns of A are
linearly independent (A has full rank), for then in this situation R has nonzero diagonal
entries and thus a nonzero determinant. Furthermore, AZ = 0 for a vector Z € R™ if and
only if

PAZ =0,
and since PA = R, PAZ = 0 if and only if

RZ=0.

(S

If we assume that the columns of A are linearly independent, then
hy = R7,

which is a triangular system, can be solved uniquely for & (specifically, & = Rilﬁl.). This ¥
is, moreover, the unique minimum point for the given least—squares problem. (Note that if
the columns of A are linearly dependent, then, although the value of mingegn | — AZ]| is
uniquely determined, there are many minimum points z.)

In the case that hy = RZ, then the size of the residual is seen to be
17— AZ|| = |5 — A™EF| = |[ha].

Lastly, note that instead of using Householder matrices, the Gram—Schmidt technique
(with reorthogonalization) can be used to obtain the solution.
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4.6.4. The Pseudoinverse of a Matriz. For any arbitrary (complex) m x n matrix A there
is an n X m matrix AT, called the pseudoinverse (or Moore-Penrose inverse) of A. It is
associated with A in a natural fashion and agrees with the inverse A=! of A in the case
m =mn and A is nonsingular.

Denote by R(A) the range space of A and N(A) the null space of A,
R(A) :={AZ e C" .7 e C"},
N(A):={FeC":AZ =0},
together with their orthogonal complement spaces R(A)Lt € C™, N(A)* € C". Further, let

P be the n x n matrix which projects C" onto N(A)+, and let P be the m x m matrix which
projects C™ onto R(A) :

P7=0 < ze€N(A), P=P{=pP2

Pj—i <= jcR(A), P—PH_p
For each € R(A) there is a uniquely determined #; € N(A)* satisfying A%, = 7, that is,
there is a well-defined mapping f : R(A) — C" with
Af(§) =14, f() € N(A)* forall € R(A).
For, given ¢ € R(A), there is an Z which satisfies ¥ = AZ. Hence,
y=A(PZ+ (I—- P)¥) = APZ = A7y,
where 7 := PZ € N(A)*, since (I — P)Z7 € N(A). Furthermore, if Z;,7, € N(A)*,
A7, = A7y =y, it follows that
I — @ € N(A)NN(A)* = {0},
which implies that 7 = #5. Note f is linear.

The composite mapping f o P:yjeC™— f(P(%) € C"is well-defined and linear,
since Py € R(A). Hence, it is represented by an n x m matrix, which is precisely A*, the

pseudoinverse of A : ATy = f(P(y)) for all y € C™.
We get the following properties for the pseudoinverse A*.

Theorem 4.6.4.1 (Properties of the Pseudoinverse). Let A be an m X n matriz. The
pseudoinverse A1 is an n X m matriz satisfying:
(1) A*A = P is the orthogonal projector P : C* — N(A)‘ and AA* = P is the
orthogonal projector P : C™ — R(A).
(2) The following formulas hold:
(a) ATA = (ATA)H;
(b) AA* = (AAT),
(c) AATA = A;
(d) ATAAT = AT,

Proof. According to the definition of A™,
ATAT = f(P(AY)) = f(AZ) = PZ
for all Z, so that ATA = P. Since P? = P, part (a) is satisfied.
Furthermore, from the definition of f,
AAT = A(f(Py)) = Py
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for all 7 € C™. Thus, AAT = P = P, Since P! = P, part (b) follows as well.
Finally, for all # € C",

(AT)AT = PAT = AT
according to the definition of P, and for all 4 € C™,
AT (AAT)y = ATPy = f(P%)) = f(Py) = A™y.
Hence, (c¢) and (d) hold.
This completes the proof. O

The properties (2a—d) of (4.6.4.1)) uniquely characterize A™.
Theorem 4.6.4.2. If Z is a matrixz satisfying

(1) ZA = (ZA)",;

(2) AZ = (AZ)",

(3) AZA = A,
(4) ZAZ = Z:
then Z = A,
Proof. We have the following chain of equalities:
Z =7ZAZ
=Z(AATA)AT(AATA)Z
= (ZA)T(ATA)PAT(AATT(AZ)H
— AT ZI AT AT AT AT AT ZT AT
= (AT ZEAMATT AT AT (AT ZH AT
= (AZA)TATT AT AT (AZA)Y
— ATATT AT AT AT
— (A+A)HA+(AA+)H
= ATAATAAT
=A".
This completes the proof. 0

We also have the following.
Corollary 4.6.4.3. For all matrices A,
Attt = A
and
(A+>H — (AH)+
Proof. This holds because Z := A (respectively Z := (AT)?) has the properties of (A*)T
(respectively (AH)*) in (4.6.4.2). O

The pseudoinverse is often used to give an elegant representation of the solution to the
least—squares problem
wmin |17~ A7
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Theorem 4.6.4.4 (Solution to Least—Squares Problem Using Pseudoinverse). The vec-
tor T := ATy satisfies:

(1) |AZ — yl|2 > ||[AZ — |2 for all ¥ € C™;

(2) |AZ = glls = [[AZ = §ll2 and T F# T imply || 7]z > [[Z[]2-

In other words, T := A" is the minimum point of the least—squares problem that has the
smallest Fuclidean norm, in the case that the least squares problem does not have a unique
minimum point.

Proof. From (4.6.4.1)), AA™ is the orthogonal projector on R(A). Thus, for all ¥ € C", it
follows that

—

AP —y=u—1,
uw:=A(TF—AT)) € R(A), v:=10-AAT)j=7— Az c R(A)".
Consequently, for all ¥ € C",
IAZ — 415 = || - 7]3
= aq — a’v — oa+ 770
= |l@ll; + [19]]3
> 1913

= Az — g3,

<y

and [|AZ — ¢]|» holds precisely if
AT = AATY.
Now, ATA is the orthogonal projector on N(A)L. Therefore, for all # such that A% =
AATY,
T =y + vy,
i ;= ATAT = ATAAYT = ATj=7c N(A)*,

—

U :=—1u =T—T€N

e

From this observation it follows that

HfH% = ||y + 171“3
= i"a+ a5+ oM+ oo
= [|l@]3 + 193
> [|d]3
= [1z3
for all # € C" satisfying # — z # 0 and ||AZ — ¢, = ||AZ — §]|.. O

If the m x n matrix A with m > n has maximal rank, that is, rank(A) = n (which occurs
if and only if the columns of A are linearly independent), then there is an explicit formula
for AT : It is easily verified that the matrix

Z = (ATA)IAY
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has all properties given in (4.6.4.2) characterizing the pseudoinverse A™* so that

AT = (AFA)TAT
By means of the Q R—decomposition of A, A = QR, this formula for A*" is equivalent to

A" = ((QR)"(QR))H(QR)"

= (RQQR) ' R1Q"

— (RHR)flRHQH

_ R—I(RH)—IRHQH

= R'QM.
This allows a numerically more stable computation of the pseudoinverse A* = R71Q".

If m < n and rank(A) = m then because of (AT)# = (A#)* the pseudoinverse AT is
given by
AT = Q(R"),

if the matrix A” has the Q R—decomposition A# = QR.

For general m x n matrices A of arbitrary rank, the pseudoinverse At can be computed
by means of the singular value decomposition of A.
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