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1. Interpolation

In this section we consider a family of functions of a single variable x,

Φ(x; a0, a1, . . . , an),

having n+1 parameters a0, a1, . . . , an, whose values characterize the individual functions in
this family. The interpolation problem for Φ consists of determining these parameters ai,
i = 0, 1, . . . , n, so that for n+1 given real or complex pairs of numbers (xi, fi), i = 0, 1, . . . , n,
with xi ̸= xj for i ̸= j, we have

Φ(xi; a0, a1, . . . , an) = fi, i = 0, 1, . . . , n.
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1. Interpolation 1.0.

Definition 1.0.0.1 (Support Points). The pairs (xi, fi) are called support points.

Definition 1.0.0.2 (Support Abscissas). The locations xi are called support abscissas.

Definition 1.0.0.3 (Support Ordinates). The values fi are called support ordinates.

Example 1.0.0.4 (Linear Interpolation Problem). A linear interpolation problem is an
interpolation problem where Φ is linear in the parameters ai, i = 0, 1, . . . , n, that is,

Φ(x; a0, a1, . . . , an) = a0Φ0(x) + a1Φ1(x) + · · ·+ anΦn(x).

Example 1.0.0.5 (Polynomial Interpolation). Polynomial Interpolation is a linear in-
terpolation such that

Φ(x; a0, a1, . . . , an) = a0 + a1x++a2x
2 + · · ·+ anx

n.

Example 1.0.0.6 (Trigonometric Interpolation). Trigonometric interpolation is a linear
interpolation such that

Φ(x; a0, a1, . . . , an) = a0 + a1e
ix + a2e

2ix + · · ·+ ane
nix,

where i2 := −1.
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1. Interpolation 1.1. Polynomial Interpolation

1.1. Polynomial Interpolation.

1.1.1. The Interpolation Formula of Lagrange.

Remark. We denote by Πn the set of all real or complex polynomials p of degree n or less,
that is,

Πn := {p : p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, ai, x ∈ C, i = 0, 1, . . . , n}.

Theorem 1.1.1.1 (Existence and Uniqueness of Polynomial Interpolant). For n + 1
arbitrary support points

(xi, fi), i = 0, 1, . . . , n, xi ̸= xj for i ̸= j,

there exists a unique polynomial p ∈ Πn such that

p(xi) = fi, i = 0, 1, . . . , n.

Proof. We first establish existence by construction. Define

ω(x) :=
n∏

j=0

(x− xj)

and note that ω(xi) = 0 for i = 0, . . . , n. By the product rule, it follows

ω′(x) =
d

dx

[
n∏

j=0

(x− xj)

]
= (x− x0)(x− x1) . . . (x− xn−1) + (x− x0)(x− x1) . . . (x− xn−2)(x− xn) + · · ·+

(x− x0)(x− x2) . . . (x− xn) + (x− x1)(x− x2) . . . (x− xn)

=
n∑

i=0

n∏
j=0
j ̸=i

(x− xj).

Note ω′(xi) ̸= 0 for each i = 0, . . . , n. Define the Lagrange polynomial basis as follows:

Li(x) :=


ω(x)

(x− xi)ω′(xi)
, x ̸= xi,

1, x = xi.
(1.1.1.1)

We see that {Li}ni=0 satisfy the conditions

Li(xk) = δik =

{
1, i = k,

0, i ̸= k.

In the case that x ̸= xi, expanding Li gives

Li(x) =
ω(x)

(x− xi)ω′(xi)

=
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
,
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1. Interpolation 1.1. Polynomial Interpolation

so that Li ∈ Πn for i = 0, . . . , n. Lastly, define the polynomial p as follows:

p(x) :=
n∑

i=0

fiLi(x) =
n∑

i=0

fi

n∏
j=0
j ̸=i

x− xj

xi − xj

. (1.1.1.2)

Observe, since p is a linear combination of polynomials of degree at most n, we have evidently
p ∈ Πn. Moreover,

p(xk) =
n∑

i=0

fiLi(xk) = fk, k = 0, 1, . . . , n,

so that p is a polynomial of degree at most n that interpolates f. This establishes existence.
We now show that such an interpolating polynomial p is unique. Suppose that there exist

p1, p2 ∈ Πn such that
p1(xi) = fi = p2(xi), i = 0, . . . , n.

Define
p∗ := p1 − p2

and note p∗ ∈ Πn. Since p∗(xi) = p1(xi) − p2(xi) = 0 for each i = 0, . . . , n, we see that p∗

has the (n + 1) distinct zeros at the support abscissas {xi}ni=0. Since p∗ is a polynomial of
degree at most n, p∗ must vanish identically,

p∗ ≡ 0.

It follows p1 ≡ p2. □

Remark. We call the formula given by

p(x) :=
n∑

i=0

fiLi(x) =
n∑

i=0

fi

n∏
j=0
j ̸=i

x− xj

xi − xj

(1.1.1.3)

the Lagrange interpolation formula.

Remark. Note that the coefficients of p depend linearly on the support ordinates fi.

Example 1.1.1.2. Let

xi 0 1 3
f1 1 3 2

We construct the unique polynomial p ∈ Π2 such that p(xi) = fi, i = 0, 1, 2. Observe

p(x) =
2∑

i=0

fi

n∏
j=0
j ̸=i

x− xj

xi − xj

= f0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

= (1)
(x− 1)(x− 3)

(−1)(−3)
+ (3)

x(x− 3)

(1)(−2)
+ (2)

x(x− 1)

(3)(2)

=
1

3
(x2 − 4x+ 3)− 3

2
(x2 − 3x) +

1

3
(x2 − x)

= −5

6
x2 +

17

6
x+ 1.
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1. Interpolation 1.1. Polynomial Interpolation

1.1.2. Neville’s Algorithm. Lagrange’s interpolation formula (1.1.1.3) solves the full inter-
polation problem all at once. Instead, we can solve the problem for smaller sets of support
points first and update the solutions to obtain the solution to the full interpolation problem.

Theorem 1.1.2.1 (Neville’s Algorithm). Let {(xi, fi)}ni=0 be a set of support points and
denote by

pi0i1...ik ∈ Πk

the unique polynomial of degree at most k such that

pi0i1...ik(xij) = fij , j = 0, 1, . . . , k, k = 0, 1, . . . , n.

Then each pi0i1...ik is given by the following recursion:

(1) pi(x) := fi,

(2) pi0i1...ik(x) =
(x− xi0)pi1i2...ik(x)− (x− xik)pi0i1...ik−1

(x)

xik − xi0

.

Proof. First note that, given one support point (xi, fi), i = 0, . . . , n, the unique polynomial
pi ∈ Π0 that interpolates fi is simply the constant polynomial pi(x) := fi.

Consider now the case of at least two support points (xi, fi). Define

r(x) :=
(x− xi0)pi1i2...ik(x)− (x− xik)pi0i1...ik−1

(x)

xik − xi0

.

Noting that r is a linear combination of two polynomials of degree k or less, it follows that
r ∈ Πk.

We now show that r has the characteristic properties of pi0i1...ik , in particular, that r(xij) =
fij , j = 0, 1, . . . , k. Observe that

r(xi0) =
−(xi0 − xik)pi0i1...ik−1

(xi0)

xik − xi0

= pi0i1...ik−1
(xi0) = fi0 ,

r(xik) =
(xik − xi0)pi1i2...ik(xik)

xik − xi0

= pi1i2...ik(xik) = fik ,

by the assumption. Moreover, for j = 1, 2, . . . , k − 1, we have

r(xij) =
(xij − xi0)pi1i2...ik(xij)− (xij − xik)pi0i1...ik−1

(xij)

xik − xi0

=
(xij − xi0)fij − (xij − xik)fij

xik − xi0

= fij .

That is, r interpolates f at each of ij, j = 0, 1, . . . , k. By the uniqueness of polynomial
interpolation, it follows that r ≡ pi0i1...ik . □
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1. Interpolation 1.1. Polynomial Interpolation

Remark. Neville’s algorithm is well-suited for determining the value of the polynomial in-
terpolant p for a single value of x. It is not preferable, however, when multiple evaluations
of p are needed.

We make the observation here that Neville’s algorithm produces a symmetric tableau of
the values of the (partially) interpolating polynomials pi0i1...ik for a fixed x : (shown here is
the case k = 3)

k = 0 1 2 3
x0 f0 =: p0(x)

p01(x)
x1 f1 =: p1(x) p012(x)

p12(x) p0123(x)
x2 f2 =: p2(x) p123(x)

p23(x)
x3 f3 =: p3(x)

Example 1.1.2.2. Given

xi 0 1 3
f1 1 3 2

we have
k = 0 2 3

x0 = 0 f0 =: p0(2) = 1
p01(2) = 5

x1 = 1 f1 =: p1(2) = 3 p012(2) =
10
3

p12(2) =
5
2

x2 = 3 f2 =: p2(2) = 2

Note also that this evaluation of p012(2) coincides with the evaluation of p(2) in the example
from the previous section.

1.1.3. Newton’s Interpolation Formula: Divided Differences. Neville’s algorithm (1.1.2.1) is
aimed at determining specific values of the polynomial interpolant rather than the symbolic
polynomial itself. If the polynomial itself is preferred, or if we want to evaluate several argu-
ments ξj of the polynomial interpolant simultaneously, then Newton’s interpolation formula
is preferred.

Given the n+1 support points {(xi, fi)}ni=0, recall from (1.1.1.1) that there exists a unique
polynomial p ∈ Πn that interpolates the points. Write

p(x) := a0 + a1x+ a2x
2 + · · ·+ anx

n

= c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0)(x− x1) . . . (x− xn−1)

= c0 + (x− x0)(c1 + c2(x− x1) + · · ·+ (x− xn−2)(cn−1 + cn(x− xn−1)) . . . ).

This setup brings us to the so-called Horner scheme for efficiently evaluating polynomials.

Definition 1.1.3.1. [Horner Scheme] Let p ∈ Πn. Then the Horner scheme for evaluating
p at an arbitrary point ξ is given by

p(ξ) = a0 + (ξ − x0)(a1 ++a2(ξ − x1) + · · ·+ (ξ − xn−2)(an−1 + an(ξ − xn−1)) . . . ).
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1. Interpolation 1.1. Polynomial Interpolation

It remains to determine the coefficients in (1.1.3.1). One method is as follows:

f0 = p(x0) = a0,

f1 = p(x1) = a0 + a1(x− x0),

f2 = p(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1),

...

This can be done with n divisions and n(n− 1) multiplications. However, there is a better

method which requires only n(n+1)
2

divisions and produces useful intermediate results.

Note that, since pi0i1...ik−1
(x) and pi0i1...ik(x) both interpolate the k support points {(xij , fij)}kj=0,

they differ by a polynomial of degree k with the k zeros xi0 , xi1 , . . . , xik−1
. Thus there exists

a unique coefficient
fi0i1...ik

such that

pi0i1...ik(x) = pi0i1...ik−1
(x) + fi0i1...ik

k−1∏
j=0

(x− xij).

From this and the fact that pi0 := fi0 , it follows

pi0i1...ik(x) = fi0 − fi0i1(x− xi0) + · · ·+ fi0i1...ik(x− xi0) . . . (x− xik−1
).

We call this form the Newton representation of the interpolating polynomial pi0i1...ik(x).
The coefficients are called the k−th divided differences.

Theorem 1.1.3.2 (Newton’s Interpolation Formula). Let {(xi, fi)}ni=0 be a set of support
points. Define the following recursion

(1) f [xi] := fi,

(2) f [xi, xj] =
f [xj]− f [xi]

xj − xi

,

(3) f [xi0 , xi1 , . . . , xik ] :=
f [xi1 , xi2 , . . . , xik ]− f [xi0 , xi1 , . . . , xik−1

]

xik − xi0

.

Then the unique polynomial p ∈ Πn such that

p(xi) = fi, i = 0, 1, . . . , n

is given by

p(x) := f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1 . . . , xn](x− x0)(x− x1) . . . (x− xn−1).

Proof. We use induction. If n = 0, then p(x) = f [x0] = f0, as desired. In the case that
n = 1, we have

p(x) = f [x0] + f [x0, x1](x− x0).

Observing that
p(x0) = f [x0] = f0

and

p(x1) = f [x0] + f [x0, x1](x1 − x0) = f [x0] +
f [x1]− f [x0]

x1 − x0

(x1 − x0) = f1,

we see that (1.1.3.2) holds for n = 0, 1.
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1. Interpolation 1.1. Polynomial Interpolation

Assume now that (1.1.3.2) holds for all n = 0, 1, . . . , k− 1. We show that the result holds
for n = k.

Recall from (1.1.2.1) that the unique interpolating polynomial p := p0,1,...,k ∈ Πk is given
by the recursion

p(x) =
(x− x0)p1,2,...,k(x)− (x− xk)p0,1,...,k−1(x)

xk − x0

. (1.1.3.1)

Define a polynomial

r := p− p0,1,...,k−1.

Since both p and p0,1,...,k−1 interpolate the k support points {(xi, fi)}k−1
i=0 , it follows that r is

a polynomial with k distinct roots, and, since r is a linear combination of two polynomials
of degree k or less, it follows that r is a polynomial of degree precisely k. Therefore, there
exists a unique coefficient ak such that

r(x) = ak

k−1∏
i=0

(x− xi).

Now note that

p(x) = p0,1,...,k−1(x) + r(x) (1.1.3.2)

=
(x− x0)p1,2,...,k−1(x)− (x− xk−1)p0,1,...,k−2(x)

xk−1 − x0

+ ak

k−1∏
i=0

(x− xi).

Noting that p0,1,...,k−1, p1,2,...,k ∈ Πk−1, it follows from the induction hypothesis and (1.1.3.1)
that

p(x) =
(x− x0)p1,2,...,k(x)− (x− xk)p0,1,...,k−1(x)

xk − x0

=

(
x− x0

xk − x0

)
p1,2,...,k(x)−

(
x− xk−1

xk − x0

)
p0,1,...,k−1(x) +

(
xk − xk−1

xk − x0

)
p0,1,...,k−1(x)

=

(
x− x0

xk − x0

)
(f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, x2, . . . , xk](x− x1) . . . (x− xk−1))

−
(
x− xk−1

xk − x0

)
(f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, . . . , xk−1](x− x0) . . . (x− xk−2))

+

(
xk − xk−1

xk − x0

)
p0,1,...,k−1(x)

=

(
1

xk − x0

)
(f [x1, . . . , xk](x− x0) . . . (x− xk−1)− f [x0, . . . , xk−1](x− x0) . . . (x− xk−1))

+

(
x− x0

xk − x0

)
(f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xk−1](x− x1) . . . (x− xk−2))

−
(
x− xk−1

xk − x0

)
(f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xk−2](x− x0) . . . (x− xk−3)

+

(
xk − xk−1

xk − x0

)
p0,1,...,k−1(x)
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1. Interpolation 1.1. Polynomial Interpolation

=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

(
k−1∏
i=0

(x− xi)

)

+

(
x− x0

xk − x0

)
p1,2,...,k−1(x)−

(
x− xk−1

xk − x0

)
p0,1,...,k−2(x) +

(
xk − xk−1

xk − x0

)
p0,1,...,k−1(x)

=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

(
k−1∏
i=0

(x− xi)

)

+

(
1

xk − x0

)
(x− x0)p1,2,...,k−1(x)− (x− xk−1)p0,1,...,k−2(x) + (xk − xk−1)p0,1,...,k−1(x)

=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

(
k−1∏
i=0

(x− xi)

)

+

(
1

xk − x0

)
(xk−1 − x0)p0,1,...,k−1(x) + (xk − xk−1)p0,1,...,k−1(x)

=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

(
k−1∏
i=0

(x− xi)

)
+ p0,1,...,k−1(x).

Finally, it follows from (1.1.3.2) that

ak =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

,

which completes the proof. □

Recall that the polynomial pi0i1...ik(x) is uniquely determined by the support points in in-
terpolates, so that the polynomial is invariant to any permutation of the indices i0, i1, . . . , ik.

Theorem 1.1.3.3. The divided differences f [xi0 , xi1 , . . . , xik ] are invariant to permutations
of the indices i0, i1, . . . , ik. More precisely, if

(j0, j1, . . . , jk) = (is0 , is1 , . . . , isk)

is a permutation of the indices i0, i1, . . . , ik, then

f [xj0 , . . . , xjk ] = f [xi0 , . . . , xik ].

We defer the proof for a later result.
Calculating the divided differences in analogy to Neville’s algorithm gives the following

tableau, called the divided–difference scheme:

k = 0 k = 1 k = 2 . . .
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2]
...

. . .

x2 f [x2]
...

...
...
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1. Interpolation 1.1. Polynomial Interpolation

Note the entries in the second column are given by

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

, f [x1, x2] =
f [x2]− f [x1]

x2 − x1

, , . . . ,

those in the third column

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

, f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1

, . . . ,

and obviously

p(x) = p0,1,...,n(x)

= f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) . . . (x− xn−1)

is the desired solution to the interpolation problem. The coefficients of the above expression
for p(x) are obtained in the top descending diagonal of the divided–difference scheme.

Example 1.1.3.4. With the same numbers from the previous sections,

xi 0 1 3
f1 1 3 2

we have
k = 0 k = 1 k = 2

x0 = 0 f [x0] = 1
f [x0, x1] = 2

x1 = 1 f [x1] = 3 f [x0, x1, x2] = −5
6

f [x1, x2] = −1
2

x = 3 f [x2] = 2

Thus

p(x) = 1 + 2x− 5

6
x(x− 1)

= −5

6
x2 +

17

6
x+ 1,

which coincides with the results from the previous examples.

Note that frequently the support ordinates fi are values fi := f(xi) of a given function
f(x), which we want to approximate by interpolation. The divided differences can then be
viewed as multivariate functions of the support abscissas xi,

f [xi0 , xi1 , . . . , xik ].

We get the following result, which we prove here.

Theorem 1.1.3.5. The divided differences

f [xi0 , . . . , xik ]

are symmetric functions of their arguments, that is, they are invariant to permutations of
the support abscissas xi0 , . . . , xik .

Proof. We use induction.
If n = 0, then there is only one support point (x0, f0), and clearly

f [x0] = f0.
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1. Interpolation 1.1. Polynomial Interpolation

In the case n = 1, we observe

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

=
f1 − f0
x1 − x0

=
f0 − f1
x0 − x1

=
f [x0]− f [x1]

x0 − x1

= f [x1, x0].

Suppose that (1.1.3.5) holds for some k, that is,

f [xi0 , . . . , xik ] = f [xj0 , . . . , xjk ]

for any permutation (j0, . . . , jk) of (i0, . . . , ik). Considering

f [xi0 , . . . , xik , xik+1
],

we see that

f [xi0 , . . . , xik , xik+1
] =

f [xi1 , . . . , xik+1
]− f [xi0 , . . . , xik ]

xik+1
− xi0

=
f [xi0 , . . . , xik ]− f [xi1 , . . . , xik+1

]

xi0 − xik+1

= f [xi0 , . . . , xik+1
, xik ].

Since f [xi0 , . . . , xik ] and f [xi1 , . . . , xik+1
] are invariant to permutations of the indices i0, . . . , ik+1

by the hypothesis, (1.1.3.5) follows. □

The last result of this section applies when the function f(x) is itself a polynomial.

Theorem 1.1.3.6. If f(x) is a polynomial of degree N, then

f [x0, . . . , xk] = 0

for k > N.

Proof. Let k > N and let {(xi, fi)}ki=0 be any k + 1 support points. Then p is a polynomial
of degree k or less that interpolates f. Noting that f is itself a polynomial of degree N that
interpolates the k support points, it follows by uniqueness that p ≡ f.

By uniqueness, it follows that the coefficient of xk in p(x) must vanish for all k > N. This
coefficient is given by f [x0, . . . , xk] (1.1.3.2), so that evidently

f [x0, . . . , xk] = 0

for all k > N. □

1.1.4. The Error in Polynomial Interpolation. Once again we are given a function f(x) and
support points {(xi, fi)}ni=0, and we interpolate f with the interpolating polynomial p ∈ Πn

such that
p(xi) = fi, i = 0, 1, . . . , n.

We are interested in how well p(x) reproduces f(x) for arguments x different from the support
abscissas xi, i = 0, 1, . . . , n. Note that the error

e(x) := f(x)− p(x)

can clearly become arbitrarily large for functions f unless some restrictions are imposed on
f.

We first recall Rolle’s Theorem, which is essential to the proof of the polynomial interpo-
lation error formula.

11



1. Interpolation 1.1. Polynomial Interpolation

Theorem 1.1.4.1 (Rolle’s Theorem). Let f be continuous on [a, b] and differentiable on
(a, b), and suppose that f(a) = f(b). Then there exists ξ ∈ (a, b) such that

f ′(ξ) = 0.

Proof. If f(x) ≡ k for some k ∈ R and all x ∈ (a, b), then f is constant, and clearly f ′(ξ) ≡ 0
for all ξ ∈ (a, b).

We now consider the case that f(x) ̸= f(a) for some x ∈ (a, b). Passing to the consid-
eration of −f(x) as necessary, we assume that f(x) > f(a). Since f is continuous on [a, b],
it follows from the extreme value theorem that f attains a maximum value f(ξ) at some
ξ ∈ [a, b]. Since f(x) > f(a) for some x ∈ (a, b), we have evidently a < ξ < b, so that
ξ ∈ (a, b). Thus f has a local maximum at ξ ∈ (a, b). Since f is differentiable, it follows by
Fermat’s Theorem that f ′(ξ) = 0. This completes the proof. □

Theorem 1.1.4.2 (Error in Polynomial Interpolation). Let p ∈ Πn be the unique poly-
nomial interpolant of f. If the function f has an (n + 1)−st derivative, then for every
argument x there exists a number ξ in the smallest interval I[x0, . . . , xn;x] which contains
x and all support abscissas xi, i = 0, 1, . . . , n, satisfying

e(x) = f(x)− p(x) =
ω(x)f (n+1)(ξ)

(n+ 1)!
,

where

ω(x) :=
n∏

i=0

(x− xi).

Proof. Let p ∈ Πn be the unique polynomial that interpolates f at xi, i = 0, 1, . . . , n.
First, if x = xi for some i = 0, 1, . . . , n, then

e(x) = e(xi) = f(xi)− p(xi) = 0.

Assume now that x ̸= xi for all i = 0, 1, . . . , n. Then ω(x) ̸= 0, so that we may define the
constant

K :=
f(x)− p(x)

ω(x)
.

Further, define a function F by

F (x) := f(x)− p(x)−Kω(x).

Note that F vanishes for x = x and x = xi, i = 0, 1, . . . , n, so consequently F has at least
the n+ 2 distinct zeros

x0, x1, . . . , xn, x

in the interval I[x0, x1, . . . , xn;x]. By Rolle’s Theorem (1.1.4.1), applied repeatedly, it follows
that F ′ has at least n + 1 zeros in I[x0, x1, . . . , xn;x], F

′′ has at least n zeros, and, finally,
F (n+1) has at least one zero ξ ∈ I[x0, x1, . . . , xn;x].

Observe, since ω(x) is a polynomial of degree precisely n+ 1, we have

ω(n+1)(x) = (n+ 1)!.

Moreover, since p is a polynomial of degree at most n, consequently

p(n+1)(x) ≡ 0.
12



1. Interpolation 1.1. Polynomial Interpolation

Thus

F (n+1)(ξ) = f (n+1)(ξ)− p(n+1)(ξ)−Kω(n+1)(ξ) = f (n+1)(ξ)−K(n+ 1)! = 0.

Rearranging gives

K =
f (n+1)(ξ)

(n+ 1)!
.

Finally, since f(x)− p(x)−Kω(x) = 0, we have

f(x)− p(x) = Kω(x) =
ω(x)f (n+1)(ξ)

(n+ 1)!
,

which completes the proof. □

The following theorem gives a different error term, derived from Newton’s interpolation
formula (1.1.3.2).

Theorem 1.1.4.3. If the function f has an (n+ 1)−st derivative, then for every argument
x there exists a number ξ in the smallest interval I[x0, x1, . . . , xn;x] containing x and all
support abscissas such that

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

Proof. In addition to the n+1 support points {(xi, fi)}ni=0, introduce an (n+2)−nd support
point (xn+1, fn+1) by

xn+1 := x, fn+1 := f(x).

Denote by p0,1,...,n(x) ∈ Πn the unique polynomial interpolant of f. Then, by Newton’s
interpolation formula (1.1.3.2), we have

f(x) = p0,1,...,n+1(x) = p0,1,...,n(x) + f [x0, x1, . . . , xn;x]ω(x).

Rearranging,
f(x)− p0,1,...,n(x) = f [x0, x1, . . . , xn;x]ω(x).

Since

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)
ω(x)

for some ξ ∈ I[x0, x1, . . . , xn;x], it follows

f [x0, x1, . . . , xn;x] =
f (n+1)(ξ)

(n+ 1)!
.

This also implies

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
,

which completes the proof. □

Example 1.1.4.4. Let f(x) := sin(x) and let p ∈ Π3 interpolate f at

xj :=
π

3
j, j = 0, 1, 2, 3.

We derive an upper bound for the error on the interval [0, π]. Noting that

f (4)(x) = sin(x),
13
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we have

f(x)− p(x) =
f (4)(ξ)

4!
ω(x)

=
sin(ξ)

24
x
(
x− π

3

)(
x− 2π

3

)
(x− π).

Observe that
|x|, |x− π| ≤ π

and ∣∣∣x− π

3

∣∣∣ , ∣∣∣∣x− 2π

3

∣∣∣∣ ≤ 2π

3

for all x ∈ [0, π]. Hence,

|f(x)− p(x)| ≤ | sin(ξ)|
24

π2

(
2π

3

)2

=
sin(ξ)

24

(
4π4

9

)
=

π4

54
| sin(ξ)| ≤ π4

54
≈ 1.81.

A common usage for the error formula (1.1.4.2) is to bound |f(x) − p(x)| by bounding
f (n+1)(x). If the support abscissas x0, . . . , xn are close, say,

max
j ̸=i

|xi − xj| := h < 1,

and if x ∈ I[x0, x1, . . . , xn], then we have

|f(x)− p(x)| = |f (n+1)(x)|
(n+ 1)!

ω(x).

If f (n+1) is uniformly bounded, set

M := sup
x∈I[x0,x1,...,xn]

|f (n+1)(x)|
(n+ 1)!

.

Then
|f(x)− p(x)| ≤ Mω(x) ≤ Mhn+1.

Now as n → ∞, we have h → 0, and evidently then |f(x)− p(x)| → 0.

Definition 1.1.4.5 (Extrapolation). The use of the interpolating polynomial p ∈ Πn for
approximating f outside of the interval I[x0, x1, . . . , xn] containing the support abscissas is
called extrapolation.

Note that the theory guarantees |f(x)−p(x)| → ∞ as x moves farther and farther outside
the interval I[x0, x1, . . . , xn], since |ω(x)| → ∞ as |x| → ∞.

On the other hand, it should not be assumed that finer and finer samplings of the function
f will lead to better and better approximations through interpolation even within the interval
I[x0, x1, . . . , xn].

Consider for example a real–valued function f that is infinitely often differentiable in a
given interval [a, b]. To every interval partition

∆ := {a = x0 < x1 < · · · < xn = b}
14



1. Interpolation 1.1. Polynomial Interpolation

there is an interpolating polynomial p∆ ∈ Πn with p∆(xi) = fi for each xi ∈ ∆. A sequence
of interval partitions

∆m := {a = x
(m)
0 < x

(m)
1 < · · · < x(m)

nm
= b}

gives rise to a corresponding sequence of interpolating polynomials p∆m . One might expect
the polynomials p∆m to converge to f if the fineness

∥∆m∥ := max
i

|x(m)
i+1 − x

(m)
i |

of the partitions converges to zero as m → ∞. In general, however, this is not true.

Definition 1.1.4.6 (Runge’s Phenomenon). Runge’s phenomenon is a problem of os-
cillation that occurs near x0 and xn when using polynomials of high degree with equispaced
support points.

Figure 1. Runge’s Phenomenon for the Runge Function f(x) :=
1

1 + 25x2
.

Example 1.1.4.7. Let f be the Runge function

f(x) :=
1

1 + 25x2

and let p ∈ Πn interpolate f at the n+ 1 equispaced support points

xj :=
2j

n
− 1, j = 0, 1, . . . , n.

15



1. Interpolation 1.1. Polynomial Interpolation

With the equidistant nodes, it may be shown that

|ω(x)| ≤ n!hn+1,

where h := 2
n
is defined as the step size.

Note that the (n+ 1)−st derivative of f is bounded, so there exists Mn+1 such that

sup
−1≤x≤1

|f (n+1)(x)| ≤ Mn+1.

Thus

|f(x)− p(x)| ≤ Mn+1

(n+ 1)!
n!h(n+1) =

Mn+1

n+ 1
h(n+1).

But the magnitude of the (n + 1)−st derivative of f increases as n increases, in particular,
Mn+1 ≤ (n+ 1)!5(n+1). Hence,

|f(x)− p(x)| ≤ (n+ 1)!5(n+1)

n+ 1
h(n+1) = n!(5h)(n+1) = n!

(
10

n

)n+1

,

which tends to infinity as n becomes large.

1.1.5. Hermite Interpolation. We consider the support points

{(xi, f
(k)
i )}mi=0, k = 0, 1, . . . , ni − 1,

with
x0 < x1 < · · · < xm.

The Hermite interpolation problem consists of determining a polynomial p ∈ Πn where

n+ 1 =
m∑
i=0

ni,

which satisfies the interpolation conditions

p(k)(xi) = f
(k)
i , i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1.

Here we prescribe at each support abscissa not only the value of the function f but also the
first ni − 1 derivatives of the polynomial.

We recall the following fundamental result from linear algebra.

Theorem 1.1.5.1 (Invertible Matrix Theorem). Let A : Rn → Rn be linear. Then the
following are equivalent:

(1) Ax = b is solvable for all b ∈ Rn (existence),
(2) Ax1 = Ax2 if and only if x1 = x2 (uniqueness),
(3) Ax = 0 if and only if x = 0 (A is nonsingular),
(4) A is invertible.

The following result establishes existence and uniqueness of the Hermite interpolation
problem.

16



1. Interpolation 1.1. Polynomial Interpolation

Theorem 1.1.5.2 (Existence and Uniqueness of the Hermite Interpolant). For arbitrary

numbers x0 < x1 < · · · < xm and f
(k)
i , i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1, there exists a

unique polynomial

p ∈ Πn, n+ 1 =
m∑
i=0

ni,

that satisfies

p(k)(xi) = f
(k)
i , i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1.

Proof. Let p ∈ Πn. We may write

p(x) :=
n∑

l=0

clx
l,

for cl ∈ R, l = 0, 1, . . . , n. Then

p(k)(xi) =
n∑

l=0

cl

(
dk

dxk
xl

)
|x=xi

=
n∑

l=0

claq,l,

where q := k +
∑i−1

j=0 ni, and
∑−1

i=0 ni := 0. This yields an (n + 1) × (n + 1) linear system.

By the invertible matrix theorem (1.1.5.1), it suffices to show uniqueness.
Suppose that p1, p2 ∈ Πn both satisfy the interpolation conditions

p
(k)
1 (xi) = f (k)(xi) = p

(k)
2 (xi), i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1.

Define the difference polynomial

r := p1 − p2 ∈ Πn.

Then
r(k)(xi) = 0, i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1.

Thus r has at least n+ 1 roots, counting multiplicities. Since r is a polynomial of degree at
most n, r must vanish identically,

r(x) ≡ 0.

This proves the theorem. □

The Hermite interpolating polynomials can be given explicitly in a form analogous to the
Lagrange interpolation formula (1.1.1.1). The polynomial p ∈ Πn given by

p(x) :=
m∑
i=0

ni−1∑
k=0

f
(k)
i Lik(x)

is the desired polynomial (1.1.5.2). The polynomials Lik ∈ Πn are called the generalized
Lagrange polynomials and are constructed as follows. Define the auxiliary polynomials

lik(x) :=
(x− xi)

k

k!

m∏
j=0
j ̸=i

(
x− xj

xi − xj

)nj

, 0 ≤ i ≤ m, 1 ≤ k ≤ ni.

17



1. Interpolation 1.1. Polynomial Interpolation

Put

Li,ni−1(x) := li,ni−1(x), i = 0, 1, . . . ,m,

and recursively for k = ni − 2, ni − 3, . . . , 0,

Lik(x) := lik(x)−
ni−1∑
v=k+1

l
(v)
ik (xi)Liv(x).

By induction,

Lik(xj)
(σ) =

{
1, if i = j and k = σ,

0, otherwise.

Thus the polynomial p ∈ Πn given by

p(x) :=
m∑
i=0

ni−1∑
j=0

f
(k)
i Lik(x)

is the unique Hermite interpolating polynomial (1.1.5.2).
An alternative way to describe the Hermite interpolation problem is important for Newton–

and Neville– type algorithms to construct the Hermite interpolating polynomial. We gener-
alize divided differences to account for repeated abscissas.

Let x0 < x1 < · · · < xm be a sequence of abscissas. We replace each xi by ni copies of
itself:

x0 = · · · = x0︸ ︷︷ ︸
n0

< x1 = · · · = x1︸ ︷︷ ︸
n1

< · · · < xm = · · · = xm︸ ︷︷ ︸
nm

.

The n+ 1 =
∑m

i=0 ni elements in this sequence are then defined

t0 = x0 ≤ t1 ≤ · · · ≤ tn = xm,

where the ti’s, i = 0, 1, . . . , n are called the virtual abscissas.
Note that the virtual abscissas t0, t1, . . . , tn determine the true abscissas xi and the integers

ni, i = 0, 1, . . . ,m. Recall that the unique polynomial interpolant p01...n is defined by the
n + 1 =

∑n
i=0 ni interpolation conditions, which are as many as there are index pairs (i, k)

with i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1, and are as many as there are virtual abscissas
t0, t1, . . . , tn.

Observe that the interpolation conditions belonging to the linear ordering of index pairs

(0, 0), (0, 1), . . . , (0, n0 − 1), (1, 0), . . . , (1, n1 − 1), . . . , (m, 0), . . . , (m,nm − 1),

have the form

p
sj−1
01...n(tj) = f (sj−1)(tj), j = 0, 1, . . . , n,

if we define sj, j = 0, 1, . . . , n to be the number of times each tj occurs in the subsequence

t0 ≤ t1 ≤ · · · ≤ tj.

Also note that

x0 = t0 = · · · = tn0−1 < x1 = tn0 = · · · = tn0+n1−1 < . . . ,

and

s0 = 1, . . . , sn0−1 = n0; sn0 = 1, . . . , sn0+n1−1 = n1, . . . ,

establishes the equivalence of the above form and (1.1.5.2).
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We move to establish (1.1.5.2) algebraically. Note that any polynomial p(t) ∈ Πn can be
written in the form

p(t) =
n∑

j=0

bj
tj

j!
= Π(t)b, b := [b0, b1, . . . , bn]

⊤,

where Π(t) is defined to be the row vector

Π(t) := [1, t, . . . ,
tn

n!
].

Thus by Theorem (1.1.5.2), the system

Π(sj−1)(tj)b = f (sj−1)(tj), j = 0, 1, . . . , n,

has a unique solution b. We get the following corollary, which is equivalent to (1.1.5.2).

Corollary 1.1.5.3. For any nondecreasing finite sequence

t0 ≤ t1 ≤ · · · ≤ tn

of n+ 1 real numbers, the (n+ 1)× (n+ 1) matrix

Vn(t0, t1, . . . , tn) :=


Π(s0−1)(t0)
Π(s1−1)(t1)

...
Π(sn−1)(tn)


is nonsingular.

Example 1.1.5.4. For t0 = t1 < t2, we have

V2(t0, t1, t2) =

1 t0
t20
2

0 1 t1

1 t2
t22
2

 .

We now formulate a Neville–type algorithm for Hermite interpolation. We associate with
each segment

ti ≤ ti+1 ≤ · · · ≤ ti+k, 0 ≤ i ≤ i+ k ≤ n

of virtual abscissas the solution pi,i+1,...,i+k ∈ Πk of the partial Hermite interpolation problem
belonging to this subsequence, that is, the solution of

p
(sj−1)
i,i+1,...,i+k(tj) = f (sj−1)(tj), j = i, i+ 1, . . . , i+ k.

Recall that the integers sj, i ≤ j ≤ i + k are defined with respect to the subsequence, that
is, sj is the number of times the value of tj occurs within the sequence ti, ti+1, . . . , tj.

Example 1.1.5.5. Suppose that n0 = 2, n1 = 3, and{
x0 = 0, f

(0)
0 = −1, f

(1)
0 = −2,

x1 = 1, f
(0)
1 = 0, f

(1)
1 = 10, f

(2)
1 = 40.

We get the virtual abscissas tj, j = 0, 1, 2, 3, 4, with

t0 = t1 := x0 = 0, t2 = t3 = t4 := x1 = 1.
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For the subsequence t1 ≤ t2 ≤ t3, that is, i = 1 and k = 2, we have

t1 = x0 < t2 = t3 = x1, s1 = s2 = 1, s3 = 2.

Now the interpolating polynomial p123 ∈ Π2 satisfies

p
(s1−1)
123 (t1) = p123(0) = f (0)(0) = −1,

p
(s2−1)
123 (t2) = p123(1) = f (0)(1) = 0,

p
(s3−1)
123 (t3) = p′123(1) = f (1)(1) = 10.

The following analogs to Neville’s algorithm (1.1.2.1) hold. We find, if ti = ti+1 = · · · =
ti+k = xl, then

pi,i+1,...,i+k(x) =
k∑

r=0

f
(r)
l

r!
(x− xl)

r,

and, if ti < ti+k,

pi,i+1,...,i+k(x) =
(x− ti)pi+1,i+2,...,i+k(x)− (x− ti+k)pi,i+1,...,i+k−1(x)

ti+k − ti
.

In analogy to (1.1.3.2) we now define the generalized divided differences

f [ti, ti+1, . . . , ti+k]

as the coefficient of xk in the polynomial pi,i+1,...,i+k ∈ Πk. We find, if ti = ti+1 = · · · = ti+k =
xl,

f [ti, ti+1, ti+k] =
1

k!
f
(k)
l ,

and if ti < ti+k,

f [ti, ti+1, . . . , ti+k] =
f [ti+1, ti+2, . . . , ti+k]− f [ti, ti+1, . . . , ti+k−1]

ti+k − ti
.

As a restatement,

f [ti, ti+1, . . . , ti+k] =


1

k!
f (k)(xl), if ti = ti+1 = · · · = ti+k = xl,

f [ti+1, ti+2, . . . , ti+k]− f [ti, ti+1, . . . , ti+k−1]

ti+k − ti
, otherwise.

Using the generalized divided differences

ak := f [t0, t1, . . . , tk], k = 0, 1, . . . , n,

the solution p ∈ Πn of the Hermite interpolation problem can be represented in Newton form
by

p(x) = a0 + a1(x− t0) + a2(x− t0)(x− t1) + · · ·+ an(x− t0)(x− t1) . . . (x− tn−1).

Example 1.1.5.6. We illustrate the use of generalized divided differences by finding the
Hermite interpolant of the following data.

x f(x) f ′(x) f ′′(x)
0 −1 −2
1 0 10 40

We get the following scheme:
20



1. Interpolation 1.1. Polynomial Interpolation

t0 := 0 f [t0] = −1
f [t0, t1] = −2

t1 := 0 f [t1] = −1 f [t0, t1, t2] = 3
f [t1, t2] = 1 f [t0, t1, t2, t3] = 6

t2 := 1 f [t2] = 0 f [t1, t2, t3] = 9 f [t0, t1, t2, t3, t4] = 5
f [t2, t3] = 10 f [t1, t2, t3, t4] = 11

t3 := 1 f [t3] = 0 f [t2, t3, t4] = 20
f [t3, t4] = 10

t4 := 1 f [t4] = 0

Thus the Hermite interpolating polynomial is then

p(x) = −1− 2x+ 3x2 + 6x2(x− 1) + 5x2(x− 1)2.

We give a result for the interpolation error incurred by Hermite interpolation.

Theorem 1.1.5.7 (Error in Hermite Interpolation). Let the real function f by n + 1
times differentiable on the interval [a, b], and consider m+1 support abscissas xi ∈ [a, b],

x0 < x1 < · · · < xm.

If the polynomial p(x) is of degree at most n,

n+ 1 =
m∑
i=0

ni,

and satisfies the interpolation conditions

p(k)(xi) = f (k)(xi), i = 0, 1, . . . ,m, k = 0, 1, . . . , ni − 1,

then for every x ∈ [a, b] there exists ξ ∈ I[x0, x1, . . . , xm;x] such that

e(x) = f(x)− p(x) =
ω(x)f (n+1)(ξ)

(n+ 1)!
,

where

ω(x) :=
m∏
i=0

(x− xi)
ni .

Proof. The proof of (1.1.5.7) is entirely analogous to that of the error for standard polynomial
interpolation, see (1.1.4.2). □
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1.2. Trigonometric Interpolation.

1.2.1. Basic Facts. Trigonometric interpolation uses linear combinations of the trigonometric
functions sin(kx) and cos(kx) for integer k. We restrict our attention to linear interpolation.
For N = 2M (even) support points {(xk, fk)}N−1

k=0 ,

Ψ(x) :=
A0

2
+

M∑
k=1

(Ak cos(kx) +Bk sin(kx)) +
AM

2
cos(Mx), (1.2.1.1)

and for N = 2M + 1 (odd) support points {(xk, fk)}N−1
k=0 ,

Ψ(x) :=
A0

2
+

M∑
k=1

(Ak cos(kx) +Bk sin(kx)). (1.2.1.2)

Trigonometric interpolation is frequently used for data which are periodic with known period.
We recall the following result from complex analysis.

Theorem 1.2.1.1 (De Moivre’s Formula). For every integer k,

eikx = cos(kx) + i sin(kx).

We consider uniform partitions of the interval [0, 2π],

xl :=
2πl

N
, l = 0, 1, . . . , N − 1.

For such partitions, the trigonometric interpolation problem becomes a problem of finding a
so–called phase polynomial of order N

p(x) := β0 + β1e
ix + β2e

2ix + · · ·+ βN−1e
(N−1)x, (1.2.1.3)

with complex coefficients βj such that

p(xl) = fl, l = 0, 1, . . . , N − 1.

By definition of xl, we note that

e−ilxk = e−il( 2πk
N ) = e2πi(−

lk
N ) = e2πik · e2πi(−

lk
N ) = e2πi(k−

lk
N
) = e2πi

(N−l)k
N = ei(N−l)xk .

Therefore

cos(kxl) =
eikxl + ei(N−k)xl

2
, sin(kxl) =

eikxl − ei(N−k)xl

2i
. (1.2.1.4)

Making these substitutions into (1.2.1.1) and (1.2.1.2) for Ψ(x) produces the phase polyno-
mial p(x) with coefficients βj, j = 0, 1, . . . , N − 1. Observe for N = (2M + 1) (odd), we
have

Ψ(x) =
A0

2
+

M∑
k=1

[
Ak

2

(
eikx + ei(N−k)x

)
+

Bk

2i

(
eikx − ei(N−k)x

)]

=
A0

2
+

M∑
k=1

[
Ak

2

(
eikx + ei(N−k)x

)
+

Bk

2

(
−ieikx + iei(N−k)x

)]

=
A0

2
+

M∑
k=1

[
1

2
(Ak − iBk) e

ikx +
1

2
(Ak + iBk)e

i(N−k)x

]
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1. Interpolation 1.2. Trigonometric Interpolation

=
A0

2
+

M∑
k=1

1

2
(Ak − iBk)e

ikx +
2M∑

k=M+1

1

2
(Ak + iBk)e

ikx.

Similarly for N = 2M (even), we get

Ψ(x) =
A0

2
+

M−1∑
k=1

[
Ak

2

(
eikx + ei(N−k)x

)
+

Bk

2i

(
eikx − ei(N−k)x

)]
+

AM

2

(
1

2

(
eiMx + ei(N−M)x

))

=
A0

2
+

M−1∑
k=1

[
1

2
(Ak − iBk)e

ikx +
1

2
(Ak + iBk)e

i(N−k)x

]
+

AM

2
eiMx

=
A0

2
+

M−1∑
k=1

1

2
(Ak − iBk)e

ikx +
AM

2
eiMx +

2M−1∑
k=M+1

1

2
(Ak + iBk)e

ikx.

We arrive at the following result.

Lemma 1.2.1.2. If N is odd, then N = 2M + 1 and

β0 =
A0

2
, βj =

1

2
(Aj − iBj), βN−j =

1

2
(Aj + iBj), j = 1, 2, . . . ,M,

A0 = 2β0, Ak = βk + βN−k, Bk = i(βk − βN−k), k = 1, 2, . . . ,M.

If N is even, then N = 2M and

β0 =
A0

2
, βj =

1

2
(Aj − iBj), βM =

AM

2
, βN−j =

1

2
(Aj + iBj), j = 1, 2, . . . ,M − 1,

A0 = 2β0, Ak = βk + βN−k, AM = 2βM , Bk = i(βk − βN−k), k = 1, 2, . . . ,M − 1.

The trigonometric expression Ψ(x) and its corresponding phase polynomial p agree for
all support abscissas xk = 2πk/N of an equispaced partition of the interval [0, 2π],

fk = Ψ(xk) = p(xk), k = 0, 1, . . . , N − 1.

However Ψ(x) = p(x) need not hold at intermediate points x ̸= xk, k = 0, 1, . . . , N − 1. The
two interpolation problems are equivalent in the sense that a solution to one problem will
produce a solution to the other by means of the coefficient relations in (1.2.1.2).

We note here that the phase polynomials p in (1.2.1.3) are structurally simpler than the
trigonometric expressions Ψ(x). Introduce the notation

ω := eix, ωk := eixk = e2kiπ/N ,

p(ω) := β0 + β1ω + β2ω
2 + · · ·+ βN−1ω

N−1.

Since ωj ̸= ωk for j ̸= k, 0 ≤ j, k ≤ N − 1, we see that we are faced with a standard
polynomial interpolation problem, that is, we seek to find the complex polynomial p of
degree N − 1 or less such that

p(ωk) = fk, k = 0, 1, . . . , N − 1.

We get the following result.
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1. Interpolation 1.2. Trigonometric Interpolation

Theorem 1.2.1.3 (Existence and Uniqueness of Phase Polynomial). For any support
points {(xk, fk)}N−1

k=0 , with fk complex and xk := 2πk/N, there exists a unique phase
polynomial

p(x) = β0 + β1e
ix + β2e

2ix + · · ·+ βN−1e
(N−1)x

with
p(xk) = fk

for k = 0, 1, . . . , N − 1.

Proof. The proof follows immediately from the existence and uniqueness of polynomial in-
terpolation, see (1.1.1.1). □

The coefficients βj, j = 0, 1, . . . , N − 1 of the interpolating phase polynomial p can be
expressed in closed form. Note, for 0 ≤ j, k ≤ N − 1, we have

ωk
j = eijxk = e2jkiπ/N = eikxj = ωj

k,

and, by De Moivre’s formula (1.2.1.1),

ω−j
k = e−ijxk = e−2jkiπ/N = eik(−2jπ/N)

= cos(−2kjπ/N) + i sin(−2kjπ/N) = cos(2kjπ/N)− i sin(2kjπ/N)

= ωj
k.

More importantly, however, we define the inner product

⟨ωj, ωl⟩ :=
N−1∑
k=0

ωj
kω

l
k =

N−1∑
k=0

eijxk · e−ilxk .

Lemma 1.2.1.4. If 0 ≤ j, l ≤ N − 1, then we have

⟨ωj, ωl⟩ =

{
N, j = l,

0, j ̸= l.

Proof. If j = l, then

⟨ωj, ωl⟩ =
N−1∑
k=0

ωj
kω

−j
k =

N−1∑
k=0

eijxk · e−ijxk =
N−1∑
k=0

1 = N.

Now suppose that j ̸= l. Then

⟨ωj, ωl⟩ =
N−1∑
k=0

ωj
kω

−l
k =

N−1∑
k=0

ei(j−l)xk =
N−1∑
k=0

eikxj−l =
N−1∑
k=0

(
eixj−l

)k
=

N−1∑
k=0

ωk
j−l.

Since j ̸= l with 0 ≤ j, l ≤ N − 1, we have

ωj−l = e2πi(j−l)/N ̸= 1.

Note that (ω − 1)
∑N−1

k=0 ωk = ωN − 1. Thus

ωN − 1 =
(
e2πi(j−l)/N

)N − 1 = e2πi(j−l) − 1 = 1− 1 = 0,
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1. Interpolation 1.2. Trigonometric Interpolation

so that
⟨ωj, ωl⟩ = 0.

This completes the proof. □

Lemma (1.2.1.4) says that the vectors ωk form an orthogonal basis for CN . From this
orthogonality follows the following result.

Theorem 1.2.1.5 (Closed form of Phase Polynomial Coefficients). The phase polyno-

mial p(x) =
∑N−1

j=0 βje
ijx satisfies

p(xk) = fk, k = 0, 1, . . . , N − 1,

for fk complex and xk = 2πk/N, k = 0, 1, . . . , N − 1, if and only if

βj =
1

N

N−1∑
k=0

fkω
−j
k =

1

N

N−1∑
k=0

fke
−2πijk/N ,

for j = 0, 1, . . . , N − 1.

Proof. Because of fk = p(xk), k = 0, 1, . . . , N − 1, we have

1

N

N−1∑
k=0

fke
−ijxk =

1

N

N−1∑
k=0

p(xk)e
−ijxk

=
1

N

N−1∑
k=0

e−ijxk

N−1∑
l=0

βle
ilxk

=
1

N

N−1∑
k=0

N−1∑
l=0

βle
ilxk · e−ijxk

=
1

N

N−1∑
l=0

βl

N−1∑
k=0

eilxk · e−ijxk

=
1

N

N−1∑
l=0

βl

N−1∑
k=0

ωl
kω

j
k

=
1

N

N−1∑
l=0

βl⟨ωl, ωj⟩

=
1

N
(βjN) = βj.

□

We return to the original trigonometric expressions Ψ(x) and state the main result for
this section.
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1. Interpolation 1.2. Trigonometric Interpolation

Theorem 1.2.1.6 (Solution of Trigonometric Interpolation Problem). The trigonomet-
ric expressions

Ψ(x) =
A0

2
+

M∑
k=1

(Ak cos(kx) +Bk sin(kx)),

Ψ(x) =
A0

2
+

M−1∑
k=1

(Ak cos(kx) +Bk sin(kx)) +
AM

2
cos(Mx),

where N = 2M + 1 (odd) and N = 2M (even), respectively, satisfy

Ψ(xk) = fk, k = 0, 1, . . . , N − 1,

for xk = 2πk/N if and only if the coefficients of Ψ(x) are given by

Ak =
2

N

N−1∑
l=0

fl cos(kxl) =
2

N

N−1∑
l=0

fl cos

(
2πkl

N

)
,

Bk =
2

N

N−1∑
l=0

fl sin(kxl) =
2

N

N−1∑
l=0

fl sin

(
2πkl

N

)
.

Proof. In all cases,

A0 = 2β0 =
2

N

N−1∑
l=0

fle
0 =

2

N

N−1∑
l=0

f(xl).

If N = 2M, then

Am = 2βM =
2

N

N−1∑
l=0

f(xl)e
−2πiMl/2M

=
2

N

N−1∑
l=0

f(xl)e
−πil

=
2

N

N−1∑
l=0

f(xl) cos(πl)

=
2

N

N−1∑
l=0

f(xl) cos

(
2πlM

2M

)

=
2

N

N−1∑
l=0

f(xl) cos(Mxl).

Finally, consider

Ak = βk + βN−k =
1

N

N−1∑
l=0

f(xl)(e
−ikxl + e−i(N−k)xl).
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1. Interpolation 1.2. Trigonometric Interpolation

By Euler’s formula (1.2.1.4),

Ak =
2

N

N−1∑
l=0

f(xl) cos(kxl),

and

Bk = i(βk − βN−k)

=
i

N

N−1∑
l=0

f(xl)(e
−ikxl − e−i(N−k)xl)

=
2

N

N−1∑
l=0

f(xl) sin(kxl).

This completes the proof. □

Example 1.2.1.7. We construct the trigonometric polynomial of degree M = 2 given the
following data points: {

(0, 1),
(π
2
, 3
)
, (π,−5),

(
3π

2
, 2

)}
.

Note

A0 =
2

N

N−1∑
l=0

f(xl) cos(0)

=
1

2

3∑
l=0

f(xl)

=
1

2
[1 + 3− 5 + 2] =

1

2
,

A1 =
2

N

N−1∑
l=0

f(xl) cos(xl)

=
1

2

3∑
l=0

f(xl) cos(xl)

=
1

2

[
(1 · cos(0)) +

(
3 · cos

(π
2

))
+ (−5 · cos(π)) +

(
2 · cos

(
3π

2

))]
=

1

2
[1 + 5] = 3,

A2 =
2

N

N−1∑
l=0

f(xl) cos(2xl)

=
1

2

3∑
l=0

f(xl) cos(2xl)
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=
1

2
[(1 · cos(0)) + (3 · cos(π)) + (−5 · cos(2π)) + (2 · cos(3π))]

=
1

2
[1− 3− 5− 2] = −9

2
,

B1 =
2

N

N−1∑
l=0

f(xl) sin(xl)

=
1

2

N−1∑
l=0

f(xl) sin(xl)

=
1

2

[
(1 · sin(0)) +

(
3 · sin

(π
2

))
+ (−5 · sin(π)) +

(
2 · sin

(
3π

2

))]
=

1

2
[3− 2] =

1

2
.

Hence, the interpolating trigonometric polynomial is

Ψ(x) =
A0

2
+

1∑
k=1

(Ak cos(kx) +Bk sin(kx)) +
A2

2
cos(2x)

=
A0

2
+ A1 cos(x) +B1 sin(x) +

A2

2
cos(2x)

=
1

4
+ 3 cos(x) +

1

2
sin(x)− 9

4
cos(2x).

Moreover, the coefficients of the corresponding phase polynomial are

β0 =
A0

2
=

1/2

2
=

1

4
,

β1 =
1

2
(A1 − iB1) =

1

2

(
3− 1

2
i

)
=

3

2
− 1

4
i,

β3 =
1

2
(A1 + iB1) =

1

2

(
3 +

1

2
i

)
=

3

2
+

1

4
i,

β2 =
A2

2
=

−9/2

2
= −9

4
.

Thus, the corresponding phase polynomial is

p(x) = β0 + β1e
ix + β2e

2ix + β3e
3ix

=
1

4
+

(
3

2
− 1

4
i

)
eix − 9

4
e2ix +

(
3

2
+

1

4
i

)
e3ix.
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1.3. Interpolation by Spline Functions. Spline functions yield smooth interpolating
curves which are less likely to exhibit the large oscillations characteristic of polynomials
of high degree.

Definition 1.3.0.1 (Knot). Let

∆ : a = x0 < x1 < · · · < xn = b

be a partition of an interval [a, b]. The points xi, i = 0, 1, . . . , n, are called knots.

Given a partition ∆ : a = x0 < x1 < · · · < xn = b of [a, b], splines are piecewise
polynomial functions S : [a, b] → R, with certain smoothness properties that are composed
of polynomials, namely, the restrictions S|Ii of S to Ii := (xi−1, xi), i = 1, 2, . . . , n, are
polynomials.

In the following sections we describe the case of cubic splines, which are composed of
cubic polynomials, S|Ii ∈ Π3.

1.3.1. Theoretical Foundations. Throughout this section we let

∆ := {a = x0 < x1 < · · · < xn}
be a partition of the interval [a, b]. We first give the definition of a cubic spline function.

Definition 1.3.1.1 (Cubic Spline Function). A cubic spline function S∆ on ∆ is a real-
valued function S∆ : [a, b] → R with the properties:

(1) S∆ ∈ C2[a, b], that is, S∆ is twice continuously differentiable on [a, b].
(2) S∆ coincides on each subinterval [xi−1, xi], i = 1, 2, . . . , n with a polynomial of degree

at most three.

We see that a cubic spline function consists of cubic polynomials pieced together so
that their values and those of their first two derivatives coincide at the interior knots xi,
i = 1, 2, . . . , n− 1.

Definition 1.3.1.2 (Interpolating Spline Function). Let {fi}ni=0 be a finite sequence of n+1
real numbers. An interpolating spline function is a spline function

S∆(f, ·)
such that S∆(fi, xi) = fi for each i = 0, 1, . . . , n.

Note that an interpolating spline function S∆(f, ·) is not uniquely determined by the
sequence f of support ordinates. There are two degrees of freedom left, so we impose
additional requirements on S∆, known as the side/spline conditions.

Definition 1.3.1.3 (Common Side Conditions). Three common side conditions for an in-
terpolating cubic spline function are as follows:

(1) S ′′
∆(f, a) = S ′′

∆(f, b) = 0 (natural);

(2) S
(k)
∆ (f, a) = S

(k)
∆ (f, b), for k = 0, 1, 2 (periodic);

(3) S ′
∆(f, a) = f ′

0, S
′
∆(f, b) = f ′

n, for given numbers f ′
0, f

′
n (clamped).

We show later that each of these conditions ensures uniqueness of the interpolating spline
function S∆(f, ·).

We now present definitions that will allow us to establish the above result as well as a
characteristic minimum property of cubic spline functions.
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Definition 1.3.1.4 (Absolutely Continuous). A real–valued function f : [a, b] → R is said
to be absolutely continuous on the interval [a, b] if for every ϵ > 0 there exists δ > 0 such
that ∑

i

|f(bi)− f(ai)| < ϵ

for every finite set of intervals [ai, bi] with

a ≤ a1 < b1 < a2 < b2 < · · · < an < bn = b

and
∑

i |bi − ai| < δ.

We get the following properties for absolutely continuous functions.

Lemma 1.3.1.5. If f : [a, b] → R is absolutely continuous, then

(1) f is continuous;
(2) f ′ exists almost everywhere;
(3) f(x) = f(a) +

∫ x

a
f ′(t) dt for all x ∈ [a, b] (fundamental theorem of calculus);

(4)
∫ b

a
f(x)g′(x) dx = f(x)g(x)|ba −

∫ b

a
f ′(x)g(x) dx (integration by parts).

Definition 1.3.1.6 (Lp−space). The set L2[a, b] denotes the set of all real–valued square
integrable functions on [a, b], that is, ∫ b

a

|f(t)|2 dt

exists and is finite.

Definition 1.3.1.7 (κm). For a positive integer m, we define

κm[a, b]

to be the set of all real–valued functions f : [a, b] → R for which f (m−1) is absolutely contin-
uous on [a, b] and f (m) ∈ L2[a, b].

Definition 1.3.1.8 (κm
p ). We denote by

κm
p [a, b]

the subset of all functions f ∈ κm[a, b] such that f (k)(a) = f (k)(b) for each k = 0, 1, . . . ,m−1,
that is, f (k), k = 0, 1, . . . ,m− 1 is periodic.

Note that S∆ ∈ κ3[a, b], and moreover S∆(f, ·) ∈ κ3
p[a, b] if the periodic side conditions

are satisfied.
The structure of κm[a, b] allows us to endow the function space with a seminorm.

Definition 1.3.1.9 (κ2 Seminorm). Let f ∈ κ2[a, b]. We define the κ2[a, b] seminorm | · |κ2

by

|f |2κ2 :=

∫ b

a

|f ′′(x)|2 dx.

Note that |f |κ2 ≥ 0 for all f ∈ κ2[a, b]. However, | · |κ2 is not a full norm but only a
seminorm, for |f |κ2 = 0 may hold for functions f that are not identically zero, for example,
for all linear functions f(x) := mx+ b.
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Theorem 1.3.1.10. If f ∈ κ2[a, b], ∆ := {a = x0 < x1 < · · · < xn = b} is a partition of the
interval [a, b], and if S∆ is a spline function with knots xi ∈ ∆, then

|f − S∆|2κ2 = |f |2κ2 − |S∆|2κ2−

2

[
(f ′(x)− S ′

∆(x))S
′′
∆(x)|ba −

n∑
i=1

(f(x)− S∆(x))S
′′′
∆(x)|

x−
i

x+
i−1

]
.

Note that S ′′′
∆(x) is piecewise constant, with possible discontinuities at the interior knots

x1, x2, . . . , xn−1. We indicate by x−
i and x+

i−1 in the above theorem the left and right limits
of S ′′′

∆ at xi and xi−1, respectively.

Proof. By the definition of | · |, we have

|f − S∆|2 =
∫ b

a

|f ′′(x)− S ′′
∆(x)|2 dx

=

∫ b

a

|f ′′(x)|2 − 2f ′′(x)S ′′
∆(x) + |S ′′

∆(x)|2 dx

= |f |2 + |S∆|2 − 2

∫ b

a

f ′′(x)S ′′
∆(x) dx

= |f |2 − |S∆|2 − 2

∫ b

a

(f ′′(x)− S ′′
∆(x))S

′′
∆(x) dx.

Recalling that S
(k)
∆ , k = 0, 1, 2, 3 is defined piecewise, integrating by parts gives∫ b

a

(f ′′(x)− S ′′
∆(x))S

′′
∆(x) dx =

=
n∑

i=1

(f ′(x)− S ′
∆(x))S

′′
∆(x)|xi

xi−1
−

n∑
i=1

∫ xi

xi−1

(f ′(x)− S ′
∆(x))S

′′′
∆(x) dx

=
n∑

i=1

(f ′(x)− S ′
∆(x))S

′′
∆(x)|xi

xi−1
−

n∑
i=1

[
(f(x)− S∆(x))S

′′′
∆(x)|

x−
i

x+
i−1

−∫ xi

xi−1

(f(x)− S∆(x))S
(4)
∆ (x) dx

]
= (f ′(x)− S ′

∆(x))S
′′
∆(x)|ba −

n∑
i=1

(f(x)− S∆(x))S
′′′
∆(x)|

x−
i

x+
i−1

,

Since S
(4)
∆ ≡ 0 on [a, b] and

n∑
i=1

(f ′(x)− S ′
∆(x))S

′′
∆(x)|xi

xi−1

telescopes by the continuity of S ′′
∆. This completes the proof. □

We arrive at the minimum–norm property of spline functions.
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Theorem 1.3.1.11 (Minimum–Norm Property and Uniqueness of Cubic Spline). Given
a partition

∆ := {a = x0 < x1 < · · · < xn = b}
of the interval [a, b], values {fi}ni=0, and a function ϕ ∈ κ2[a, b] with ϕ(xi) = fi for each
i = 0, 1, . . . , n, then

|ϕ|κ2 ≥ |S∆(f, ·)|κ2 ,

and, more precisely,

|ϕ− S∆(f, ·)|2κ2 = |ϕ|2κ2 − |S∆(f, ·)|2κ2 ≥ 0

holds for every interpolating spline function S∆(f, ·), provided that one of the following
conditions is satisfied:

(1) S ′′
∆(f, a) = S ′′

∆(f, b) = 0 (natural),

(2) S
(k)
∆ (f, a) = S

(k)
∆ (f, b) for k = 0, 1, 2 (periodic),

(3) S ′
∆(f, a) = ϕ′(a), S ′

∆(f, b) = ϕ′(b) (clamped).

In each of these cases, the interpolating spline function S∆(f, ·) is uniquely determined.

Proof. We handle existence of the interpolating spline function by construction in the fol-
lowing section.

In each of the above three cases of side conditions, the expressions

(ϕ′(x)− S∆(x))S
′′
∆(x)|ba = 0

and
n∑

i=1

(ϕ(x)− S∆(x))S
′′′
∆(x)|

x−
i

x+
i−1

= 0

vanish in the identity (1.3.1.10). Thus

|ϕ− S∆(f, ·)|2κ2 = |ϕ|2κ − |S∆(f, ·)|2κ2 ≥ 0,

so that evidently

|ϕ|2κ2 ≥ |S∆(f, ·)|2κ2 .

This proves the minimum norm property of the interpolating spline function S∆(f, ·).
To show uniqueness, assume that S∆(f, ·) is another interpolating spline function having

the same properties as S∆(f, ·). Then S∆(f, ·) satisfies the same properties as ϕ in the
statement of (1.3.1.11), so letting S∆(f, ·) play the role of ϕ, the minimum norm property
of S∆(f, ·) implies that

|S∆(f, ·)− S∆(f, ·)|2κ2 = |S∆(f, ·)|2κ2 − |S∆(f, ·)|2κ2 ≥ 0.

Since S∆(f, ·) and S∆(f, ·) may switch roles, we have similarly

|S∆(f, ·)− S∆(f, ·)|2κ2 = |S∆(f, ·)|2κ2 − |S∆(f, ·)|2κ2 ≥ 0.

Evidently |S∆(f, ·)|2κ2 = |S∆(f, ·)|2κ2 . Thus

|S∆(f, ·)− S∆(f, ·)|2κ2 =

∫ b

a

∣∣∣S ′′
∆(f, x)− S ′′

∆(f, x)
∣∣∣2 dx = 0.
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By the continuity of S ′′
∆(f, ·) and S

′′
∆(f, ·), we have

S
′′
∆(f, x) ≡ S ′′

∆(f, x)

for all x ∈ [a, b]. Integrating, we obtain

S∆(f, x) = S∆(f, x) + cx+ d

for some c, d ∈ R. But observe that

S∆(f, a)− S∆(f, a) = 0 = cx+ d|x=a,

S∆(f, b)− S∆(f, b) = 0 = cx+ d|x=b,

and this implies that c = d = 0. Hence,

S∆(f, x) ≡ S∆(f, x)

for all x ∈ [a, b], which completes the proof. □

1.3.2. Determining Interpolating Cubic Spline Functions. In this section we construct cubic
spline functions which assume prescribed values at their knots and satisfy one of the side
conditions (1.3.1.11). In doing this we will have proved the existence of such spline functions.
We have already established uniqueness in (1.3.1.11).

Throughout this section,
∆ := {xi : i = 0, 1, . . . , n}

will be a fixed partition of the interval [a, b] by knots a = x0 < x1 < · · · < xn = b. We put

Y := {yi}ni=0,

a sequence of n+ 1 prescribed real numbers. Finally, we denote by Ij the subinterval

Ij := [xj−1, xj], j = 1, 2, . . . , n,

and
hj := xj − xj−1, j = 1, 2, . . . , n

will denote the length of each Ij.

Definition 1.3.2.1 (Moments). We call the values of the second derivatives at knots xj ∈ ∆,

Mj := S ′′
∆(Y, xj), j = 0, 1, . . . , n

of the interpolating spline function S∆(Y, ·) the moments Mj of S∆(Y, ·).

We will show that interpolating spline functions are characterized by their moments.
Recall that the second derivative S ′′

∆(Y, ·) coincides with a linear function in each subin-
terval Ij+1 = [xj, xj+1], j = 0, 1, . . . , n− 1, and that we can express these linear functions in
terms of the moments Mj by

S ′′
∆(Y, x) = Mj

xj+1 − x

hj+1

+Mj+1
x− xj

hj+1

,

for x ∈ [xj, xj+1]. By integration, we obtain

S ′
∆(Y, x) = −Mj

(xj+1 − x)2

2hj+1

+Mj+1
(x− xj)

2

2hj+1

+ Aj, (1.3.2.1)

S∆(Y, x) = Mj
(xj+1 − x)3

6hj+1

+Mj+1
(x− xj)

3

6hj+1

+ Aj(x− xj) +Bj,
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1. Interpolation 1.3. Interpolation by Spline Functions

for all x ∈ [xj, xj+1], j = 0, 1, . . . , n − 1, and where Aj, Bj are constants of integration.
Recalling that S∆(Y, xj) = yj and S∆(Y, xj+1) = yj+1 by supposition, we have

yj = S∆(Y, xj) = Mj
(xj+1 − xj)

3

6hj+1

+Bj = Mj

h2
j+1

6
+Bj,

yj+1 = S∆(Y, xj+1) = Mj+1
(xj+1 − xj)

3

6hj+1

+ Aj(xj+1 − xj) +Bj = Mj+1

h2
j+1

6
+ Ajhj+1 +Bj,

so that we arrive at the following equations for Aj and Bj :

Bj = yj −Mj

h2
j+1

6
, (1.3.2.2)

Aj =
1

hj+1

(
yj+1 −Mj+1

h2
j+1

6
−Bj

)
=

yj+1

hj+1

−Mj+1
hj+1

6
− yj

hj+1

+Mj
hj+1

6

=
yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj). (1.3.2.3)

This gives the following representation of the interpolating spline function S∆(Y, ·) in terms
of its moments Mj :

S∆(Y, x) = αj + βj(x− xj) + γj(x− xj)
2 + δj(x− xj)

3, (1.3.2.4)

for all x ∈ [xj, xj+1], and where

αj := S∆(Y, xj) = yj,

βj := S ′
∆(Y, xj) = −Mj

(xj+1 − xj)
2

2hj+1

+ Aj = −Mjhj+1

2
+ Aj

=
−Mjhj+1

2
+

yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj)

=
yj+1 − yj
hj+1

− 2Mj +Mj+1

6
hj+1,

γj :=
1

2
S ′′
∆(Y, xj) =

1

2
Mj,

δj :=
1

6
S ′′′
∆(Y, x

+
j ) =

−Mj

6hj+1

+
Mj+1

6hj+1

=
Mj+1 −Mj

6hj+1

.

This characterizes S∆(Y, ·) in terms of its momentsMj. It remains to calculate these moments
Mj.

Recall from (1.3.2.2) that

S ′
∆(Y, x) = −Mj

(xj+1 − x)2

2hj+1

+Mj+1
(x− xj)

2

2hj+1

+ Aj

=
yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj)−Mj

(xj+1 − x)2

2hj+1

+Mj+1
(x− xj)

2

2hj+1

.

The continuity of S ′
∆(Y, ·) at the interior knots x = xj, j = 1, 2, . . . , n − 1, namely, the

relations S ′
∆(Y, x

−
j ) = S ′

∆(Y, x
+
j ), yields n − 1 equations for the moments Mj. Inserting the
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1. Interpolation 1.3. Interpolation by Spline Functions

values from (1.3.2.2) into (1.3.2.1) gives for x ∈ [xj, xj+1] the following:

S ′
∆(Y, x

−
j ) =

yj − yj−1

hj

− hj

6
(Mj −Mj−1) +Mj

(xj − xj−1)
2

2hj

=
yj − yj−1

hj

− hjMj

6
+

hjMj−1

6
+

Mjhj

2

=
yj − yj−1

hj

+
hj

3
Mj +

hj

6
Mj−1,

and

S ′
∆(Y, x

+
j ) =

yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj)−Mj

(xj+1 − xj)
2

2hj+1

=
yj+1 − yj
hj+1

− hj+1

6
Mj+1 +

hj+1

6
Mj −

hj+1

2
Mj

=
yj+1 − yj
hj+1

− hj+1

3
Mj −

hj+1

6
Mj+1.

Since S ′
∆(Y, x

−
j ) = S ′

∆(Y, x
+
j ),

yj − yj−1

hj

+
hj

3
Mj +

hj

6
Mj−1 =

yj+1 − yj
hj+1

− hj+1

3
Mj −

hj+1

6
Mj+1,

which implies

hj

6
Mj−1 +

hj+1 − hj

3
Mj +

hj+1

6
Mj+1 =

yj+1 − yj
hj+1

− yj − yj−1

hj

(1.3.2.5)

for the interior moments, j = 1, 2, . . . , n−1. These are n−1 equations for the n+1 unknown
moments. We gain two further equations from each of the side conditions (1.3.1.11).

Case (1) [Natural spline]: S ′′
∆(Y, a) = M0 = 0 = Mn = S ′′

∆(Y, b).
Case (2) [Periodic spline]: Since S ′′

∆(Y, a) = S ′′
∆(Y, b), evidently M0 = Mn, so that

S ′
∆(Y, b) =

hn

6
Mn−1 +

hn + h1

3
Mn +

h1

6
M1

=
y1 − yn

h1

− yn − yn−1

hn

.

The condition S ′
∆(Y, a) is similar, recalling that the periodic case requires y0 = yn.

Case (3) [Clamped spline]: Since S ′
∆(Y, a) = f ′(a),

h1

3
M0 +

h1

6
M1 =

y1 − y0
h1

− S∆(Y, a)

=
y1 − y0

h1

− y′0,

and likewise

hn

6
Mn−1 +

hn

3
Mn = S ′

∆(Y, b)−
yn − yn−1

hn

= y′n −
yn − yn−1

hn

.
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1. Interpolation 1.3. Interpolation by Spline Functions

We can write these equations as well as those in (1.3.2.5) in the following format:

µjMj−1 + 2Mj + λjMj+1 = dj, j = 1, 2, . . . , n− 1,

where we define

λj :=
hj+1

hj + hj+1

,

µj := 1− λj =
hj

hj + hj+1

(1.3.2.6)

dj :=
6

hj + hj+1

(
yj+1 − yj
hj+1

− yj − yj−1

hj

)
For the side conditions, we proceed as follows for each of the three cases:

Case (1) [Natural spline]:

λ0 := 0, d0 := 0, µn := 0, dn := 0. (1.3.2.7)

Case (2) [Periodic spline]:

λ0 :=
h1

hn + h1

, µ0 :=
hn

hn + h1

, λn := λ0, µn := µ0, (1.3.2.8)

d0 :=
6

hn + h1

(
y1 − yn

h1

− yn − yn−1

hn

)
=: dn.

Case (3) [Clamped spline]:

λ0 := 1, d0 :=
6

h1

(
y1 − y1

h1

− y′0

)
, µ0 := 0, (1.3.2.9)

µn := 1, dn :=
6

hn

(
y′n −

yn − yn−1

hn

)
, λn := 0.

In cases (1) and (3) we get the following (n+ 1)× (n+ 1) system of linear equations for
the moments Mj : 

2 λ0 0 · · 0
µ1 2 λ1 ·
0 µ2 · · ·
· · · · 0
· · 2 λn−1

0 · · 0 µn 2




M0

M1

·
·
·

Mn

 =


d0
d1
·
·
·
dn

 . (1.3.2.10)

To avoid singularity in the periodic case (2), we have the following n × n linear system for
case (2): 

2 λ1 0 . . . 0 µ1

µ2 2 λ2 0 . . . 0

0 µ3 · · ...
... · · · 0
0 · 2 λn−1

λn 0 . . . 0 µn 2




M1

M2

·
·
·

Mn

 =


d1
d2
·
·
·
dn

 . (1.3.2.11)

Solving the systems (1.3.2.10) and (1.3.2.11) gives the moments Mj, j = (0, )1, 2, . . . , n.
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Note in particular that in (1.3.2.10) and (1.3.2.11) we have

µj ≥ 0, λj ≥ 0,

and moreover

µj + λj = 1

for j = 0, 1 . . . , n. Also, these coefficients µj and λj depend only on the partition ∆ and not
on the prescribed values yj ∈ Y.

The following result guarantees that these systems are always (uniquely) solvable.

Theorem 1.3.2.2 (Existence of Interpolating Spline Function). The systems (1.3.2.10) and
(1.3.2.11) of linear equations are nonsingular for any partition ∆ of [a, b].

Proof. Consider the (n+ 1)× (n+ 1) matrix

A :=


2 λ0 0 · · 0
µ1 2 λ1 ·
0 µ2 · · ·
· · · · 0
· · 2 λn−1

0 · · 0 µn 2


of the linear system (1.3.2.10). Since λj, µj ≥ 0 for each j = 0, 1, . . . , n, the matrix A has
the following property:

Az = w =⇒ max
j=0,1,...,n

|zj| ≤ max
j=0,1,...,n

|wj| (1.3.2.12)

for all vectors z, w ∈ Rn+1, z := [z0, z1, . . . , zn]
⊤, w := [w0, w1, . . . , wn]

⊤. Let r be such that
|zr| = maxj=0,1,...,n |zj|. From Az = w, we have

µrzr−1 + 2zr + λrzr+1 = wr,

where µ0 := 0 and λn := 0 if necessary. By the definition of r and the fact that µr + λr = 1,
it follows

max
j=0,1,...,n

|wj| ≥ |wr|

≥ 2|zr| − µr|zr−1| − λr|zr+1|
≥ 2|zr| − µr|zr| − λr|zr|
= (2− µr − λr)|zr|
= |zr| = max

j=0,1,...,n
|zj|.

By contradiction, suppose that the matrix A were singular. Then there exists a nontriv-
ial solution z ̸= 0 of the homogeneous system Az = 0, from which (1.3.2.12) yields the
contradiction

0 < max
j=0,1,...,n

|zj| ≤ 0,

so that evidently z = 0. In other words, z = 0 and z ̸= 0 simultaneously, and you should
really be ashamed of yourself for ever supposing the conclusion was not so.

The nonsingularity of the matrix in (1.3.2.11) is shown similarly. This completes the
proof. □
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1.3.3. Convergence Properties of Cubic Spline Functions. Recall that interpolating polyno-
mials may not converge to a function f whose values they interpolate, even if the partitions
∆ are chosen such that the fineness ∥∆∥ of the partition converges to zero (see section 1.1.4).
On the other hand, interpolating spline functions do converge towards f as ∥∆∥ approaches
zero, provided mild conditions on f and the partitions ∆ are satisfied.

We first show that the moments of the interpolating spline function S∆(Y, ·) converge to
the second derivatives of the given function f. For concreteness, fix a partition

∆ := {a = x0 < x1 < . . . , xn = b}
of the interval [a, b], and let

M := [M0,M1, . . . ,Mn]
⊤

be the vector of moments Mj of the interpolating spline function S∆(Y, ·) with yj := f(xj),
j = 0, 1, . . . , n, as well as the clamped side condition

S ′
∆(Y, a) = f ′(a), S ′

∆(Y, b) = f ′(b).

Note that the vector M of moments satisfies the equation

AM = d,

where

A :=


2 λ0 0 · · 0
µ1 2 λ1 ·
0 µ2 · · ·
· · · · 0
· · 2 λn−1

0 · · 0 µn 2


as in (1.3.2.10) and

d0 :=
6

h1

(
y1 − y0

h1

− y′0

)
, dn :=

6

hn

(
y′n −

yn − yn−1

hn

)
,

dj :=
6

hj + hj+1

(
yj+1 − yj
hj+1

− yj − yj−1

hj

)
, j = 1, 2, . . . , n− 1,

as in (1.3.2.6) of the previous section. Let F and r be the vectors

F :=


f ′′(x0)
f ′′(x1)

...
f ′′(xn)

 , r := d− AF = A(M − F ).

Denoting by ∥z∥∞ := maxj=0,1,...,n |zj| the infinity norm for vectors z ∈ Rn and

∥h∆∥∞ := max
j=0,1,...,n−1

|xj+1 − xj|

the fineness of the partition ∆, we get the following result.

Lemma 1.3.3.1 (Convergence of Moments). If f ∈ C4[a, b] and |f (4)(x)| ≤ L for all x ∈
[a, b], then

∥M − F∥∞ ≤ ∥r∥∞ ≤ 3

4
L∥h∆∥2∞.
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Proof. We start with r0. Note that

r0 = d0 − (AF )0

= d0 − 2f ′′(x0)− λ0f
′′(x1)

=
6

h1

(
y1 − y0

h1

− y′0

)
− 2f ′′(x0)− f ′′(x1),

since λ0 +µ0 = λ0 = 1. Using Taylor’s theorem to express y1 = f(x1) and f ′′(x1) in terms of
f about x0 gives

r0 =
6

h1

[
y1
h1

− y0
h1

− y′0

]
− 2f ′′(x0)− f ′′(x1)

=
6

h1

[
f(x0) + h1f

′(x0) +
h2
1

2
f ′′(x0) +

h3
1

6
f ′′′(x0) +

h4
1

24
f (4)(τ1)

h1

− f(x0)

h1

− h1f
′(x0)

h1

]
−

2f ′′(x0)−
[
f ′′(x0) + h1f

′′′(x0) +
h2
1

2
f (4)(τ2)

]
=

6

h1

[
h1

2
f ′′(x0) +

h2
1

6
f ′′′(x0) +

h3
1

24
f (4)(τ1)

]
− 2f ′′(x0)− f ′′(x0)− h1f

′′′(x0)−
h2
1

2
f (4)(τ2)

=

[
3f ′′(x0) + h1f

′′′(x0) +
h2
1

4
f (4)(τ1)

]
− 3f ′′(x0)− h1f

′′′(x0)−
h2
1

2
f (4)(τ2)

=
h2
1

4
f (4)(τ1)−

h2
1

2
f (4)(τ2),

for some τ1, τ2 ∈ [x0, x1]. Hence,

|r0| ≤
∣∣∣∣h2

1

4
f (4)(τ1)

∣∣∣∣+ ∣∣∣∣h2
1

2
f (4)(τ2)

∣∣∣∣
≤ h2

1

4
L+

h2
1

2
L

≤ 3

4
L∥h∆∥2∞.

Analogously, we find for

rn = dn − (AF )n = dn − f ′′(xn−1)− 2f ′′(xn)

that

|rn| ≤
3

4
L∥h∆∥2∞.

We now turn to the consideration of rj for j = 1, 2, . . . , n− 1. Observe

rj = dj − (AF )j = dj − µjFj−1 − 2Fj − λjFj+1 = dj − µjf
′′(xj−1)− 2f ′′(xj)− λjf

′′(xj+1)

=
6

hj + hj+1

(
yj+1 − yj
hj+1

− yj − yj−1

hj

)
− hj

hj + hj+1

f ′′(xj−1)− 2f ′′(xj)−
hj+1

hj + hj+1

f ′′(xj+1)

=
6

hj + hj+1

(
f(xj+1)

hj+1

− f(xj)

hj+1

− f(xj)

hj

− f(xj−1)

hj

)
− hj

hj + hj+1

f ′′(xj−1) −

2f ′′(xj)−
hj+1

hj + hj+1

f ′′(xj+1).
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Applying Taylor’s theorem about xj then gives

rj =
6

hj + hj+1

f(xj) + hj+1f
′(xj) +

h2
j+1

2
f ′′(xj) +

h3
j+1

6
f ′′′(xj) +

h4
j+1

24
f (4)(τ1)

hj+1

 −

f(xj)

hj+1

− f(xj)

hj

+

f(xj)− hjf
′(xj) +

h2
j

2
f ′′(xj)−

h3
j

6
f ′′′(xj) +

h4
j

24
f (4)(τ2)

hj

−

hj

hj + hj+1

[
f ′′(xj)− hjf

′′′(xj) +
h2
j

2
f (4)(τ3)

]
− 2f ′′(xj) −

hj+1

hj + hj+1

[
f ′′(xj) + hj+1f

′′′(xj) +
h2
j+1

2
f (4)(τ4)

]
=

6

hj + hj+1

[
hj+1

2
f ′′(xj) +

h2
j+1

6
f ′′′(xj) +

h3
j+1

24
f (4)(τ1) +

hj

2
f ′′(xj)−

h2
j

6
f ′′′(xj) +

h3
j

24
f (4)(τ2)

]
− hj

hj + hj+1

[
f ′′(xj)− hjf

′′′(xj) +
h2
j

2
f (4)(τ3)

]
− 2f ′′(xj)−

hj+1

hj + hj+1

[
f ′′(xj) + hj+1f

′′′(xj) +
h2
j+1

2
f (4)(τ4)

]
=

1

hj + hj+1

[
h3
j+1

4
f (4)(τ1) +

h3
j

4
f (4)(τ2)−

h3
j

2
f (4)(τ3)−

h3
j+1

2
f (4)(τ4)

]
,

for some τi ∈ [xj−1, xj+1], i = 1, 2, 3, 4. Thus

|rj| ≤
1

hj + hj+1

[
h3
j+1

4
L+

h3
j

4
L+

h3
j

2
L+

h3
j+1

2
L

]
=

1

hj + hj+1

[
3h3

j

4
L+

3h3
j+1

4
L

]
=

3

4
L

[
h3
j + h3

j+1

hj + hj+1

]
≤ 3

4
L∥h∆∥2∞

[
hj + hj+1

hj + hj+1

]
=

3

4
L∥h∆∥2∞.

This shows

∥r∥∞ ≤ 3

4
L∥h∆∥2∞.

Recall that since µj, λj ≥ 0 for all j = 0, 1, . . . , n and µj + λj = 1 for j = 1, 2, . . . , n− 1,
we have

max
j=0,1,...,n

|Mj − Fj| ≤ max
j=0,1,...,n

|rj|.

That is,
∥M − F∥∞ ≤ ∥r∥∞.

Hence,

∥M − F∥∞ ≤ ∥r∥∞ ≤ 3

4
L∥h∆∥2∞.

This completes the proof. □
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1. Interpolation 1.3. Interpolation by Spline Functions

We arrive at the main convergence result from this section.

Theorem 1.3.3.2 (Convergence of Interpolating Spline Functions). Suppose that f ∈
C4[a, b] and |f (4)(x)| ≤ L for all x ∈ [a, b]. Let ∆ be a partition ∆ := {a = x0 < x1 <
· · · < xn = b} of the interval [a, b], and K ∈ R a constant such that

∥h∆∥∞
|xj+1 − xj|

≤ K, j = 0, 1, . . . , n− 1.

If S∆ is the spline function that interpolates the values of the function f at the knots
xj ∈ ∆, j = 0, 1, . . . , n, and satisfies

S ′
∆(a) = f ′(a), S ′

∆(b) = f ′(b),

then there exist constants cr ≤ 2, which do not depend on the partition ∆, such that

|f (r)(x)− S
(r)
∆ (x)| ≤ crLK∥h∆∥4−r

∞ , r = 0, 1, 2, 3.

We note that the constantK ≥ 1 bounds the deviation of the partition ∆ from uniformity,
that is, K guarantees that there is no clustering of knots.

Proof. We begin with the case r = 3. Recall that, for x ∈ [xj−1, xj],

S ′′
∆(x) = Mj−1

xj − x

hj

+Mj
x− xj−1

hj

,

so that

S ′′′
∆(x) = −Mj−1

hj

+
Mj

hj

=
Mj −Mj−1

hj

.

Thus for all x ∈ [xj−1, xj],

S ′′′
∆(x)− f ′′′(x) =

Mj −Mj−1

hj

− f ′′′(x)

=
Mj − f ′′(xj)

hj

− Mj−1 − f ′′(xj−1)

hj

+
1

hj

[f ′′(xj)− f ′′(x) +

(f ′′(x)− f ′′(xj−1))]− f ′′′(x).

Using Taylor’s theorem to express the derivatives of f about x, we have

S ′′′
∆(x)− f ′′′(x) =

Mj − f ′′(xj)

hj

− Mj−1 − f ′′(xj−1)

hj

+
1

hj

[f ′′(x) + (xj − x)f ′′′(x) +

1

2
(xj − x)2f (4)(τ1)− f ′′(x)

]
+

1

hj

[f ′′(x)− (f ′′(x) +

(xj−1 − x)f ′′′(x) +
1

2
(xj−1 − x)2f (4)(τ2)

)]
− f ′′′(x)

=
Mj − f ′′(xj)

hj

− Mj−1 − f ′′(xj−1)

hj

+
1

hj

[
(xj − x)f ′′′(x) +

1

2
(xj − x)2f (4)(τ1) −

(xj−1 − x)f ′′′(x)− 1

2
(xj−1 − x)2f (4)(τ2)− hjf

′′′(x)

]
=

Mj − f ′′(xj)

hj

− Mj−1 − f ′′(xj−1)

hj

+
1

hj

[(xj − xj−1)f
′′′(x)− hjf

′′′(x) +
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1. Interpolation 1.3. Interpolation by Spline Functions

1

2
(xj − x)2f (4)(τ1)−

1

2
(xj−1 − x)2f (4)(τ2)

]
,

for some τ1, τ2 ∈ [xj−1, xj]. From (1.3.3.1) and the fact that hj = xj − xj−1, as well as
x− xj ≤ hj, we have

|f ′′′(x)− S ′′′
∆(x)| ≤

3

4
L
∥h∆∥2∞

hj

+
3

4
L
∥h∆∥2∞

hj

+
1

hj

[
1

2
L∥h∆∥2∞

]
=

3

2
L
∥h∆∥2∞

hj

+
L

2

∥h∆∥2∞
hj

= 2L
∥h∆∥2∞

hj

≤ 2L∥h∆∥∞.

Since K ≥ 1, we conclude that

|f ′′′(x)− S ′′′
∆(x)| ≤ 2LK∥h∆∥∞.

We now show the case r = 2. Let x ∈ [a, b]. There exists a closest knot xj. Without
loss of generality, assume that x < xj, so that x ∈ [xj−1, xj]. We may also assume that

|xj − x| ≤ hj

2
≤ 1

2
∥h∆∥∞. From (1.3.3.1) and the result for r = 3, we have

|f ′′(x)− S ′′
∆(x)| = f ′′(xj)− S ′′

∆(xj) +

∫ x

xj

(f ′′′(t)− S ′′′
∆(t)) dt

≤ 3

4
L∥h∆∥2∞ +

∫ x

xj

2LK∥h∆∥∞ dt

=
3

4
L∥h∆∥2∞ + (2LK∥h∆∥∞)|xt=xj

=
3

4
L∥h∆∥2∞ + 2LK∥h∆∥2∞(x− xj)

≤ 3

4
L∥h∆∥2∞ + LK∥h∆∥2∞

≤ 3

4
LK∥h∆∥2∞ + LK∥h∆∥2∞

=
7

4
LK∥h∆∥2∞,

since K ≥ 1. Hence,

|f ′′(x)− S ′′
∆(x)| ≤

7

4
LK∥h∆∥2∞.

We next consider r = 1. In addition to the boundary points ξ0 := a, ξn+1 := b, it follows
by Rolle’s theorem (1.1.4.1) that there exist n further points ξj ∈ [xj−1, xj], j = 1, 2, . . . , n,
such that

f ′(ξj) = S ′
∆(xj), j = 0, 1, . . . , n+ 1,

by the side conditions. Let x ∈ [a, b]. There exists a closest point ξj, for which we have that

|x− ξj| ≤ ∥h∆∥∞.

Thus

f ′(x)− S ′
∆(x) =

∫ x

ξj

(f ′′(t)− S ′′
∆(t)) dt.
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1. Interpolation 1.3. Interpolation by Spline Functions

By the result for r = 2,

|f ′(x)− S ′
∆(x)| ≤

∣∣∣∣∣
∫ x

ξj

(f ′′(t)− S ′′
∆(t)) dt

∣∣∣∣∣
≤
∫ x

ξj

7

4
LK∥h∆∥2∞ dt

=
7

4
LK∥h∆∥2∞(x− ξj)

≤ 7

4
LK∥h∆∥3∞.

This proves

|f ′(x)− S ′
∆(x)| ≤

7

4
LK∥h∆∥3∞.

Finally, we show r = 0. Let x ∈ [a, b] and recall that there exists a closest knot xj.
Without loss of generality, say x ≤ xj such that x ∈ [xj−1, xj] and |xj − x| ≤ 1

2
∥h∆∥∞. Note

that, by the fundamental theorem of calculus,

f(x)− S∆(x) =

∫ x

xj

(f ′(t)− S ′
∆(t) dt.

By the result for r = 1, it follows

|f(x)− S∆(x)| ≤
∫ x

xj

7

4
LK∥h∆∥3∞

=
7

4
LK∥h∆∥∞t|xt=xj

≤ 7

8
LK∥h∆∥4∞.

Hence,

|f(x)− S∆(x) ≤
7

8
LK∥h∆∥4∞,

which completes the proof. □

Note that Theorem (1.3.3.2) implies that for sequences

∆m := {a = x
(m)
0 < x

(m)
1 < · · · < x(m)

nm
= b}

of partitions with ∥h∆m∥∞ → 0 which satisfy the conditions of (1.3.3.2), the corresponding
interpolating spline functions S∆m that satisfy the hypotheses of (1.3.3.2) and their first two
derivatives converge uniformly to f and its first two derivatives on [a, b]. This is much different
from the case of standard polynomial interpolation, where the polynomial interpolant may
not converge even pointwise to f for an arbitrary partition.
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2. Function Approximation 2.1. Least Squares Approximation

2. Function Approximation

2.1. Least Squares Approximation. Least squares function approximation seeks to find
for a given f ∈ C[a, b] and positive integer n the polynomial pn ∈ Πn which minimizes the
least squares (L2[a, b]) error

∥f − pn∥2 :=
{∫ b

a

(f(x)− pn(x))
2 dx

}1/2

, (2.1.0.1)

so that for all q ∈ Πn we have{∫ b

a

(f(x)− pn(x))
2 dx

}1/2

≤
{∫ b

a

(f(x)− q(x))2 dx

}1/2

.
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2. Function Approximation 2.1. Least Squares Approximation

2.1.1. Orthogonal Polynomials and Least Squares Approximation. Let f ∈ C[a, b] and let
pn ∈ Πn be the polynomial of degree at most n that minimizes the L2[a, b] error∫ b

a

(f(x)− pn(x))
2 dx.

Since pn ∈ Πn, we may write

pn(x) =
n∑

k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n.

Define the minimizer

E(c0, c1, . . . , cn) =

∫ b

a

(f(x)− pn(x))
2 dx. (2.1.1.1)

Thus, the problem becomes one of finding coefficients c0, c1, . . . , cn for pn such that

E(c0, c1, . . . , cn) ≤
∫ b

a

(f(x)− q(x))2 dx

for all q ∈ Πn. Evidently, a necessary condition for the coefficients c0, c1, . . . , cn to minimize
(2.1.1.1) is that

∂E(c0, c1, . . . , cn)

∂cj
= 0, for each j = 0, 1, . . . , n.

Since

E(c0, c1, . . . , cn) =

∫ b

a

(f(x)− pn(x))
2 dx

=

∫ b

a

[f(x)]2 dx− 2

∫ b

a

f(x)pn(x) dx+

∫ b

a

[pn(x)]
2 dx

=

∫ b

a

[f(x)]2 dx− 2

∫ b

a

f(x)

[
n∑

k=0

ckx
k

]
dx+

∫ b

a

[
n∑

k=0

ckx
k

]2
dx

=

∫ b

a

[f(x)]2 dx− 2
n∑

k=0

ck

∫ b

a

xkf(x) dx+

∫ b

a

[
n∑

k=0

ckx
k

]2
dx,

we have for each j = 0, 1, . . . , n that

∂E(c0, c1, . . . , cn)

∂cj
= −2

∫ b

a

xjf(x) dx+ 2
n∑

k=0

ck

∫ b

a

xj+k dx. (2.1.1.2)

Rearranging (2.1.1.2), we find pn(x) by setting ∂E(c0,c1,...,cn
∂cj

= 0 for each j = 0, 1, . . . , n to get

the n+ 1 normal equations

n∑
k=0

ck

∫ b

a

xj+k dx =

∫ b

a

xjf(x) dx, j = 0, 1, . . . , n, (2.1.1.3)

that must be solved to obtain the n + 1 coefficients c0, c1, . . . , cn. The normal equations
always have a unique solution, provided that f ∈ C[a, b].
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2. Function Approximation 2.1. Least Squares Approximation

Example 2.1.1.1. Given f(x) = x2, we calculate the polynomial p ∈ Π1 that satisfies∫ 2

0

(f(x)− p(x))2 dx ≤
∫ 2

0

(f(x)− q(x))2 dx

for all q ∈ Π1. The normal equations for

p(x) := a0 + a1x

are:

a0

∫ 2

0

dx+ a1

∫ 2

0

x dx =

∫ 2

0

x2 dx,

a0

∫ 2

0

x dx+ a1

∫ 2

0

x2 dx =

∫ 2

0

x3 dx.

Performing the integration gives

2a0 + 2a1 =
8

3
,

2a0 +
8

3
a1 = 4.

Solving the above system gives

a0 = −2

3
, a1 = 2.

Thus

p(x) = −2

3
+ 2x.

Moreover, ∫ 2

0

(f(x)− p(x))2 =

∫ 2

0

(
2

3
− 2x+ x2

)2

dx = 0.

We now turn to a discussion of methods to solve the n + 1 normal equations (2.1.1.3).
Noting that ∫ b

a

xj+k dx =
1

j + k + 1
xj+k+1

∣∣∣∣b
a

=
1

j + k + 1

(
bj+k+1 − aj+k+1

)
,

observe that the solutions to the normal equations (2.1.1.3) are of the form
n∑

k=0

ck
j + k + 1

(
bj+k+1 − aj+k+1

)
=

∫ b

a

xkf(x) dx. (2.1.1.4)

The matrix of the (n + 1) × (n + 1) linear system obtained by (2.1.1.4) is known as the
Hilbert matrix

b− a 1
2
(b2 − a2) . . . 1

n
(bn − an)

1
2
(b2 − a2) b− a . . . 1

n−1
(bn−1 − an−1)

...
. . . . . .

...
1
n
(bn − an) 1

n−1
(bn−1 − an−1) . . . b− a

 .

A few problems arise:

(1) The Hilbert matrix is notorious for roundoff error difficulties;
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(2) The system (2.1.1.4) is dense (not sparse) and does not have an easily calculated
numerical solution;

(3) There is no indication of how to use the calculation of pn to obtain pn+1, that is, the
work done to find pn does not lessen the amount of work required to find pn+1.

Thus we are motivated to use a different polynomial basis for Πn than

B := {1, x, x2, . . . , xn}.

Definition 2.1.1.2 (Linear Independence). The set of functions {ϕ0, ϕ1, . . . , ϕn} is said to
be linearly independent on the interval [a, b] if whenever

n∑
k=0

ckϕk(x) = c0ϕ0(x) + c1ϕ1(x) + · · ·+ cnϕn(x) = 0

for all x ∈ [a, b], we have cj = 0 for all j = 0, 1, . . . , n.

Definition 2.1.1.3 (Linear Dependence). The set of functions {ϕ0, ϕ1, . . . , ϕn} is linearly
dependent if it is not linearly independent.

Example 2.1.1.4. We show that the set {1, x, x2, . . . , xn} is linearly independent on [a, b].
Let cj ∈ R, j = 0, 1, . . . , n be such that

p(x) :=
n∑

k=0

ckx
k = c0 + c1x+ · · ·+ cnx

n = 0

for all x ∈ [a, b]. Note that p is a polynomial of degree at most n such that

p(x) = 0

for all x ∈ [a, b]. Since [a, b] is uncountable, p must vanish identically, so that

p(x) ≡ 0

on [a, b]. From this it follows that p is the zero polynomial, so that cj = 0 for each j =
0, 1, . . . , n.

We get the following generalization of the above example.

Theorem 2.1.1.5. Suppose that, for each j = 0, 1, . . . , n, ϕj(x) is a polynomial of degree
precisely j. Then {ϕ0, ϕ1, . . . , ϕn} is linearly independent on any interval [a, b].

Proof. Let {ϕ0, ϕ1, . . . , ϕn} be a set of functions that satisfy the assumptions of (2.1.1.5) and
let cj ∈ R, j = 0, 1, . . . , n be such that

p(x) := c0ϕ0(x) + c1ϕ1(x) + · · ·+ cnϕn(x) = 0

for all x ∈ [a, b]. Since {1, x, . . . , xn} is linearly independent on [a, b], there exist coefficients
β0, β1, . . . , βn ∈ R such that

p(x) = β0 + β1x+ β2x+ · · ·+ βnx
n.

Thus the polynomial p vanishes identically on [a, b], so that βj = 0 for all j = 0, 1, . . . , n.
In particular, βn = 0. But cnϕn(x) is the only term in p that contains xn, so we must have
cn = βn = 0. Thus

p(x) =
n∑

k=0

ckϕk(x) =
n−1∑
k=0

ckϕk(x).
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Continuing in such fashion, it may be shown that the remaining constants cn−1, cn−2, . . . , c0
are all zero, from which it follows that {ϕ0, ϕ1, . . . , ϕn} is linearly independent on [a, b]. □

We get the following result from linear algebra.

Theorem 2.1.1.6. Suppose that {ϕ0, ϕ1, . . . , ϕn} is a collection of linearly independent poly-
nomials in Πn. Then any polynomial p ∈ Πn can be written uniquely as a linear combination
of ϕ0(x), ϕ1(x), . . . , ϕn(x).

Proof. By the invertible matrix theorem (1.1.5.1), it suffices to show uniqueness.
Let p ∈ Πn and suppose that there exist real coefficients αj, βj, j = 0, 1, . . . , n, such that

p(x) =
n∑

k=0

αkϕk(x) and p(x) =
n∑

k=0

βkϕk(x)

for all x ∈ [a, b]. Then(
n∑

k=0

αkϕk(x)

)
−

(
n∑

k=0

βkϕk(x)

)
=

n∑
k=0

(αk − βk)ϕk(x) = 0.

Since the set {ϕ0, ϕ1, . . . , ϕn} is linearly independent, we must have αj − βj = 0 for every
j = 0, 1, . . . , n, so that αj = βj for all j = 0, 1, . . . , n.

It follows that any p ∈ Πn can be written uniquely as a linear combination of
ϕ0(x), ϕ1(x), . . . , ϕn(x). □

We introduce the concepts of a weight function and orthogonality.

Definition 2.1.1.7 (Weight Function). An integrable function w is called a weight func-
tion on the interval [a, b] if w(x) ≥ 0 for all x ∈ [a, b] and w does not vanish identically on
any subinterval of [a, b], that is, the zero set

Z(w) := {x ∈ [a, b] : w(x) = 0}
has measure zero.

The purpose of the weight function w is to assign varying degrees of importance to ap-
proximations on certain portions of the interval [a, b]. For instance, the weight function

w(x) :=
1√

1− x2

places less emphasis on the center of the interval [−1, 1] and more emphasis when |x| is near
1.

We revisit the least squares problem with the addition of a weight function w. Let
{ϕ0, ϕ1, . . . , ϕn} be a set of linearly independent functions on [a, b] and let w be a weight
function on the interval [a, b]. Given f ∈ C[a, b], recall that we want a linear combination

p(x) :=
n∑

k=0

ckϕk(x)

to minimize the L2[a, b] error

E(c0, c1, . . . , cn) =

∫ b

a

w(x)

[
f(x)−

n∑
k=0

ckϕk(x)

]2
dx.
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For each j = 0, 1, . . . , n we have

∂E(c0, c1, . . . , cn)

∂cj
= 2

∫ b

a

w(x)

[
f(x)−

n∑
k=0

ckϕk(x)

]
ϕj(x) dx = 0.

Thus the normal equations (2.1.1.3) become∫ b

a

w(x)f(x)ϕj(x) dx =
n∑

k=0

ck

∫ b

a

w(x)ϕk(x)ϕj(x) dx, j = 0, 1, . . . , n. (2.1.1.5)

If we can choose the set of functions {ϕ0, ϕ1, . . . , ϕn} such that∫ b

a

w(x)ϕk(x)ϕj(x) dx =

{
0, k ̸= j,

αj, k = j,
(2.1.1.6)

then the normal equations (2.1.1.5) reduce to the remarkably simple system∫ b

a

w(x)f(x)ϕj(x) dx =
n∑

k=0

ck

∫ b

a

w(x)ϕk(x)ϕj(x) dx

= cj

∫ b

a

w(x)[ϕj(x)]
2 dx

= cjαj

for each j = 0, 1, . . . , n. From (2.1.1.5) and (2.1.1.6) we can solve for each cj, j = 0, 1, . . . , n
easily to find

cj =
1

αj

∫ b

a

w(x)f(x)ϕj(x) dx, j = 0, 1, . . . , n. (2.1.1.7)

We note here that the polynomials {ϕ0, ϕ1, . . . , ϕn} chosen such that (2.1.1.6) holds are said
to satisfy an orthogonality condition, and we can see that this greatly simplifies the least
squares approximation problem.

Definition 2.1.1.8 (Orthogonal Set of Functions). The set of functions {ϕ0, ϕ1, . . . , ϕn} is
said to be w−orthogonal on the interval [a, b] with respect to the weight functions w if∫ b

a

w(x)ϕk(x)ϕj(x) dx =

{
0, k ̸= j,

αj > 0, k = j.

Definition 2.1.1.9 (Orthonormal Set of Functions). Let {ϕ0, ϕ1, . . . , ϕn} satisfy the condi-
tions of (2.1.1.8). If, in addition,∫ b

a

w(x)[ϕj(x)]
2 dx := αj = 1

for each j = 0, 1, . . . , n, the set {ϕ0, ϕ1, . . . , ϕn} is called w−orthonormal on the interval
[a, b].

We get the following theorem.
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Theorem 2.1.1.10 (Construction of Least Squares Approximant). If {ϕ0, ϕ1, . . . , ϕn}
is an orthogonal set of functions on [a, b] with respect to the weight function w, then the
least squares approximation of f with respect to w is

p(x) =
n∑

k=0

cjϕj(x),

where, for each j = 0, 1, . . . , n,

cj :=

∫ b

a
w(x)f(x)ϕj(x) dx∫ b

a
w(x)[ϕj(x)]2 dx

=
1

αj

∫ b

a

w(x)f(x)ϕj(x) dx.

Proof. Let p ∈ Πn be the least squares approximant of f,

p(x) :=
n∑

k=0

ckϕk(x),

where cj and ϕj(x) are defined as in the statement of (2.1.1.10), j = 0, 1, . . . , n. If q ∈ Πn is
any other polynomial, then∫ b

a

w(x)(f(x)− q(x))2 dx (2.1.1.8)

=

∫ b

a

w(x)((f(x)− p(x)) + (p(x)− q(x)))2 dx

=

∫ b

a

w(x)(f(x)− p(x))2 dx+ 2

∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx +∫ b

a

w(x)(p(x)− q(x))2 dx

≥
∫ b

a

w(x)(f(x)− p(x))2 dx+ 2

∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx. (2.1.1.9)

We pass to the consideration of∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx.

First note that p− q ∈ Πn, so there exist real coefficients aj, j = 0, 1, . . . , n, such that

p(x)− q(x) =
n∑

k=0

akϕk(x).

Observe∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx

=

∫ b

a

w(x)(f(x)− p(x))

(
n∑

k=0

akϕk(x)

)
dx
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=
n∑

k=0

ak

∫ b

a

w(x)f(x)ϕk(x) dx−
n∑

k=0

ak

∫ b

a

w(x)p(x)ϕk(x) dx

=
n∑

k=0

ak

∫ b

a

w(x)f(x)ϕk(x) dx−
n∑

k=0

ak

∫ b

a

w(x)

(
n∑

l=0

clϕl(x)

)
ϕk(x) dx

=
n∑

k=0

ak

∫ b

a

w(x)f(x)ϕk(x) dx−
n∑

k=0

ak

n∑
l=0

cl

∫ b

a

w(x)ϕl(x)ϕk(x) dx.

By the orthogonality of the set {ϕ0, ϕ1, . . . , ϕn} and the assumption that

cj :=
1

αj

∫ b

a

w(x)f(x)ϕj(x) dx, j = 0, 1, . . . , n,

we have ∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx =
n∑

k=0

ak(ckαk)−
n∑

k=0

ak(ckαk) = 0.

Returning to (2.1.1.8) and (2.1.1.9), we have thus∫ b

a

w(x)(f(x)− q(x))2 dx ≥
∫ b

a

w(x)(f(x)− p(x))2 dx,

which completes the proof. □

We also have the following characterization of the least squares approximant.

Theorem 2.1.1.11. Let f ∈ C[a, b] and let w be a weight function on [a, b]. Then p is the
least squares approximation to f in Πn if and only if∫ b

a

w(x)(f(x)− p(x))q(x) dx = 0

for all q ∈ Πn.

Proof. First, suppose that ∫ b

a

w(x)(f(x)− p(x))q(x) dx = 0

holds for all q ∈ Πn. Then∫ b

a

w(x)(f(x)− q(x))2 dx =

∫ b

a

w(x)((f(x)− p(x)) + (p(x)− q(x)))2 dx

=

∫ b

a

w(x)(f(x)− p(x))2 dx+ 2

∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx+∫ b

a

w(x)(f(x)− q(x))2 dx

≥
∫ b

a

w(x)(f(x)− p(x))2 dx+ 2

∫ b

a

w(x)(f(x)− p(x))(p(x)− q(x)) dx.
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But since p− q ∈ Πn, the assumptions imply that the second term on the RHS is zero. Thus∫ b

a

w(x)(f(x)− q(x))2 dx ≥
∫ b

a

w(x)(f(x)− p(x))2 dx,

which proves that p is the least squares approximation to f.
Now for the converse assume that there exists q ∈ Πn such that∫ b

a

w(x)(f(x)− p(x))q(x) dx = α ̸= 0.

Then clearly

β :=

∫ b

a

w(x)(q(x))2 dx > 0.

Put λ := α
β
̸= 0. Then∫ b

a

w(x)(f(x)− p(x)− λq(x))2 dx

=

∫ b

a

w(x)(f(x)− p(x))2 dx− 2

∫ b

a

w(x)(f(x)− p(x))λq(x) dx +∫ b

a

w(x)(λq(x))2 dx

=

∫ b

a

w(x)(f(x)− p(x))2 dx− 2λα + λ2β

=

∫ b

a

w(x)(f(x)− p(x))2 dx− λ2β,

by definition of λ. But since λ2β > 0, we conclude that∫ b

a

w(x)(f(x)− p(x)− λq(x))2 <

∫ b

a

w(x)(f(x)− p(x))2 dx,

and since p + λq ∈ Πn, this implies that p is not the least squares approximation to f, a
contradiction.

This completes the proof. □

We next give a formula for the construction of w−orthogonal polynomials. It will be
helpful to first give the precise definition of the inner product on L2[a, b].

Definition 2.1.1.12 (L2− Inner Product). Let f, g ∈ L2[a, b] and let w be a weight function
on [a, b]. We define the weighted inner product ⟨f, g⟩ of f and g by

⟨f, g⟩ :=
∫ b

a

w(x)f(x)g(x) dx.
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Theorem 2.1.1.13 (Construction of w−Orthogonal Polynomials). There exist polyno-
mials ϕn ∈ Πn, n = 0, 1, . . . , such that

⟨ϕk, ϕj⟩ =
∫ b

a

w(x)ϕk(x)ϕj(x) dx = 0, k ̸= j.

These polynomials are uniquely defined by the recursion

ϕ0(x) := 1,

ϕ1(x) := x−B1, B1 :=
⟨xϕ0, ϕ0⟩
⟨ϕ0, ϕ0⟩

=

∫ b

a
xw(x) dx∫ b

a
w(x) dx

,

and, when k ≥ 2,
ϕk(x) := (x−Bk)ϕk−1(x)− C2

kϕk−2(x),

where

Bk :=
⟨xϕk−1, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

=

∫ b

a
xw(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕk−1(x)]2 dx

,

C2
k :=

⟨ϕk−1, ϕk−1⟩
⟨ϕk−2, ϕk−2⟩

=

∫ b

a
w(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕk−2(x)]2 dx

.

Proof. The proof follows from the Gram–Schmidt orthogonalization process and induction
on n. □

The last result from this section is the following useful corollary.

Corollary 2.1.1.14. Let {ϕ0, ϕ1, . . . , ϕn} be the w−orthogonal set of functions given in
(2.1.1.13). Then {ϕ0, ϕ1, . . . , ϕn} is linearly independent on [a, b] and∫ b

a

w(x)ϕn(x)Qk(x) dx = 0

for any polynomial Qk(x) of degree k < n.

Proof. First, note by the recursion (2.1.1.13) that each ϕk, k = 0, 1, . . . , n, is a polynomial of
degree precisely k. Since a set of polynomials with such a property is linearly independent
(2.1.1.5), it follows immediately that {ϕ0, ϕ1, . . . , ϕn} is a linearly independent set.

Now let Qk ∈ Πn be a polynomial of degree k < n. Since {ϕ0, ϕ1, . . . , ϕn} forms a basis
for Πn, there exist real coefficients aj, j = 0, 1, . . . , k such that

Qk(x) =
k∑

j=0

akϕk(x).

Since ⟨ϕn, ϕj⟩ = 0 for each j = 0, 1, . . . , k, we have
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∫ b

a

w(x)ϕn(x)Qk(x) dx =

∫ b

a

w(x)ϕn(x)

(
k∑

j=0

ajϕj(x)

)
dx

=
k∑

j=0

aj

∫ b

a

w(x)ϕn(x)ϕj(x) dx

= 0.

This completes the proof. □

Example 2.1.1.15. The Legendre polynomials are orthogonal on [−1, 1] with respect to
the weight function w(x) ≡ 1. Using the formulas given in (2.1.1.13), the first three Legendre
polynomials are

ϕ0(x) := 1,

B1 :=

∫ 1

−1
x dx∫ 1

−1
dx

,

ϕ1(x) := x−B1 = x− 0 = x,

B2 :=

∫ 1

−1
x3 dx∫ b

a
x2 dx

= 0,

C2
2 :=

∫ 1

−1
x2 dx∫ 1

−1
dx

=
1
3
x|1−1

x|1−1

=
2/3

2
=

1

3
,

ϕ2(x) := (x−B2)ϕ1(x)− C2
2ϕ0(x) = xϕ1(x)−

1

3
= x2 − 1

3
.

Example 2.1.1.16. Recalling the first example from this section, given f = x2, we use an
orthogonal basis given by (2.1.1.13) to calculate the polynomial p ∈ Π1 that satisfies∫ 2

0

(f(x)− p(x))2 dx ≤
∫ 2

0

(f(x)− q(x))2 dx

for all q ∈ Π1. The orthogonal polynomials are

ϕ0(x) = 1,

ϕ1(x) = x−
∫ 2

0
x dx∫ 2

0
dx

= x−
1
2
x2|20
x|20

= x− 2

2
= x− 1.

Now by (2.1.1.10) we find

c0 =

∫ 2

0
x2 dx∫ 2

0
dx

=
1
3
x3|20
x|20

=
8/3

2
=

4

3
,

and

c1 =

∫ 2

0
x2(x− 1) dx∫ 2

0
(x− 1)2 dx

=

∫ 2

0
x3 − x2 dx

1
3
(x− 1)3|20

=
1
4
x4 − 1

3
x3|20

2/3
=

4− 8
3

2/3
= 2.

Hence, the least squares approximation p to f is given by

p(x) := c0ϕ0(x) + c1ϕ1(x) =
4

3
+ 2(x− 1) =

4

3
+ 2x− 2 = −2

3
+ 2x.
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Note that this least squares approximant p is precisely the approximant p found in the first
example.

2.1.2. Chebyshev Polynomials and Economization of Power Series. The Chebyshev polyno-
mials {Tj(x)}nj=0 form a w−orthogonal basis for Πn on the interval [−1, 1] with respect to

the weight function w(x) := 1√
1−x2 . They may be constructed using (2.1.1.13); we construct

them using an alternative method here.
For x ∈ [−1, 1], we define the Chebyshev polynomials by

Tn(x) := cos(n arccos(x)), n ≥ 0. (2.1.2.1)

First note that
T0(x) = cos(0) = 1, T1(x) = cos(arccos(x)) = x.

We introduce the notation θ := arccos(x). Then we have

Tn(θ(x)) = Tn(θ) = cos(nθ), θ ∈ [0, π].

We obtain a recurrence relation by noting that

Tn+1(θ) = cos((n+ 1)θ) = cos(nθ + θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ),

Tn−1(θ) = cos((n− 1)θ) = cos(nθ − θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ).

Adding gives
Tn+1(θ) = 2 cos(nθ) cos(θ)− Tn−1(θ).

Since θ = arccos(x), evidently x = cos(θ), so that

Tn+1(x) = 2x cos(n arccos(x))− Tn−1(x) = 2xTn(x)− Tn−1(x).

Hence the recurrence relation for the construction of {Tn(x)} is as follows:

T0(x) := 1,

T1(x) := x, (2.1.2.2)

Tn(x) := 2xTn−1(x)− Tn−2(x), n ≥ 2.

Note from (2.1.2) that for all n ≥ 0, Tn(x) is a polynomial of degree n, and for n ≥ 1, Tn(x)
has leading coefficient 2n−1.

Example 2.1.2.1. The first five Chebyshev polynomials are

T0(x) = 1,

T1(x) = x,

T2(x) = 2xT1(x)− T0(x) = 2x(x)− 1 = 2x2 − 1,

T3(x) = 2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x,

T4(x) = 2xT3(x)− T2(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1.

We now show that {Tn(x)} is w−orthogonal with respect to the weight function

w(x) :=
1√

1− x2

on [−1, 1]. Consider∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ 1

−1

cos(n arccos(x)) cos(m arccos(x))√
1− x2

dx.
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Reintroducing θ := arccos(x), we have dθ = − 1√
1−x2dx, and∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

π

cos(nθ) cos(mθ) dθ =

∫ π

0

cos(nθ) cos(mθ) dθ.

Since

cos(nθ) cos(mθ) =
1

2
[cos((n+m)θ) + cos((n−m)θ)],

we have ∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
1

2

∫ π

0

cos((n+m)θ) dθ +
1

2

∫ π

0

cos((n−m)θ) dθ.

If n ̸= m,∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
1

2

[
1

n+m
sin((n+m)θ)

]π
0

+
1

2

[
1

n−m
sin((n−m)θ)

]π
0

=

[
1

2(n+m)
sin((n+m)θ)

]π
0

+

[
1

2(n−m)
sin((n−m)θ)

]π
0

= 0,

since n and m are integers.
If n = m, ∫ 1

−1

[Tn(x)]
2

√
1− x2

dx =
1

2

∫ π

0

cos(2nθ) dθ +
1

2

∫ π

0

dθ

=
1

2

[
1

2n
sin(2nθ)

]π
0

+
1

2
θ

∣∣∣∣π
0

=

[
1

4n
sin(2nθ)

]π
0

+
π

2

=
π

2
,

for n ≥ 1. Note if n = 0, then∫ 1

−1

[T0(x)]
2

√
1− x2

dx =

∫ 1

−1

1√
1− x2

= π.

The Chebyshev polynomials are frequently used to minimize approximation error. We
first give an important result regarding the zeros of the Chebyshev polynomials and their
first derivatives.
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Theorem 2.1.2.2 (Zeros and Extreme Values of the Chebyshev Polynomials). The
Chebyshev polynomial Tn(x) of degree n ≥ 1 has n simple zeros in [−1, 1] at

xk = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n.

Moreover, Tn(x) assumes its absolute extreme values in [−1, 1] at

zk = cos

(
kπ

n

)
, k = 0, 1, . . . , n,

with
Tn(zk) = (−1)k, k = 0, 1, . . . , n.

Proof. By definition of Tn and xk, k = 1, 2, . . . , n,

Tn(xk) = cos(n arccos(xk))

= cos

(
n arccos

(
cos

(
2k − 1

2n
π

)))
= cos

(
n

(
2k − 1

2n
π

))
= cos

(
2k − 1

2
π

)
= cos

(
kπ − π

2

)
= 0,

since k is an integer. Since the xk are distinct, note that these are distinct zeros. Furthermore

T ′
n(xk) =

n sin
(
n arccos

(
cos
(
2k−1
2n

π
)))√

1−
[
cos
(
2k−1
2n

π
)]2

=
n sin

(
n
(
2k−1
2n

))√
1−

[
cos
(
k
n
π − π

2n

)]2
=

n sin
(
kπ − π

2

)√
1−

[
cos
(
k
n
π − π

2n

)]2 ̸= 0,

so that the xk are simple zeros, k = 1, 2, . . . , n.
Also observe that

T ′
n(zk) =

n sin
(
n arccos

(
cos
(
kπ
n

)))√
1−

[
cos
(
kπ
n

)]2 =
n sin

(
n
(
kπ
n

))√
sin2

(
kπ
n

)
=

n sin(kπ)

sin
(
kπ
n

) = 0,
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for k = 1, 2, . . . , n− 1. Since T ′
n ∈ Πn−1, all of the n− 1 zeros of T ′

n occur at these points zk.
Including the endpoints z0 := −1 and zn := 1,

Tn(zk) = cos

(
n arccos

(
cos

(
kπ

n

)))
= cos

(
n

(
kπ

n

))
= cos(kπ)

= (−1)k, k = 0, 1, . . . , n.

Hence, |Tn| ≤ 1 on [−1, 1] and has n + 1 extreme values on [−1, 1]. This completes the
proof. □

We introduce the notion of a monic polynomial.

Definition 2.1.2.3 (Monic Polynomial). A monic polynomial is a polynomial in which
the leading coefficient is equal to 1, that is,

p(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0,

for some coefficients c0, c1, . . . , cn−1 ∈ R.

We will denote by Π̃n the set of all monic polynomials of degree exactly n. More precisely,

Π̃n :=

{
p ∈ Πn : p(x) := xn +

n−1∑
k=0

ckx
k, cj ∈ R, j = 0, 1, . . . , n− 1

}
.

The monic Chebyshev polynomials T̃n(x) are derived from the Chebyshev polynomials
Tn(x) by dividing by the leading coefficient 2n−1. We obtain

T̃0(x), and T̃n(x) =
1

2n−1
Tn(x), n = 1, 2, . . . . (2.1.2.3)

We also get the recurrence

T̃0(x) = 1,

T̃1(x) = x

T̃2(x) = xT̃1(x)−
1

2
T̃0(x) = x2 − 1

2
, (2.1.2.4)

...

T̃n(x) = xT̃n−1(x)−
1

4
T̃n−2(x), n ≥ 3, .

Noting that T̃n(x) is just a multiple of Tn(x), (2.1.2.2) implies that the zeros of T̃n(x),
n ≥ 1, also occur at

xk = cos

(
2k − 1

2n
π

)
, k = 0, 1, . . . , n,

and the extreme values of T̃n(x), n ≥ 1, occur at

zk = cos

(
kπ

n

)
, k = 0, 1, . . . , n,
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where

T̃n(zk) =
(−1)k

2n−1
, k = 0, 1, . . . , n,

by the construction.
From this construction we get an important minimization property of the monic Cheby-

shev polynomials T̃n(x) that distinguishes {T̃j(x)}nj=0 from other sets of polynomials in Π̃n.

Theorem 2.1.2.4 (Minimization Property of Monic Chebyshev Polynomials). The

monic Chebyshev polynomials T̃n(x), n ≥ 1, have the property

1

2n−1
= max

x∈[−1,1]

∣∣∣T̃n(x)
∣∣∣ ≤ max

x∈[−1,1]
|pn(x)|

for all pn ∈ Π̃n. Moreover, equality occurs only if pn = T̃n. In the case n = 0, we have

1 = max
x∈[−1,1]

∣∣∣T̃0(x)
∣∣∣ = T̃0(x).

Proof. If n = 0, then Π̃0 = {p(x) ≡ 1} and T̃0(x) ≡ 1, which establishes the result for this
case.

Now let n ≥ 1. Suppose that pn ∈ Π̃n and

max
x∈[−1,1]

|pn(x)| ≤
1

2n−1
= max

x∈[−1,1]

∣∣∣T̃n(x)
∣∣∣ .

Define the difference polynomial Q := T̃n − pn. Since both T̃n, pn ∈ Π̃n, they are both
monic polynomials of degree precisely n, so that Q is a polynomial of degree at most n− 1,

Q ∈ Πn−1. At the n+ 1 extreme points zk, k = 0, 1, . . . , n of T̃n, we have

Q(zk) = T̃n(zk)− pn(zk) =
(−1)k

2n−1
− pn(zk).

Since |pn(zk)| ≤ 1
2n−1 , k = 0, 1, . . . , n by the assumption, we have for k even

Q(zk) ≥ 0

and for k odd

Q(zk) ≤ 0.

Since Q is continuous, the intermediate value theorem implies that for each j = 0, 1, . . . , n−1,
there exists t ∈ [zj, zj+1] such that Q(t) = 0. Thus Q has n zeros in [−1, 1], and since Q has
degree at most n− 1, Q must vanish identically,

Q(x) ≡ 0.

This implies

pn ≡ T̃n,

which completes the proof. □

We immediately get the following corollary.
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Corollary 2.1.2.5. For any pn ∈ Π̃n, where n ≥ 1,

max
x∈[−1,1]

|pn(x)| ≥
1

2n−1
.

In the case n = 0,
max

x∈[−1,1]
|pn(x)| = pn(x) = 1.

We now show how the Chebyshev polynomials can be used to minimize the error in
polynomial interpolation. Recall the error formula (1.1.4.2)

f(x)− p(x) =
ω(x)fn+1(ξ)

(n+ 1)!
,

where

ω(x) :=
n∏

j=0

(x− xj).

Since n is prescribed and there is generally no control over ξ, we choose to minimize ω.

Noting that ω ∈ Π̃n+1, we have just shown that the minimum infinity norm of ω on [−1, 1]

is obtained when ω ≡ T̃n+1.
From (2.1.2.4) and the above observations comes the following important theorem regard-

ing the minimization of the error formula for the error in polynomial interpolation (1.1.4.2).

Theorem 2.1.2.6 (Error in Polynomial Interpolation at Chebyshev Zeros). Suppose
that p ∈ Πn is the unique interpolating polynomial of degree n of the function f with
support abscissas at the Chebyshev zeros xk, k = 1, 2, . . . , n + 1, of Tn+1(x). Then there
exists a number ξ ∈ [−1, 1] such that

max
x∈[−1,1]

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
|f (n+1)(ξ)|.

Proof. Let p ∈ Πn satisfy the hypotheses of (2.1.2.6). Recall from the formula for error in
polynomial interpolation (1.1.4.2) that there exists a number ξ ∈ [−1, 1] with

|f(x)− p(x)| = ω(x)f (n+1)(ξ)

(n+ 1)!
,

where

ω(x) :=
n∏

k=0

(x− xk),

provided that x ∈ [−1, 1]. But since each xk is the k−th zero of T̃n+1, k = 1, 2, . . . , n+1, we

have that ω coincides with T̃n+1, ω ≡ T̃n+1. Hence it follows by (2.1.2.4) that

|f(x)− p(x)| =

∣∣∣∣∣ T̃n+1(x)f
(n+1)(ξ)

(n+ 1)!

∣∣∣∣∣ ≤ 1

(n+ 1)
|f (n+1)(ξ)| max

x∈[−1,1]
|T̃n+1(x)|

=
1

2n(n+ 1)!
|f (n+1)(ξ)|,

which completes the proof. □
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Example 2.1.2.7. Let T2(x) be the standard Chebyshev polynomial on the domain [−1, 1].
Given f(x) = (1 + x

√
2)2, define p(x) to be the first-order polynomial that interpolates f at

the roots of T2. We calculate p.
Recall

T0(x) := 1,

T1(x) := x,

T2(x) := 2xT1(x)− T0(x) = 2x2 − 1.

Thus the roots of T2 are x = ±1
2
.

We have
k = 0 k = 1

x0 := −1
2

f [x0] = 3− 2
√
2

f [x0, x1] = 4
√
2

x1 :=
1
2

f [x1] = 3 + 2
√
2

Hence

p(x) = 3− 2
√
2 + 4

√
2

(
x+

1

2

)
.

Theorem (2.1.2.6) gives us about the tightest upper bound on the error we can achieve
without further knowledge of the function f. Note that we cannot always choose the nodes
in this fashion, however, and that choosing support abscissas at the Chebyshev zeros does
not guarantee that the interpolating polynomial p is the best approximation of f.

We now discuss methods to generalize the Chebyshev polynomials {Tn(x)} to an arbitrary
interval [a, b]. We can generalize the Chebyshev polynomials to the interval [a, b] by applying
an affine mapping

x̃ =
1

2
[(a+ b) + (b− a)x]

for numbers x ∈ [−1, 1]. That is, the numbers x ∈ [−1, 1] map to the numbers x̃ ∈ [a, b]. We
get the following theorem.

Theorem 2.1.2.8. The Chebyshev zeros can be generalized from the interval [−1, 1] to the
interval [a, b] by applying an affine mapping. In general, Tn(x) has the following n zeros on
the closed interval [a, b] :

x̃k =
1

2

[
(a+ b) + (b− a) cos

(
2k − 1

2n
π

)]
, k = 1, 2, . . . , n.

Proof. Denote the zeros of Tn(x) on the interval [−1, 1] by

xk = cos

(
2k − 1

2n
π

)
, k = 0, 1, . . . , n.

Recall that an affine mapping x̃ : [−1, 1] → [a, b] has the form

x̃(x) = λx+ β

for all x ∈ [−1, 1]. To map the endpoints of [−1, 1] to the endpoints of [a, b], we define this
affine mapping x̃ by

x̃(−1) := a = −λ+ β,

x̃(1) := b = λ+ β.
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Solving for λ and β gives

λ =
b− a

2
, β =

a+ b

2
,

so that x̃ is given by

x̃(x) =
1

2
[(a+ b) + (b− a)x] .

Furthermore, we have

x̃k = x̃(xk) =
1

2

[
(a+ b) + (b− a) cos

(
2k − 1

2n
π

)]
for each k = 1, 2, . . . , n, which completes the proof. □

We get the following analog to (2.1.2.4).

Theorem 2.1.2.9 (Minimization on Arbitrary Interval). Let p ∈ Πn on the interval [a, b] be
such that

p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n

for real coefficients cj, j = 0, 1, . . . , n. Then

max
x∈[a,b]

|p(x)| = max
x∈[a,b]

|c0 + c1x+ c2x
2 + · · ·+ cnx

n| ≥ |cn|
(b− a)n

22n−1
.

Proof. Let p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n. Set

q(x) := p

(
a+

b− a

2
(x+ 1)

)
.

Noting that q is simply p on the interval [−1, 1], we have that

max
x∈[a,b]

|p(x)| = max
x∈[−1,1]

|q(x)|.

The leading coefficient on q is

cn
(b− a)n

2n
.

Without loss of generality, we assume that p is of degree n, so that evidently cn ̸= 0. It
follows that

max
x∈[a,b]

|p(x)| = max
x∈[−1,1]

|q(x)|

= max
x∈[−1,1]

∣∣∣∣cn (b− a)n

2n
xn + cn−1x

n−1 + · · ·+ c1x+ c0

∣∣∣∣
=

(
|cn|

(b− a)n

2n

)
max

x∈[−1,1]

∣∣xn + an−1x
n−1 + · · ·+ a1x+ a0

∣∣
≥ |cn|

(b− a)n

2n

(
1

2n−1

)
= |cn|

(b− a)n

22n−1
.

Moreover, equality occurs only if

2n

cn(b− a)n
p(x) = Tn(x).
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This completes the proof. □

We arrive at the following interpolation minimization property for the interval [a, b].

Theorem 2.1.2.10. Suppose that p ∈ Πn is the unique interpolating polynomial of the
function f with support abscissas at the Chebyshev zeros xk, k = 1, 2, . . . , n+1 of Tn+1(x)
generalized to the interval [a, b]. Then there exists a number ξ ∈ [a, b] such that

max
x∈[a,b]

|f(x)− p(x)| ≤ (b− a)n+1

22n+1(n+ 1)!
|f (n+1)(ξ)|.

Proof. The proof follows immediately from (2.1.2.6) and (2.1.2.9). □

The last application of the Chebyshev polynomials is in reducing the degree of an ap-
proximating polynomial with minimal increase in error.

Consider approximating an arbitrary polynomial of degree n

pn(x) := c0 + c1x+ c2x
2 + · · ·+ cnx

n

on the interval [−1, 1] with a polynomial of degree at most n−1.We want to find a polynomial
pn−1 ∈ Πn−1 so that the quantity

max
x∈[−1,1]

|pn(x)− pn−1(x)|

is minimized.
Note that

1

cn
(pn(x)− pn−1)

is a monic polynomial of degree n. By the minimization property of the monic Chebyshev
polynomials (2.1.2.4), we have

max
x∈[−1,1]

∣∣∣∣ 1cn (pn(x)− pn−1(x))

∣∣∣∣ ≥ 1

2n−1
.

Equality occurs precisely when

1

cn
(pn(x)− pn−1(x)) = T̃n(x).

Rearranging, we see that we should choose

pn−1(x) = pn(x)− cnT̃n(x).

Then with this choice of pn−1 we have

max
x∈[−1,1]

|pn(x)− pn−1(x)| = |cn| max
x∈[−1,1]

|T̃n(x)| =
|cn|
2n−1

.
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2.2. Uniform Approximation.

2.2.1. Best Uniform Approximation. Let (V, ∥ · ∥) be a normed linear space and let W be a
subspace of V. The essence of the approximation problem is as follows: given a vector v ∈ V,
find a vector w ∈ W such that the distance from w to v is minimized, that is, find w∗ ∈ W
such that

∥v − w∗∥ ≤ ∥v − w∥ for all w ∈ W.

We call such a w∗ the best approximation to v out of W under ∥ · ∥.
We get the following theorem.

Theorem 2.2.1.1 (Existence and Uniqueness of Best Approximation). Let (V, ∥ · ∥) be
a normed linear space and W a finite-dimensional subspace of V. Then, for all v ∈ V,
there exists a unique w∗ ∈ W such that

∥v − w∗∥ ≤ ∥v − w∥
for all w ∈ W.

Proof. The proof is attributed to Tonelli. □

The space (V, ∥ · ∥) considered in this section is the space (C[a, b], ∥ · ∥∞) of continuous
functions on [a, b] under the infinity (uniform, supremum) norm

∥f∥∞ := sup
x∈[a,b]

|f(x)|, for f ∈ C[a, b].

Note that, letting W be the space Πn, (2.2.1.1) immediately gives the following result.

Theorem 2.2.1.2. Let f ∈ C[a, b]. Then there exists a unique p∗ in Πn such that

max
x∈[a,b]

|f(x)− p∗(x)| ≤ min
p∈Πn

max
x∈[a,b]

|f(x)− p(x)|.

Also note (2.2.1.2) is equivalent to the Stone–Weierstrass approximation theorem. That is,
given any f ∈ C[a, b], there exists a sequence {pn}∞n=1 of polynomials of degree n = 1, 2, . . . ,
converging uniformly to f on [a, b]. The remainder of this section characterizes the best
uniform approximation to such an f out of Πn.

Definition 2.2.1.3 (Error Function). Let f ∈ C[a, b] and let p∗ ∈ Πn be the best uniform
approximation to f out of Πn. We define the error function by

En(f ; [a, b]) := En(f) := ∥f − p∗∥∞ = max
x∈[a,b]

|f(x)− p∗(x)|.

Lemma 2.2.1.4. Let f ∈ C[a, b]. Then

E0(f) ≥ E1(f) ≥ E2(f) ≥ . . .

and, moreover,
lim

n→+∞
En(f) = 0.

Proof. Note first that the inequalities

E0(f) ≥ E1(f) ≥ E2(f) ≥ . . .

follow immediately from the nesting of the polynomial spaces

Π0 ⊂ Π1 ⊂ Π2 ⊂ . . . .
64



2. Function Approximation 2.2. Uniform Approximation

The fact that
lim

n→+∞
En(f) = 0

follows from the Stone–Weierstrass approximation theorem, which states that we may ap-
proximate f uniformly by polynomials to any desired tolerance. □

Let p∗ ∈ Πn be the best uniform approximation of f ∈ C[a, b]. Define the signed error

e(x) := f(x)− p∗(x)

and note ∥e(x)∥∞ = En(f). We get the following preliminary result.

Lemma 2.2.1.5. Let f ∈ C[a, b] and let p∗ ∈ Πn be the best uniform approximation of f.
Then there exist at least two distinct points x1, x2 ∈ [a, b] such that

|e(x1)| = En(f) = |e(x2)|
and

e(x1) = −e(x2).

Proof. The signed error function e(x) is continuous and bounded by its extreme values at
y = ±En(f) by definition. Moreover, by definition of En(f), e(x) has at least one extreme
value at ±En(f), say, without loss of generality, that there is x1 ∈ [a, b] such that e(x1) =
En(f).

By contradiction, suppose that e(x) > −En(f) throughout [a, b]. Define

min
x∈[a,b]

e(x) := m > −En(f)

and

c :=
En(f) +m

2
> 0.

Since c is a constant, note p := p∗ + c ∈ Πn. Then f(x) − p(x) = f(x) − (p∗(x) + c) =
f(x)− p∗(x)− c = e(x)− c, and

−(En(f)− c) = −((2c−m)− c) = m− c ≤ e(x)− c ≤ En(f)− c.

But since e(x)− c = f(x)− p(x), we have evidently

∥f − p∥∞ = En(f)− c,

a contradiction to the assumption that p∗ is the best uniform approximation of f. Thus there
must exist a point x2 ∈ [a, b] such that e(x2) = −En(f). This proves the result. □

As it turns out, for a best approximation p ∈ Πn, the signed error e(x) oscillates and
must touch the lines y = ±En(f) alternately n+2 times. This in fact characterizes the best
uniform approximation and gives the following important theorem.
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Theorem 2.2.1.6 (Chebyshev Equioscillation Theorem). Let f ∈ C[a, b]. Then a poly-
nomial p∗ ∈ Πn is the best uniform approximation to f out of Πn on [a, b] if and only if
there exists an alternating set of points xj, j = 1, 2, . . . , n+ 2,

a ≤ x1 < x2 < · · · < xn+2 ≤ b

in [a, b] such that e(x) assumes its extreme values with alternating signs

e(xj) = ±En(f), j = 1, 2, . . . , n+ 2,

and
e(xj) = −e(xj+1), j = 1, 2, . . . , n+ 1.

Before proving the theorem, note that it is biconditional. That is, only one polynomial
p ∈ Πn may have the equioscillation property as described in the statement of the theorem.
This means that a polynomial p ∈ Πn that has such an equioscillation property is a sufficient
condition to conclude that p the best uniform approximation to f out of Πn.

Proof. ( ⇐= ) Suppose that {xj}n+2
j=1 forms an alternating set for the signed error e(x) =

f(x)− p∗(x). We show that p∗ is the best uniform approximation to f out of Πn on [a, b].
By contradiction, suppose not. Then there exists p ∈ Πn such that

∥f − p∥∞ < ∥f − p∗∥∞.

In particular, since {xj}n+2
j=1 forms an alternating set,

|f(xj)− p(xj)| < ∥f − p∗∥∞ = |f(xj)− p∗(xj)|, j = 1, 2, . . . , n+ 2.

Then the difference

[f(xj)− p∗(xj)]− [f(xj)− p(xj)] = p(xj)− p∗(xj)

changes signs at xj for each j = 1, 2, . . . , n + 2. Since p − p∗ ∈ Πn, clearly the polynomial
p − p∗ is continuous, so that the intermediate value theorem implies that p − p∗ has a zero
in each subinterval [xj, xj+1], j = 1, 2, . . . , n+1. Thus p− p∗ must vanish identically, so that

p− p∗ ≡ 0,

and, moreover,
p ≡ p∗,

a contradiction to the hypotheses.
This proves the converse.
( =⇒ ) Note that, since e(x) is continuous on the closed interval [a, b], e(x) is uniformly

continuous on [a, b]. Put ϵ := En(f)
2

and select δ > such that

|e(x1)− e(x2)| < ϵ

for any x1, x2 ∈ [a, b] such that |x1 − x2| < δ. Let a partition

∆ := {a = z0 < z1 < · · · < zN = b}
be such that maxj=0,1,...,N−1 |zj+1 − zj| < δ.

Note by (2.2.1.5) that there exists at least one subinterval [zj, zj+1] such that e(x) = 2ϵ
and at least one subinterval [zj, zj+1] such that e(x) = −2ϵ. Denote by Ij, j = 1, 2, . . . ,m the
subintervals [zj, zj+1] such that e(x) achieves its extreme values ±2ϵ. Also note that either
e(x) > ϵ or e(x) < ϵ throughout each Ij, j = 1, 2, . . . ,m.
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Define σj(e) := sgn (e(x)) for each x ∈ Ij, j = 1, 2, . . . ,m. We wish to show that there are
at least n+1 sign changes in the sequence σ1(e), σ2(e), . . . , σm(e). By contradiction, suppose
that there are less than n+ 1 sign changes. We show that there is p ∈ Πn with p ̸= p∗ such
that

∥f − p∥∞ = max
x∈[a,b]

|f(x)− p(x)| < En(f).

Appealing again to (2.2.1.5), there is at least one sign change in σ1(e), σ2(e), . . . , σm(e).
Thus we may group the subintervals Ij, j = 1, 2, . . . ,m by common sign. Put

G1 := σ1(e) = σ2(e) = · · · = σj1(e) =⇒ {I1, I2, . . . , Ij1},
G2 := σj1+1(e) = σj1+2(e) = · · · = σj2(e) =⇒ {Ij1+1, Ij1+2, . . . , Ij2},

...

Gk := σjk−1+1 = σjk−1+2 = · · · = σjk =⇒ {Ijk−1+1, Ijk−1+2, . . . , Ijk}
with jk = m. Each subset Gj, j = 1, 2, . . . , k contains at least one element, and we have k−1
sign changes. For a contradiction, assume that k < n + 2, so that there are k − 1 < n + 1
changes of sign. Since σji ̸= σji+1 for i = 1, 2, . . . , k, it is clear that the closed subintervals
Iji ̸= Iji+1

are disjoint. We can therefore choose points t1, t2, . . . , tk−1 with the property that
ti > x for all x ∈ Iji and ti < x for all x ∈ Iji+1

, for i = 1, 2, . . . , k − 1. Form the polynomial

q(x) :=
k−1∏
i=1

(ti − x) = (t1 − x)(t2 − x) . . . (tk−1 − x).

Since k − 1 ≤ n, we have evidently that q ∈ Πk−1 ⊆ Πn. Also note that q vanishes only
at xi, i = 1, 2, . . . , k − 1, and is nonzero elsewhere, so that q has constant sign on each Ij,
j = 1, 2, . . . ,m, and thus each group Gi, i = 1, 2, . . . , k. Moreover, q has the property that

sgn (q) + − + . . .
Group 1 2 3 . . .

Therefore either sgn (q) = sgn (e) or sgn (q) = −sgn (e) for all Ij simultaneously. Define

ℓ(x) :=

{
q(x), sgn (q) = sgn (e) throughout I1,

−q(x), otherwise.

Then sgn (ℓ) = sgn (e) on each Ij, j = 1, 2, . . . ,m.
Next, put

S := [a, b]] \

(
m⋃
j=1

Ij

)
and define

E ′
n := max

x∈S
|e(x)|.

Then E ′
n < En. Construct

p(x) := p∗(x) + λℓ(x),

where λ is such that

0 < λ <
1

2maxx∈[a,b] |ℓ(x)|
(En − E ′

n).
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We now show that maxx∈[a,b] |f − p| < 2ϵ for a contradiction. On any interval Ij with
e(x) > 0, then ℓ(x) > 0 by the construction, and we have

0 < λℓ(x) <
ℓ(x)

2maxx∈[a,b] |ℓ(x)|
(En − E ′

n)

≤ En − E ′
n

2
≤ En

2
< e(x)

on Ij, j = 1, 2, . . . ,m. That is, e(x)− λℓ(x) > 0 throughout Ij. Thus

∥f − p∥∞ = ∥f − (p∗ + λℓ)∥∞
= ∥e− λℓ∥∞
= e− λℓ

≤ En(f)− λmin
x∈Ij

ℓ(x)

< En(f),

since λ > 0 and ℓ does not vanish on Ij, j = 1, 2, . . . ,m. A similar argument applies in the
case that e(x) < 0 on Ij.

It only remains to show that ∥f − p∥∞ < ∥f − p∗∥∞ on

S = [a, b] \

(
m⋃
j=1

Ij

)
.

Throughout S, we have

∥f − p∥∞ = max
x∈S

|e− λℓ|

≤ max
x∈S

|e|+ ℓmax
x∈S

|ℓ(x)|

< E ′
n +

maxx∈S |ℓ(x)|
2maxx∈[a,b] |ℓ(x)|

(En − E ′
n)

≤ E ′
n +

1

2
(En − E ′

n)

< En,

since E ′
n < En. Hence, we have shown that ∥f − p∥∞ < ∥f − p∗∥∞, a contradiction to the

assumption that p∗ is the best uniform approximation to f out of Πn on [a, b].
This completes the proof of the theorem. □

The next theorem establishes uniqueness of the best uniform approximation.

Theorem 2.2.1.7 (Uniqueness of Best Uniform Approximation). If p∗ ∈ Πn is a best uni-
form approximation to f ∈ C[a, b] out of Πn on [a, b], then p∗ is unique. More precisely, if
p ∈ Πn and p ̸= p∗, then

∥f − p∥∞ > ∥f − p∗∥∞.

Proof. Suppose that p and p∗ are both best uniform approximations to f ∈ C[a, b] out of
Πn, so that

∥f − p∥∞ = ∥f − p∗∥∞ = En(f).
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Then

q :=
p∗ + p

2
is also a best uniform approximation to f, for

∥f − q∥∞ =

∥∥∥∥12(f − p∗) +
1

2
(f − p)

∥∥∥∥
∞

≤ 1

2
∥f − p∗∥∞ +

1

2
∥f − p∥∞ = En(f),

and equality holds since p, p∗ are both best uniform approximations.
By (2.2.1.6), there exists an alternating set {x1, x2, . . . , xn+2} for f − q. Thus for some

integer l = 0, 1, we have

f(xj)− q(xj) =
f(xj)− p∗(xj)

2
+

f(xj)− p(xj)

2
= (−1)l+jEn(f), j = 1, 2, . . . , n+ 2.

(2.2.1.1)
Since

1

2
∥f − p∗∥∞ =

1

2
En(f) and

1

2
∥f − p∥∞ =

1

2
En(f),

(2.2.1.1) can hold only if

f(xj)− p∗(xj) = f(xj)− p(xj) = (−1)l+jEn(f), j = 1, 2, . . . , n+ 2.

Thus we see that

p∗(xj) = p(xj), j = 1, 2, . . . , n+ 2,

which implies that

p ≡ p∗.

This completes the proof. □

Example 2.2.1.8. Let f(x) = 2
1+x

and p(x) = 11
6
− x, for x ∈ [0, 1]. We show that p is not

the best uniform approximant to f out of Π1[0, 1].
Observe that

e(x) = (f − p)(x) = f(x)− p(x) =
2

1 + x
− 11− 6x

6

=
12− (11− 6x)(1 + x)

6(1 + x)

=
12− (11 + 5x− 6x2)

6(1 + x)

=
6x2 − 5x+ 1

6(1 + x)

=
(1− 3x)(1− 2x)

6 + 6x
.

However, we note

max
x∈[0,1]

|e(x)| = 1

6
,

and e(0) = e(1) = 1
6
. Moreover, x = 0, 1 are the only values for which this extreme value is

achieved. We conclude that p is not the best uniform approximation to f.
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3. Numerical Quadrature

In this section, we wish to calculate the definite integral of a real–valued function f(x)
on the interval [a, b] : ∫ b

a

f(x) dx.

Recall that for some simple integrands f(x), the indefinite integral∫ t

f(x) dx = F (t), F ′(x) = f(x),

can be obtained in closed form. It then follows from the fundamental theorem of calculus
that ∫ b

a

f(x) dx = F (b)− F (a).

As a general rule, however, definite integrals are often computed using discretization
methods which approximate the integral by finite sums corresponding to a partition of the
interval [a, b]. This process is known as numerical quadrature.

3.1. The Integration Formulas of Newton and Cotes.

3.1.1. Newton–Cotes Formulas. We first give the definition of a quadrature rule.

Definition 3.1.1.1 (Quadrature Rule, Quadrature Weights). A quadrature rule is a

method that approximates the definite integral
∫ b

a
f(x) dx by

n∑
j=0

αjf(xj) ≈
∫ b

a

f(x) dx.

Moreover, the numbers αj, j = 0, 1, . . . , n are called the quadrature weights, whose values
may depend only on the choice of n, but not on a, b, or f.

In this section, we consider the definite integral∫ b

a

f(x) dx.

We obtain the integration formulas of Newton and Cotes if the integrand f(x) is replaced

by an interpolating polynomial p(x) and then take
∫ b

a
p(x) dx as an approximation for∫ b

a
f(x) dx.
For the Newton–Cotes formulas, we must have a uniform partition of the interval [a, b],

xj := a+ jh, j = 0, 1, . . . , n,

of step length h := b−a
n
, for n > 0. Let pn ∈ Πn be the interpolating polynomial of degree n

or less with

pn(xj) = f(xj) =: fj, j = 0, 1, . . . , n.

By Lagrange’s interpolation formula (1.1.1.3),

pn(x) =
n∑

j=0

fjLj(x)
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=
n∑

j=0

fj

n∏
k=0
k ̸=j

x− xk

xj − xk

=
n∑

j=0

fj

n∏
k=0
k ̸=j

x− (a+ kh)

(a+ jh)− (a+ kh)
.

Now let the variable t be such that x = a+ th. Then

pn(x) =
n∑

j=0

fj

n∏
k=0
k ̸=j

(a+ th)− (a+ kh)

(a+ jh)− (a+ kh)

=
n∑

j=0

fj

n∏
k=0
k ̸=j

th− kh

jh− kh

=
n∑

j=0

fj

n∏
k=0
k ̸=j

t− k

j − k
.

Define

φj(t) := Lj(x) =
n∏

k=0
k ̸=j

t− k

j − k
.

Integration by substitution x = a+ th gives∫ b

a

f(x) dx ≈
∫ b

a

pn(x) dx =

∫ b

a

n∑
j=0

fjLj(x) dx

= h
n∑

j=0

fj

∫ n

0

φj(t) dt

= h

n∑
j=0

fjαj,

where the quadrature weights αj, j = 0, 1, . . . , n are such that

αj :=

∫ n

0

φj(t) dt

and αj depends only on n for each j = 0, 1, . . . , n.
For any natural number n, the Newton–Cotes formulas∫ b

a

pn(x) dx = h
n∑

j=0

fjαj = h
n∑

j=0

fj

∫ n

0

n∏
k=0
k ̸=j

t− k

j − k
dt, fj := f(a+ jh), h :=

b− a

n

provide approximate values for
∫ b

a
f(x) dx.
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Theorem 3.1.1.2. If f is a polynomial of degree k, then selecting n ≥ k in the Newton–Cotes
formulas gives ∫ b

a

f(x) dx =

∫ b

a

pn(x) dx.

That is, quadrature is exact on Πn.

Proof. The proposition follows immediately from the uniqueness of polynomial interpolation
(1.1.1.1), noting that choosing n ≥ k gives

pn ≡ f

on [a, b]. □

Theorem 3.1.1.3. Let αj, j = 0, 1, . . . , n be the weights for a Newton–Cotes quadrature
rule. Then

n∑
j=0

αj = n.

Proof. By (3.1.1.2), choosing any integer n > 0 implies that the Newton–Cotes formulas
integrate f(x) ≡ 1 exactly. Moreover, in the case f(x) ≡ 1, we have evidently that fj = 1
for each j = 0, 1, . . . , n. Thus

b− a =

∫ b

a

dx =

∫ b

a

f(x) dx

= h
n∑

j=0

fjαj

= h
n∑

j=0

αj.

That is,

b− a = h
n∑

j=0

αj.

Recalling that h = b−a
n
, we have

n∑
j=0

αj = n.

□

If s is a common denominator for the weights αj so that the numbers

σj := sαj, j = 0, 1, . . . , n

are integers, then the Newton–Cotes formulas may be written∫ b

a

f(x) dx ≈
∫ b

a

pn(x) dx = h
n∑

j=0

fjαj

=
h

s

n∑
j=0

fjσj =
b− a

ns

n∑
j=0

fjσj.
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Example 3.1.1.4 (Trapezoid Rule). The trapezoid rule is obtained by the Newton–Cotes
formulas in the case n = 1. Then h = b− a, so that f0 = a and f1 = b. Observe that

α0 =

∫ 1

0

t− 1

0− 1
dt =

∫ 1

0

1− t dt = t− 1

2
t2
∣∣∣∣1
0

= 1− 1

2
=

1

2

and

α1 =

∫ 1

0

t− 0

1− 0
dt =

∫ 1

0

t dt =
1

2
t2
∣∣∣∣1
0

=
1

2
.

Hence we have the approximation∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx = (b− a)
1∑

j=0

fjαj =
b− a

2
(f(a) + f(b)).

This is the trapezoid rule.

Example 3.1.1.5 (Simpson’s Rule). Simpson’s Rule is obtained by the Newton–Cotes
formulas in the case n = 2. Then h = b−a

2
, so that f0 = a, f1 = a+b

2
, and f2 = b. Observe

further

α0 =

∫ 2

0

(t− 1)(t− 2)

(0− 1)(0− 2)
dt =

1

2

∫ 2

0

t2−3t+2 dt =
1

2

[
1

3
t3 − 3

2
t2 + 2t

]2
0

=
1

2

[
8

3
− 6 + 4

]
=

1

3
,

α1 =

∫ 2

0

(t− 0)(t− 2)

(1− 0)(1− 2)
dt = −

∫ 2

0

t2 − 2t dt = −
[
1

3
t3 − t2

]2
0

= −
[
8

3
− 4

]
=

4

3
,

and

α2 =

∫ 2

0

(t− 0)(t− 1)

(2− 0)(2− 1)
dt =

1

2

∫ 2

0

t2 − t dt =
1

2

[
1

3
t3 − 1

2
t2
]2
0

=
1

2

[
8

3
− 2

]
=

1

3
.

Hence we have the approximation∫ b

a

f(x) dx ≈
∫ b

a

p2(x) dx =
b− a

2

2∑
j=0

fjαj

=
b− a

2

[
1

3
f(a) +

4

3
f

(
a+ b

2

)
+

1

3
f(b)

]
,

or ∫ b

a

f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

This is Simpson’s rule.

Example 3.1.1.6. We discuss more rigorous methods for deriving the error in Newton–
Cotes quadrature in the following section, but observe, for the trapezoid rule, that by (1.1.4.2)
we have

(f − p1)(x) =
f (2)(ξ)

2
(x− a)(x− b)

for some ξ ∈ [a, b]. Letting I(f) =
∫ b

a
f(x) dx and Ĩ1(f) the trapezoidal approximation, we

have

I(f)− Ĩ1(f) =

∫ b

a

f ′′(ξ)

2
(x− a)(x− b) dx =

1

2

∫ b

a

f ′′(ξ)(x− a)(x− b) dx.

73



3. Topics in Integration 3.1. The Integration Formulas of Newton and Cotes

Since (x − a)(x − b) does not change sign on [a, b], we have by the weighted mean value
theorem for integrals that

I(f)− Ĩ1(f) =
f ′′(ξ)

2

∫ b

a

x2 − (a+ b)x+ ab dx

=
f ′′(ξ)

2

[
1

3
x3 − a+ b

2
x2 + abx

]b
a

=
f ′′(ξ)

2

[
−(b− a)3

6

]
= −h3

12
f ′′(ξ).

Example 3.1.1.7. Similarly to the previous example, we see that for Simpson’s rule, (1.1.4.2)
implies that

(f − p2)(x) =
f ′′′(ξ)

6
(x− a)

(
x− a+ b

2

)
(x− b)

for some ξ ∈ [a, b]. Thus

I(f)− Ĩ2(f) =
1

6

∫ b

a

f ′′′(ξ)(x− a)

(
x− a+ b

2

)
(x− b) dx

=
1

6

∫ a+b
2

a

f ′′′(ξ)(x− a)

(
x− a+ b

2

)
(x− b) dx +

1

6

∫ b

a+b
2

f ′′′(ξ)(x− a)

(
x− a+ b

2

)
(x− b) dx.

By the weighted mean value theorem for integrals,

I(f)− Ĩ2(f) =
f ′′′(ξ1)

6

∫ a+b
2

a

(x− a)

(
x− a+ b

2

)
(x− b) dx +

f ′′′(ξ2)

6

∫ b

a+b
2

(x− a)

(
x− a+ b

2

)
(x− b) dx

=
f ′′′(ξ1)

6

(
(b− a)4

64

)
+

f ′′′(ξ2)

6

(
−(b− a)4

64

)
=

h4

24
(f ′′′(ξ1)− f ′′′(ξ2)),

for some ξ1 ∈
(
a, a+b

2

)
and ξ2 ∈

(
a+b
2
, b
)
. If we assume that f ∈ C4[a, b], then the mean value

theorem implies that there exists ξ ∈ (a, b) such that

f (4)(ξ) =
f ′′′(ξ1)− f ′′′(x2)

ξ1 − ξ2
.

Thus

I(f)− Ĩ2(f) =
h4(ξ1 − ξ2)

24
f (4)(ξ).

We show in the next section that a higher–order error term for Simpson’s rule may be derived.
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The Newton–Cotes formulas are generally not applied to the entire interval [a, b], since the
resulting quadrature error may be very large. Instead, we apply Newton–Cotes to a partition
of [a, b] and then approximate the full integral by taking the sum of approximations to the
subintegrals. The resulting quadrature rule is called a composite rule.

Example 3.1.1.8 (Composite Trapezoid Rule). Let

xj := a+ jh, j = 0, 1, . . . , n, h :=
b− a

n

be a partition of the interval [a, b]. The trapezoid rule provides the approximation∫ xj+1

xj

f(x) dx ≈ h

2
[f(xj) + f(xj+1)] =: Ĩj(f)

on each subinterval [xj, xj+1], j = 0, 1, . . . , n− 1. For the entire interval [a, b], we have∫ b

a

f(x) dx =
n−1∑
j=0

∫ xj+1

xj

f(x) dx

≈ h

2

n−1∑
j=0

[f(xj) + f(xj+1)]

=
h

2
[f(a) + 2f(a+ h) + 2f(a+ 2h) + · · ·+ 2f(b− h) + f(b)].

This is the composite trapezoid rule.

Example 3.1.1.9 (Total Error for Composite Trapezoid Rule). In the next section, we will
show that in each subinterval [xj, xj+1], j = 0, 1, . . . , n− 1 there exists ξj ∈ (xj, xj+1) with

Ij(f)− Ĩj(f) =
h3

12
f ′′(ξj)

for f ∈ C2[a, b]. Summing these individual error terms gives

h3

12

n−1∑
j=0

f ′′(ξj) =
h2

12

(
b− a

n

) n−1∑
j=0

f ′′(ξj).

Since

min
j=0,1,...,n−1

f ′′(xj) ≤
1

n

n−1∑
j=0

f ′′(ξj) ≤ max
j=0,1,...,n−1

f ′′(ξj)

and f ′′ is continuous on [a, b], the intermediate value theorem implies that there exists ξ ∈
(a, b) such that

f ′′(ξ) =
1

n

n−1∑
j=0

f ′′(ξj).

Hence the total error for the composite trapezoid rule is

I(f)− Ĩ(f) =
b− a

12
h2f ′′(ξ),

for some ξ ∈ (a, b).
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Example 3.1.1.10 (Composite Simpson’s Rule). We take n to be even. Then we may apply
Simpson’s rule to each subinterval

[x2j, x2j+2], j = 0, 1, . . . ,
n

2
− 1.

Simpson’s rule provides the approximation∫ x2j+2

x2j

f(x) dx ≈ h

3
[f(x2j) + 4f(x2j+1) + f(x2j+2)] =: Ĩ2j(f)

on each subinterval [x2j, x2j+2]. Then for the entire interval [a, b], we have∫ b

a

f(x) dx =

n
2
−1∑

j=0

∫ x2j+2

x2j

f(x) dx

≈ h

3

n
2
−1∑

j=0

[f(x2j) + 4f(x2j+1) + f(x2j+2)]

=
h

3
[f(a) + 4f(a+ h) + 2f(a+ 2h) + 4f(a+ 3h) + . . . +

4f(b− 3h) + 2f(b− 2h) + 4f(b− h) + f(b)] ,

where the step size h is

h =
1

2
(x2j+2 − x2j) =

b− a

n
.

This is the composite Simpson’s rule.

Example 3.1.1.11 (Total Error in Composite Simpson’s Rule). In each subinterval [x2j, x2j+2],
there exists ξ2j ∈ (x2j, x2j+2) with

I2j(f)− Ĩ2j(f) =
h5

90
f (4)(ξ2j),

for f ∈ C4[a, b]. Summing these individual error terms gives

h5

90

n
2
−1∑

j=0

f (4)(ξ2j) =
h4

90

(
b− a

n

) n
2
−1∑

j=0

f (4)(ξ2j).

Proceeding similarly to the error for the composite trapezoid rule, since

min j = 0, 1, . . . ,
n

2
− 1f (4)(ξ2j) ≤

1

n

n
2
−1∑

j=0

f (4)(ξ2j) ≤ max
j=0,1,...,n

2
−1

f (4)(ξ2j)

and f (4) is continuous on [a, b] by the assumption, it follows by the intermediate value theorem
that there exists ξ ∈ (a, b) such that

f (4)(ξ) =
1

n

n
2
−1∑

j=0

f (4)(ξ2j).

Hence the total error for the composite Simpson’s rule is

I(f)− Ĩ(f) =
b− a

90
h4f (4)(ξ),
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for some ξ ∈ (a, b).

Additional quadrature rules may be derived using Hermite interpolating polynomials of
the integrand f.

Example 3.1.1.12 (Hermite Cubic Quadrature). Let p ∈ Π3 be such that

p(a) = f(a), p(b) = f(b),

p′(a) = f ′(a), p′(b) = f ′(b).

In the special case a = 0, b = 1, observe

xj f
t0 := 0 f(0)

f ′(0)
t1 := 0 f(0) f(1)− f(0)− f ′(0)

f(1)− f(0) f ′(1)− 2f(1) + 2f(0) + f ′(0)
t2 := 1 f(1) f ′(1)− f(1) + f(0)

f ′(1)
t3 := 1 f(1)

Thus

p(x) = f(0) + f ′(0)x+ [f(1)− f(0)− f ′(0)]x2 + [f ′(1)− 2f(1) + 2f(0) + f ′(0)]x2(x− 1).

Integration gives∫ 1

0

p(x) dx =

[
f(0)x+

1

2
f ′(0)x2 +

1

3
(f(1)− f(0)− f ′(0))x3 +

1

4
(f ′(1)− 2f(1) + 2f(0) + f ′(0))x4 − 1

3
(f ′(1) + 2f(0)− 2f(1) + f ′(0))x3

]1
0

= f(0) +
1

2
f ′(0) +

1

3
f(1)− 1

3
f(0)− 1

3
f ′(0) +

1

4
f ′(1)− 1

2
f(1) +

1

2
f(0) +

1

4
f ′(0)− 1

3
f ′(1)− 2

3
f(0) +

2

3
f(1)− 1

3
f ′(0)

=
1

2
f(0) +

1

2
f(1) +

1

12
f ′(0)− 1

12
f ′(1)

=
1

2
[f(0) + f(1)] +

1

12
[f ′(0)− f ′(1)].

From this expression we can generalize to any interval [a, b] by introducing

t := a+ x(b− a).

Note that dt = (b− a)dx. Then∫ b

a

p(x)‘dx =
b− a

2
[f(a) + f(b)] +

b− a

12

[
d

dx
f(t(x))|t=0 −

d

dx
f(t(x))|t=1

]
=

b− a

2
[f(a) + f(b)] +

(b− a)2

12
[f ′(a)− f ′(b)],

by the chain rule.
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Example 3.1.1.13 (Composite Hermite Cubic Quadrature). Let

xj := a+ jh, j = 0, 1, . . . , n, h :=
b− a

n

be a partition of [a, b]. On each subinterval [xj, xj+1], j = 0, 1, . . . , n, Hermite cubic quadra-
ture provides the approximation∫ xj+1

xj

f(x) dx ≈ h

2
[f(xj) + f(xj+1)] +

h2

12
[f ′(xj)− f ′(xj+1)] =: Ĩj(f).

Summing these n terms over the entire interval [a, b] gives∫ b

a

f(x) dx =
n−1∑
j=0

∫ xj+1

xj

f(x) dx

≈ h
n∑
0

[
1

2
(f(xj) + f(xj+1)) +

h

12
(f ′(xj)− f ′(xj+1))

]

=
h

2

[
n∑

j=0

(f(xj) + f(xj+1))

]
+

h2

12
(f ′(a)− f ′(b))

=
h

2
[f(a) + 2f(a+ h) + 2f(a+ 2h) + · · ·+ 2f(b− h) + f(b)] +

h2

12
[f ′(a)− f ′(b)],

since
∑n−1

j=0 [f
′(xj)− f ′(xj+1)] telescopes. This is the composite Hermite cubic quadra-

ture rule.

Example 3.1.1.14. Similar methods to the trapezoid and Simpson’s rules in the previous
examples may be used to show that the total error for composite Hermite cubic quadrature is

I(f)− Ĩ(f) = −b− a

720
h4f (4)(ξ)

for some ξ ∈ (a, b), provided that f ∈ C4[a, b].

In comparison to the trapezoid rule, note that the composite Hermite cubic quadrature
has improved the order of the method by 2 with minimal effort, namely, the computation of
the two derivatives f ′(a) and f ′(b). Moreover, if these two boundary derivatives are known
to agree, for instance, if f is periodic, then the trapezoid rule itself is a method of order 4.

This discussion prompts the following definition.

Definition 3.1.1.15 (Superconvergence). A superconvergent method is a method that
converges faster than generally expected.

3.2. Peano’s Error Representation.

3.2.1. Peano’s Error Representation. The quadrature rules considered so far are of the form

Ĩ(f) :=

m0∑
k=0

ak0f(xk0) +

m1∑
k=0

ak1f
′(xk1) + · · ·+

mn∑
k=0

aknf
(n)(xkn).
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The quadrature error

R(f) := Ĩ(f)− I(f) = Ĩ(f)−
∫ b

a

f(x) dx

is a linear operator

R(αf + βg) = αR(f) + βR(g)

on some normed linear function space V, where α, β ∈ R and f, g ∈ V. For instance, we may
have V = Cn[a, b] or V = Πn[a, b]. The following integral representation of the quadrature
error R(f) is attributed to Peano.

Theorem 3.2.1.1 (Peano’s Error Representation). Suppose that R(p) = 0 holds for all
polynomials p ∈ Πn, that is, every polynomial of degree at most n is integrated exactly
by Ĩ(f). Then for all functions f ∈ C(n+1)[a, b],

R(f) =

∫ b

a

f (n+1)(t)K(t) dt,

where

K(t) :=
1

n!
Rx[(x− t)n+], (x− t)n+ :=

{
(x− t)n, x ≥ t,

0, x < t,

and
Rx[(x− t)n+]

denotes the error of (x− t)n+ considered as a function of x.

Definition 3.2.1.2 (Peano Kernel). The function

K(t) :=
1

n!
Rx[(x− t)n+]

is called the Peano kernel of the operator R.

Proof. We first consider the Taylor series expansion of f(x) about x = a,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + rn(x),

where rn is taken to be the integral remainder

rn(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)n dt =
1

n!

∫ b

a

f (n+1)(t)(x− t)n+ dt.

Applying the linear operator R to f(x) then gives

R(f) = R(rn) =
1

n!
Rx

(∫ b

a

f (n+1)(t)(x− t)n+ dt

)
,

since all terms preceding rn in the Taylor series expansion belong to Πn.
In order to prove the theorem, we must show that we may safely interchange the operator

Rx with integration. We first show that

dk

dxk

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]
=

∫ b

a

f (n+1)(t)

[
dk

dxk
[(x− t)n+]

]
dt
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for k = 1, 2, . . . , n. For k < n this follows immediately from the fact that (x − t)n+ is n − 1
times continuously differentiable. For k = n− 1, in particular, we have

dn−1

dxn−1

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]
=

∫ b

a

f (n+1)(t)
dn+1

dxn+1
[(x− t)n+]dt,

and thus

dn+1

dxn+1

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]
= n!

∫ b

a

f (n+1)(t)(x− t)+ dt

= n!

∫ x

a

f (n+1)(t)(x− t) dt.

Then, by the fundamental theorem of calculus,

dn

dxn

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]
=

d

dx

[
dn−1

dxn−1

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]]
=

d

dx

[
n!

∫ x

a

f (n+1)(t)(x− t) dt

]
= n!

∫ x

a

f (n+1)(t) dt+ n!f (n+1)(x)(x− x)

= n!

∫ x

a

f (n+1)(t) dt

= n!

∫ b

a

f (n+1)(t)
dn

dxn

[
(x− t)n+

]
dt.

This proves that the differential operators

dk

dxk
, k = 1, 2, . . . , n,

commute with integration. Since Ĩ(f) is a linear combination of these differential operators,
it also commutes with integration. Particularly, observe that

Rx

(∫ b

a

f (n+1)(t)(x− t)n+ dt

)
= Ĩ

(∫ b

a

f (n+1)(t)(x− t)n+ dt

)
−
∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dt dx

=

m0∑
k=0

ak0

∫ b

a

f (n+1)(t)(xk − t)n+ dt+ · · ·+
mn∑
k=0

akn

∫ b

a

f (n+1)(t)

[
dn

dxn

[
(x− t)n+

]
x=xk

]
dt −∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dt dx

=

m0∑
k=0

ak0

∫ b

a

f (n+1)(t)(xk − t)n+ dt+ · · ·+
mn∑
k=0

akn

(
dn

dxn

[∫ b

a

f (n+1)(t)(x− t)n+ dt

]
x=xk

)
−∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dt dx.
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Since∫ b

a

f (n+1)(t)Rx[(x− t)n+]dt =

m0∑
k=0

ak0

∫ b

a

f (n+1)(t)(xk − t)n+ dt+ · · ·+

mn∑
k=0

akn

∫ b

a

f (n+1)(t)

[
dn

dxn
(x− t)n+

]
x=xk

dt−
∫ b

a

f (n+1)(t)

∫ b

a

(x− t)n+ dx dt,

it only remains to show that∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dt dx =

∫ b

a

f (n+1)(t)

∫ b

a

(x− t)n+ dx dt.

By Fubini’s Theorem, it follows∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dt dx =

∫ b

a

∫ b

a

f (n+1)(t)(x− t)n+ dx dt

=

∫ b

a

f (n+1)(t)

∫ b

a

(x− t)n+ dx dt.

This shows that the entire operator Rx commutes with integration.
It follows that

R(f) =
1

n!

∫ b

a

f (n+1)(t)Rx[(x− t)n+] dt =

∫ b

a

f (n+1)(t)K(t) dt.

This proves the theorem. □

Example 3.2.1.3 (Trapezoid Rule). We find the Peano kernel for the trapezoid rule on the
interval [0, 1]. Recall that

Ĩ(f) =
1

2
[f(0) + f(1)].

Clearly Ĩ(f) is exact on Π1, so we may apply (3.2.1.1) with n = 1. The Peano kernel K(t)
becomes

K(t) =
1

1!
Rx[(x− t)+] = Ĩ[(x− t)+]− I[(x− t)+]

=
1

2
(0− t)+ +

1

2
(1− t)+ −

∫ 1

0

(x− t)+ dx.

By definition of (x− t)+, we have for t ∈ [0, 1] that

(0− t)+ = 0, (1− t)+ = 1− t

and ∫ 1

0

(x− t)+ dx =

∫ 1

t

(x− t) dx

=
1

2
x2 − tx

∣∣∣∣1
x=t

=
1

2
− t− 1

2
t2 + t2

=
1

2
t2 − t+

1

2
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=
1

2
(1− t)2.

Hence the Peano kernel for the trapezoid rule on the interval [0, 1] is

K(t) =
1

2
(1− t)− 1

2
(1− t)2

=
1

2
(1− t)(1− (1− t))

=
1

2
(1− t)t,

=
1

2
t− 1

2
t2, 0 ≤ t ≤ 1.

Example 3.2.1.4 (Simpson’s Rule). We find the Peano kernel for Simpson’s rule on the
interval [−1, 1]. Recall that

Ĩ(f) =
1

3
[f(−1) + 4f(0) + f(1)].

Clearly Ĩ(f) is exact on Π2; we show that Ĩ(f) is exact on Π3.
Consider integrating a polynomial p of degree three, p ∈ Π3. Let q ∈ Π2 be such that

q(−1) = p(−1), q(0) = p(0), q(1) = p(1).

Define the polynomial

S := p− q ∈ Π3.

Then S vanishes at the points x = −1, 0, 1. Since S ∈ Π3 and has the three roots −1, 0, 1, S
is evidently of the form

S(x) = ax(x+ 1)(x− 1) = a(x2 + x)(x− 1) = a(x3 − x2 + x2 − x) = ax3 − ax.

Since q ∈ Π2, R(q) = 0. Thus

R(p) = R(p)−R(q) = R(p− q) = R(S) = Ĩ(S)− I(S)

=
1

3
[S(−1) + 4S(0) + S(1)]−

∫ 1

−1

S(x) dx

=

∫ 1

−1

ax3 − ax dx = 0.

Thus we may apply (3.2.1.1) with n = 3. The Peano kernel becomes

K(t) =
1

3!
Rx[(x− t)3+]

=
1

18

[
(−1− t)3+ + 4(0− t)3+ + (1− t)3+

]
− 1

6

∫ 1

−1

(x− t)3+ dx.

By definition of (x− t)3+, we have for t ∈ [−1, 1] that

(−1− t)3+ = 0, (1− t)3+ = (1− t)3,

(0− t)3+ = −t3+ =

{
0, t ≥ 0,

−t3, t < 0
,
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and ∫ 1

−1

(x− t)3+ dx =

∫ 1

t

(x− t)3

=
1

4
(x− t)4

∣∣∣∣1
x=t

=
1

4
(1− t)4.

Thus the Peano kernel for Simpson’s rule for t ∈ [0, 1] is

K(t) =
1

18
(1− t)3 − 1

24
(1− t)4

=
1

72
(1− t)3(4− 3(1− t))

=
1

72
(1− t)3(1 + 3t).

Likewise, the Peano kernel for t ∈ [−1, 0] is

K(t) =
1

18
(−4t3 + (1− t)3)− 1

24
(1− t)4

=
1

72
(1− t)3(1 + 3t)− 2

9
t3

=
1

72
(1 + t)3(1− 3t).

Thus we see that on [−1, 1] we have

K(t) =

{
1
72
(1− t)3(1 + 3t), 0 ≤ t ≤ 1,

K(−t), −1 ≤ t ≤ 0.

To show how Peano’s error formula is commonly used, we recall the following result from
calculus.

Theorem 3.2.1.5 (Weighted Mean Value Theorem for Integrals). If f is continuous on the
interval [a, b] and g is an integrable function that does not change sign on [a, b], then there
exists a number ξ ∈ (a, b) such that∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx.

For a large class of quadrature rules, the Peano kernel K(t) has constant sign on [a, b]. In
particular, the Peano kernels for every Newton–Cotes quadrature rule have constant sign on
their respective intervals of integration. In this situation, the weighted mean value theorem
for integral calculus (3.2.1.5) gives

R(f) =

∫ b

a

f (n+1)(t)K(t) dt = f (n+1)(ξ)

∫ b

a

K(t) dt (3.2.1.1)

for some ξ ∈ (a, b), provided that f ∈ Cn+1[a, b]. Moreover, since K(t) does not depend on f,
we may determine the integral by applying the operator R, for instance, to the polynomial
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p(x) = xn+1. This gives

R(xn+1) = (n+ 1)!

∫ b

a

K(t) dt.

Rearranging this expression, we obtain∫ b

a

K(t) dt =
R(xn+1)

(n+ 1)!
,

and inserting for the integral in (3.2.1.1) gives

R(f) = f (n+1)(ξ)

∫ b

a

K(t) dt =
R(xn+1)

(n+ 1)!
f (n+1)(ξ),

for some ξ ∈ (a, b).
That is, once we determine that the Peano kernel K(t) has constant sign on [a, b], we no

longer need it to determine the quadrature error R(f). In summary,

Theorem 3.2.1.6 (Quadrature Error Formula). Suppose that R(p) = 0 holds for all
polynomials p ∈ Πn, that is, every polynomial of degree at most n is integrated exactly
by Ĩ(f). If the Peano kernel

K(t) :=
1

n!
Rx[(x− t)n+]

has constant sign on [a, b], then for all functions f ∈ Cn+1[a, b] there exists a number
ξ ∈ (a, b) such that

R(f) = Ĩ(f)− I(f) =
R(xn+1)

(n+ 1)!
f (n+1)(ξ).

Example 3.2.1.7 (Error for Trapezoid Rule). We find the error for the trapezoid rule on
the interval [0, 1]. Recall that the Peano kernel in this situation is

K(t) =
1

2
t(1− t), 0 ≤ t ≤ 1,

which is nonnegative throughout [0, 1]. We find

R(x2) = Ĩ(x2)− I(x2) =
1

2
[0 + 1]−

∫ 1

0

x2 dx

=
1

2
− 1

3
x3

∣∣∣∣1
0

=
1

2
− 1

3
=

1

6
.

Hence, for f ∈ C2[0, 1], there exists ξ ∈ (0, 1) such that

R(f) =
R(x2)

2!
f ′′(ξ) =

1

12
f ′′(ξ).

Note that, if we assume that the Peano kernel has constant sign throughout the arbitrary
interval [a, b], we have thus

R(x2) = Ĩ(x2)− I(x2) =
b− a

2

[
a2 + b2

]
−
∫ b

a

x2 dx
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=
b− a

2

[
a2 + b2

]
− 1

3
x3

∣∣∣∣b
a

=
b− a

2

[
a2 + b2

]
− 1

3

[
b3 − a3

]
=

(b− a)3

6
=

h3

6
,

for step size h := b− a. Hence if f ∈ C2[a, b], then there is ξ ∈ (a, b) such that

R(f) =
R(x2)

2!
f ′′(ξ) =

h3

12
f ′′(ξ),

which was assumed in the previous section.

Example 3.2.1.8 (Error for Simpson’s Rule). We find the error for Simpson’s rule on the
interval [−1, 1]. Recall that the Peano kernel was found to be

K(t) =

{
1
72
(1− t)3(1 + 3t), 0 ≤ t ≤ 1,

K(−t), −1 ≤ t ≤ 0,

which is nonnegative throughout [−1, 1]. We find

R(x4) = Ĩ(x4)− I(x4) =
1

3
[1 + 0 + 1]−

∫ 1

−1

x4 dx

=
2

3
− 1

5
x5

∣∣∣∣1
−1

=
2

3
− 2

5
=

4

15
.

Thus for any f ∈ C4[−1, 1] there is ξ ∈ (−1, 1) such that

R(f) =
R(x4)

4!
f (4)(ξ) =

1

90
f (4)(ξ).

Assuming that the Peano kernel has constant sign throughout [a, b], we have

R(x4) = Ĩ(x4)− I(x4) =
b− a

6

[
a4 + 4

(
a+ b

2

)4

+ b4

]
−
∫ b

a

x4 dx

=
b− a

6

[
a4 + 4

(
a+ b

2

)4

+ b4

]
− 1

5
x5

∣∣∣∣b
a

=
b− a

6

[
a4 + 4

(
a+ b

2

)4

+ b4

]
−
[
b5

5
− a5

5

]
=

(b− a)5

120
=

4

15
h5,

for step size h := b−a
2
. Hence if f ∈ C4[a, b], then there is ξ ∈ (a, b) such that

R(f) =
R(x4)

4!
f (4)(ξ) =

h5

90
f (4)(ξ).

Note that this is a higher–order error term than was derived in the previous section.
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In general, the Newton–Cotes formulas of degree n integrate without error on Πn if n is
odd and Πn+1 if n is even. The Peano kernels for the Newton–Cotes formulas are of constant
sign, and we have for the n−th degree Newton–Cotes formula

Rn(f) =


Rn(x

n+1)

(n+ 1)!
f (n+1)(ξ), n is odd,

Rn(x
n+2)

(n+ 2)!
f (n+2)(ξ), n is even.

Example 3.2.1.9 (Hermite Cubic Quadrature). Lastly, we derive the error induced by Her-
mite cubic quadrature. Recall

Ĩ(f) =
h

2
(f(a) + f(b)) +

h2

12
(f ′(a)− f ′(b)), h := b− a,

which clearly integrates exactly polynomials p ∈ Π3. For n = 3, we obtain the following Peano
kernel K(t) :

K(t) =
1

6
Rx[(x− t)3+]

=
1

6

[
h

2
((a− t)3+ + (b− t)3+) +

h2

4
((a− t)2+ − (b− t)2+)−

∫ b

a

(x− t)3+ dx

]
=

1

6

[
h

2
(b− t)3 − h2

4
(b− t)2 −

∫ b

t

(x− t)3 dx

]
=

1

6

[
h

2
(b− t)3 − h2

4
(b− t)2 − 1

4
(x− t)4

]
= − 1

24
(b− t)2(b− h− t)2 = − 1

24
(b− t)2(a− t)2,

which is clearly nonpositive throughout [a, b], so that we may apply (3.2.1.6). We find

R(x4) = Ĩ(x4)− I(x4) =
b− a

2
(a4 + b4) +

(b− a)2

12
(4a3 − 4b3)−

∫ b

a

x4 dx

=
(b− a)

2
(a4 + b4) +

(b− a)2

3
(a3 − b3)− 1

5

∣∣∣∣b
a

=
(b− a)

2
(a4 + b4) +

(b− a)2

3
(a3 − b3)−

(
b5

5
− a5

5

)
= −(b− a)5

30
= −h5

30
,

for step size h := b− a. Hence if f ∈ C4[a, b], then there exists ξ ∈ (a, b) such that

R(f) =
R(x4)

4!
f (4)(ξ) = − h5

720
f (4)(ξ),

which was assumed in the previous section.
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3.3. Gaussian Integration Methods.

3.3.1. Gaussian Quadrature. We recall the definition of a weight function.

Definition 3.3.1.1 (Weight Function). A weight function on the interval [a, b] is a func-
tion w(x) that satisfies the following properties:

(1) w(x) ≥ 0 is measurable on [a, b],

(2) All moments µk :=
∫ b

a
xkw(x) dx, k = 0, 1, . . . , exist and are finite,

(3)
∫ b

a
w(x) dx > 0.

We note that the conditions for a weight function w(x) are met if w(x) is positive and
continuous on an interval with finite measure.

In this section we consider integrals of the form

I(f) :=

∫ b

a

w(x)f(x) dx,

where w(x) is a given nonnegative weight function on [a, b]. We again examine quadrature
rules of the type

Ĩ(f) =
n∑

j=0

wjf(xj).

For Newton–Cotes rules, the abscissas were required to form a uniform partition of the
interval [a, b]. Here, we try to choose the nodes xj and weights wj so as to maximize the
order of the quadrature method. This leads to a class of quadrature rules known as the
Gaussian quadrature formulas.

We will define
Π̄n := {p : p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n}

to be the set of all normed polynomials of degree n.
We recall the following definitions from the section regarding approximation theory, par-

ticularly, see the section on least squares function approximation.

Definition 3.3.1.2 (L2 Inner Product). Let f, g ∈ L2[a, b]. We define the weighted inner
product ⟨f, g⟩ of f and g by

⟨f, g⟩ :=
∫ b

a

w(x)f(x)g(x) dx.

Definition 3.3.1.3 (L2 Norm). Let f ∈ L2[a, b]. We define the norm ∥f∥ of f on L2[a, b]
by

∥f∥ :=
√

⟨f, f⟩ =

√∫ b

a

w(x)[f(x)]2 dx.

Definition 3.3.1.4 (w−Orthogonal). The functions f, g ∈ L2[a, b] are said to be w−orthogonal
on [a, b] if

⟨f, g⟩ = 0.

We also recall the following result regarding the construction of w−orthogonal polynomials
from (2.1.1.13).
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Theorem 3.3.1.5 (Construction of w−Orthogonal Polynomials). There exist polyno-
mials ϕn ∈ Π̄n, n = 0, 1, . . . , such that

⟨ϕi, ϕj⟩ = 0, for i ̸= j.

These polynomials ϕn are uniquely defined by the recursion

ϕ0(x) := 1,

ϕ1(x) := x−B1, B1 :=

∫ b

a
xw(x) dx∫ b

a
w(x) dx

,

and, when k ≥ 2,
ϕk(x) := (x−Bk)ϕk−1(x)− C2

kϕk−2(x),

where

Bk :=
⟨xϕk−1, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

=

∫ b

a
xw(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕ+k−1 (x)]2 dx

,

C2
k :=

⟨ϕk−1, ϕk−1⟩
⟨ϕk−2, ϕk−2⟩

=

∫ b

a
w(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕ+k−2 (x)]2 dx

.

Corollary 3.3.1.6. If {ϕ0, ϕ1, . . . , ϕn} are the w−orthogonal polynomials as given by (2.1.1.13),
then for any p ∈ Πn−1, we have

⟨p, ϕn⟩ = 0.

Proof. This corollary is equivalent to (2.1.1.14). □

We arrive at the following result regarding the roots of the n− th orthogonal polynomial
ϕn.

Theorem 3.3.1.7 (Roots of ϕn). The roots xi, i = 1, 2, . . . , n of ϕn(x) are real and
simple. Moreover, each xi lies in the open interval (a, b).

Proof. First note that ϕ0 ≡ 1 has no roots. Thus, assume that n ≥ 1, for otherwise the
theorem follows vacuously.

If ϕn(x) > 0 for all x ∈ (a, b), then∫ b

a

w(x)ϕn(x)ϕ0(x) dx =

∫ b

a

w(x)ϕn(x) dx > 0,

but, by the orthogonality condition,
∫ b

a
w(x)ϕn(x)ϕ0(x) dx = 0. Thus ϕn(x) changes sign at

least once on (a, b).
Let

a < z1 < z2 < · · · < zk < b

be the distinct real roots of ϕn with odd multiplicity. Define the polynomial

q(x) :=
k∏

j=1

(x− zj).
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Then clearly q ∈ Πk. Moreover, the polynomial ϕn(x)q(x) does not change sign on (a, b). It
follows that ∫ b

a

w(x)ϕn(x)q(x) dx ̸= 0.

Since k ≤ n, we have by the orthogonality condition that k = n, for otherwise,
∫ b

a
w(x)ϕn(x)q(x)

would equal zero. Hence, ϕn(x) has n zeros at zk, k = 1, 2, . . . , n, where each zk lies in the
interval (a, b).

This proves the theorem. □

Theorem 3.3.1.8. The n× n matrix

A :=

 ϕ0(t1) . . . ϕ0(t1)
...

. . .
...

ϕn−1(tn) . . . ϕn−1(tn)


is nonsingular for mutually distinct arguments tj, j = 1, 2, . . . , n.

Proof. By contradiction, suppose that A is singular. Then there exists a vector

c := [c0, c1, . . . , cn]
⊤ ̸= 0

such that c⊤A = 0. The polynomial

q(x) :=
n−1∑
j=0

cjϕj(x)

has the n distinct roots t1, t2, . . . , tn. That is,

q(tk) =
n−1∑
j=0

cjϕj(tk) = 0, k = 1, 2, . . . , n.

But since each ϕj, j = 0, 1, . . . , n− 1 is a polynomial of degree precisely j, q ∈ Πn−1 and has
n distinct roots and thus vanishes identically,

q ≡ 0.

Since the polynomials {ϕ0, ϕ1, . . . , ϕn−1} are linearly independent, q(x) ≡ 0 implies that
c = 0, a contradiction to the assumption.

This completes the proof. □

The Theorem (3.3.1.8), together with the invertible matrix theorem (1.1.5.1), shows that
the interpolation problem of finding a function of the form

p(x) =
n−1∑
j=0

cjϕj(x)

is always solvable, with p(tj) = fj, j = 1, 2, . . . , n. The condition that the arguments tj,
j = 1, 2, . . . , n are mutually distinct is known as the Haar condition. Any sequence of
functions f0, f1, . . . , that satisfy this Haar condition is said to form a Chebyshev system. In
particular, Theorem (3.3.1.8) states that sequences of w−orthogonal polynomials ϕ0, ϕ1, . . . ,
for instance, those w−orthogonal polynomials constructed via (2.1.1.13) form Chebyshev
systems.

We arrive at the main result of this section.
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Theorem 3.3.1.9 (Characterization of Nodes and Weights).

(1) Let x1, x2, . . . , xn be the roots of the n−th w−orthogonal polynomial ϕn(x), and
let w1, w2, . . . , wn be the solution of the nonsingular system of equations

n∑
i=1

ϕk(xi)wi =

{
⟨ϕ0, ϕ0⟩, if k = 0,

0, otherwise.
(3.3.1.1)

Then wi > 0 for each i = 1, 2, . . . , n, and∫ b

a

w(x)p(x) dx =
n∑

i=1

wip(xi) (3.3.1.2)

holds for all polynomials p ∈ Π2n−1.
(2) Conversely, if the numbers xi, wi, i = 1, 2, . . . , n are such that (3.3.1.2) holds for

all p ∈ Π2n−1, then the xi, i = 1, 2, . . . , n are the roots of the n−th w−orthogonal
polynomial ϕn and the weights wi, i = 1, 2, . . . , n satisfy (3.3.1.1).

(3) It is not possible to find numbers xi, wi, i = 1, 2, . . . , n such that (3.3.1.2) holds
for all polynomials p ∈ Π2n−1.

Proof. Since the roots xi, i = 1, 2, . . . , n of ϕn are real mutually distinct arguments in (a, b)
(3.3.1.7), the matrix

A :=

 ϕ0(x1) . . . ϕ0(xn)
...

. . .
...

ϕn−1(x1) . . . ϕn−1(xn)


is nonsingular (3.3.1.8). Thus the system (3.3.1.1) has a unique solution.

Let p ∈ Π2n−1 be arbitrary. By polynomial division, we may write

p(x) := ϕn(x)q(x) + r(x),

for some q, r ∈ Πn−1. since {ϕ0, ϕ1, . . . , ϕn−1} forms a basis for Πn−1, there exist unique
coefficients ri, qi ∈ R, i = 0, 1, . . . , n− 1 such that

q(x) =
n−1∑
i=0

qiϕi(x), r(x) =
n−1∑
i=0

riϕi(x).

It follows ∫ b

a

w(x)p(x) dx =

∫ b

a

w(x)[ϕn(x)q(x) + r(x)] dx

=

∫ b

a

w(x)ϕn(x)q(x) dx+

∫ b

a

w(x)r(x) dx

=
n−1∑
i=0

qi

∫ b

a

w(x)ϕi(x)ϕn(x) dx+
n−1∑
i=0

ri

∫ b

a

w(x)ϕi(x) dx

=
n−1∑
i=0

ri

∫ b

a

w(x)ϕi(x)ϕ0(x) dx
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= r0

∫ b

a

w(x) [ϕ0(x)]
2 dx.

On the other hand, since ϕn(xi) = 0, i = 1, 2, . . . , n, we have by (3.3.1.1) that

n∑
i=1

wip(xi) =
n∑

i=1

wi[ϕn(xi)q(xi) + r(xi)]

=
n∑

i=1

wiq(xi)ϕn(xi) +
n∑

i=1

wir(xi)

=
n∑

i=1

wi

[
n−1∑
k=0

rkϕk(xi)

]

=
n−1∑
k=0

rk

n∑
i=1

wiϕk(xi)

= r0

∫ b

a

w(x) [ϕ0(x)]
2 dx,

which proves (3.3.1.2).
We now show that wi > 0 for each i = 1, 2, . . . , n. Define the polynomials pj(x), j =

1, 2, . . . , n as follows:

pj(x) :=
n∏

k=1
k ̸=j

(x− xk)
2 ∈ Π2n−2.

Since pj ≥ 0 on [a, b] and clearly does not vanish identically, applying (3.3.1.2), it follows

0 <

∫ b

a

w(x)pj(x) dx

=
n∑

i=1

wipj(xi)

= wj

n∏
k=1
k ̸=j

(x− xk)
2.

Noting that the product is strictly positive, we have wj > 0 for each j = 1, 2, . . . , n.
This completes the proof of (3.3.1.9)[1].
We now show (3.3.1.9)[2]. By contradiction, suppose that there exist numbers xi, wi,

i = 1, 2, . . . , n such that (3.3.1.2) holds for all polynomials p ∈ Π2n. Put

p̃(x) :=
n∏

j=1

(x− xj)
2 ∈ Π2n.

Then since p̃ ≥ 0 on [a, b] and does not vanish identically, it follows from (3.3.1.2) that

0 <

∫ b

a

w(x)p̃(x) dx
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=
n∑

i=1

wip̃(xi)

=
n∑

i=1

wi

n∏
j=1

(xi − xj)

= 0,

which implies that 0 <
∫ b

a
w(x)p̃(x) dx = 0, which is clearly absurd. This proves (3.3.1.9)[3].

Lastly, we show (3.3.1.9)[2]. Suppose that the numbers xi, wi, i = 1, 2, . . . , n are such
that (3.3.1.2) holds for all p ∈ Π2n−1. Note that the abscissas xi, i = 1, 2, . . . , n must be
distinct, for otherwise, we may reformulate terms and sum to obtain a quadrature rule that
is exact on Π2n−1 with less than n points, a contradiction to (3.3.1.9)[3].

Recall that if (3.3.1.2) holds and the xi, i = 1, 2, . . . , n are distinct, then wi > 0 for each
i = 1, 2, . . . , n.

We apply (3.3.1.2) to each ϕj, j = 0, 1, . . . , n− 1 to find
n∑

i=1

wiϕj(xi) =

∫ b

a

w(x)ϕj(x) dx

=

∫ b

a

w(x)ϕj(x)ϕ0(x) dx

=

{∫ b

a
w(x) [ϕ0(x)]

2 dx, j = 0,

0, otherwise.

This proves (3.3.1.1).
It remains to show that ϕn(xi) = 0 for each xi, i = 1, 2, . . . , n. Since ϕjϕn ∈ Π2n−1 for

j = 0, 1, . . . , n− 1, (3.3.1.2) gives
n∑

i=1

wiϕn(xi)ϕj(xi) =

∫ b

a

w(x)ϕn(x)ϕj(x) dx

= 0.

That is, the vector
c := [w1ϕn(x1), w2ϕn(x2), . . . , wnϕn(xn)]

⊤

solves the homogeneous system Ac = 0, with

A :=

 ϕ0(x1) . . . ϕ0(xn)
...

. . .
...

ϕn−1(x1) . . . ϕn−1(xn).


Since the abscissas xi, i = 1, 2, . . . , n are distinct, A is nonsingular (3.3.1.8). Thus c = 0, so
that wiϕn(x) = 0 for each i = 1, 2, . . . , n. Furthermore, since wi > 0 for each i = 1, 2, . . . , n,
it follows that

ϕn(xi) = 0, i = 1, 2, . . . , n.

This completes the proof. □

Note that by Theorem (3.3.1.9), we have characterized the quantities xi and wi which enter
the Gaussian quadrature rules for given weight functions w(x), but it remains to discuss their
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actual calculation. We assume that the coefficients Bj, Cj of the w− orthogonal polynomial
recursion (2.1.1.13) are given.

We consider the tridiagonal matrices

Jn :=


B1 C2

C2 B1 C2

C3 B3
. . .

. . . . . . Cn

Cn Bn

 (3.3.1.3)

as well as their principal submatrices

Jj :=


B1 C2

C2 B1 C2

C3 B3
. . .

. . . . . . Cj

Cj Bj

 ,

where Bk, Ck, are such that

ϕk(x) = (x−Bk)ϕk−1(x)− C2
kϕk−2(x),

that is,

Bk :=

∫ b

a
xw(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕk−1(x)]2 dx

,

Ck :=

∫ b

a
w(x)[ϕk−1(x)]

2 dx∫ b

a
w(x)[ϕk−2(x)]2 dx

.

We have the following result regarding the roots of ϕn(x) and the eigenvalues of Jn.

Theorem 3.3.1.10. The roots xi, i = 1, 2, . . . , n of the n−th w−orthogonal polynomial ϕn

are the eigenvalues of the tridiagonal matrix Jn.

Proof. We use induction. Recall that ϕ0(x) ≡ 1 has no roots and corresponds to the empty
matrix J0. Observe

ϕi(x) = (x−B1)ϕ0(x)

= x−B1

= − det(J1 − x[1]).

Let In denote the n× n identity matrix. Now

ϕ2(x) = (x−B2)ϕ1(x)− C2
2ϕ0(x)

= (x−B2)(x−B1)− C2
2

= (B2 − x)(B1 − x)− C2
2

= det

([
B1 − x C2

C2 B2 − x

])
= det(J2 − I2x).
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This shows the base cases j = 0, 1, 2.
We show by induction on j that

ϕj(x) = (−1)j det(Jj − Ijx).

Note

Jj − Ijx =



B1 − x C2 0
C2 B2 − x C3

C3 B3 − x
. . .

. . . . . . . . .
. . . Bj−2 − x Cj−1

Cj−1 Bj−1 − x Cj

0 Cj Bj − x


so that

det(Jj − Ijx) = (Bj − x) det(Jj−1 − Ij−1x)−

cj det



B1 − x C2

C2 B2 − x C3

. . . . . . . . .
Cj−2 Bj−2 − x Cj−1

0 Cj




= (Bj − x) det(Jj−1 − Ij−1x)− C2
j det(Ij−2 − Jj−2x)

= (Bj − x)(−1)j−1ϕj−1(x)− C2
j (−1)j−2ϕj−2(x),

by the induction hypothesis. Thus,

(−1)j det(Ij − Jjx) = (−1)2j−1(Bj − x)ϕj−1(x)− (−1)2j−2C2
j ϕj−2(x)

= (−1)2j(x−Bj)ϕj−1(x)− C2
j ϕj−2(x)

= (x−Bj)ϕj−1(x)− C2
j ϕj−2(x)

= ϕj(x),

by the recursion (2.1.1.13).
Hence,

ϕn(x) = (−1)n det(Jn − Inx) = 0

if and only if x is an eigenvalue of Jn. This proves the theorem. □

We note here that since the roots of ϕn are real and distinct (3.3.1.7), it follows im-
mediately by (3.3.1.10) that the tridiagonal matrices Jn (3.3.1.3) have n real and distinct
eigenvalues.

We present a few prerequisite definitions from linear algebra.

Definition 3.3.1.11 (Unitary Matrix). A square matrix U is said to be unitary if

UHU = I,

where UH := (U)⊤, the conjugate transpose of U.
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Definition 3.3.1.12 (Similar Matrices). Let A,B be square matrices. If there exists a
nonsingular matrix T such that

T−1AT = B,

then we say that A is similar to B, and write A ∼ B.

Definition 3.3.1.13 (Unitarily Similar). Let A be similar to B,

T−1AT = B.

If T is a unitary matrix, then we say that A and B are unitarily similar.

We recall the following important result from linear algebra.

Lemma 3.3.1.14. If A and B are similar matrices, then the eigenvalues of A are precisely
the eigenvalues of B.

Proof. Let A and B be similar matrices. Then there exists T nonsingular such that

T−1AT = B.

Recalling that det(AB) = det(A) det(B), it follows for all λ ∈ C that

det(B − λI) = det(T−1AT − λI)

= det(T−1AT − λT−1T )

= det(T−1(AT − λT ))

= det(T−1(A− λI)T )

= det(T−1) det(A− λI) det(T )

= det(T−1T ) det(A− λI)

= det(A− λI).

□

Theorem 3.3.1.15 (Schur Normal Form). For every n×n matrix A, there exists a unitary
n× n matrix U such that

UHAU =


λ1 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 ,

where λj, j = 1, 2, . . . , n are the eigenvalues of A.

We call the form of the matrix UHAU in (3.3.1.15) the Schur Normal Form (also Schur
Canonical Form).

Proof. We use induction.
For the case n = 1, we choose U := [1] and we’re done.
For the induction hypothesis, assume that (3.3.1.15) holds for matrices up to size (n −

1)× (n− 1) for some integer n > 1. Let A be n× n. Further, let λ1 be an eigenvalue for A

with associated eigenvector x⃗1 ̸= 0⃗. We may rescale x⃗1 as needed, so that x⃗H
1 x⃗1 = 1.

We apply the Gram–Schmidt orthogonalization process to generate vectors x⃗2, x⃗3, . . . , x⃗n

that form an orthonormal basis for Cn. Then the matrix

X := [x⃗1 x⃗2 . . . x⃗n]
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is an n× n unitary matrix, for XHX has entries

x⃗H
i x⃗j =

{
1, i = j,

0, otherwise.

Denote by
e⃗j := [0, . . . , 0, 1, 0︸ ︷︷ ︸

j−th entry

, . . . , 0]⊤, j = 1, 2, . . . , n

the standard basis vectors for Cn. Further, given a matrix B, denote by B⃗j the j−th column

of B. Note that evidently Be⃗j = B⃗j.
Now the first column of XHAX is

(XHAX)e⃗1 = XHA(Xe⃗1) = XHAx⃗1 = XHλ1x⃗1 = λ1X
H x⃗1 = λ1e⃗1,

since x⃗1 is an eigenvector of A and X is unitary. It follows

XHAX =


λ1 a⃗H

0
... A1

0

 ,

where A1 is an (n − 1) × (n − 1) matrix and a⃗ ∈ Cn−1. By the induction hypothesis, there
exists an (n− 1)× (n− 1) unitary matrix U1 such that

UH
1 A1U1 =


λ2 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 .

Define the n× n matrix

U := X


1 0 . . . 0
0
... U1

0

 .

Then U is unitary, for

UHU =


1 0 . . . 0
0
... UH

1

0

XHX


1 0 . . . 0
0
... U1

0



=


1 0 . . . 0
0
... UH

1

0




1 0 . . . 0
0
... U1

0



=


1 0 . . . 0
0
... UH

1 U1

0

 = In,
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since X and U1 are both unitary. Moreover,

UHAU =


1 0 . . . 0
0
... UH

1

0

XHAX


1 0 . . . 0
0
... U1

0



=


1 0 . . . 0
0
... UH

1

0




λ1 a⃗H

0
... A1

0




1 0 . . . 0
0
... U1

0



=


λ1 a⃗H

0
... UH

1 A1

0




1 0 . . . 0
0
... U1

0



=


λ1 a⃗HU1

0
... UH

1 A1U1

0



=


λ1 a⃗HU1

0 λ2 ∗ . . . ∗
... 0 λ3

. . .
...

...
...

. . . . . . ∗
0 0 . . . 0 λn



=


λ1 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 ,

which completes the proof. □

Definition 3.3.1.16 (Hermitian Matrix). A square matrix A is said to be Hermitian if

AH = A.

Theorem 3.3.1.17. For every n × n Hermitian matrix A = AH , there exists a unitary
matrix

U = [x⃗1 x⃗2 . . . x⃗n]

with UHAU = diag(λ1, λ2, . . . , λn). Moreover,

(1) The eigenvalues λj, j = 1, 2, . . . , n of A are all real–valued;
(2) Ax⃗j = λj, that is, the columns of U are the eigenvectors of A;
(3) Since U is unitary,

x⃗H
i x⃗j =

{
1, i = j,

0, otherwise.
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Proof. Let A be an n × n Hermitian matrix. By (3.3.1.15), there exists an n × n unitary
matrix U such that

UHAU =


λ1 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 .

But since A is Hermitian,

(UHAU)H = UHAH(UH)H = UHAHU = UHAU,

so that

(UHAU)H =


λ1 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn


H

=


λ̄1 0 . . . 0

∗ λ̄2
. . .

...
...

. . . . . . 0
∗ . . . ∗ λ̄n



=


λ1 ∗ . . . ∗
0 λ2

. . .
...

...
. . . . . . ∗

0 . . . 0 λn

 ,

from which it follows that all off–diagonal entries are zeros. It also immediately follows
λj = λ̄j for each j = 1, 2, . . . , n, so that λj, j = 1, 2, . . . , n are real–valued.

Finally,

UHAU =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,

so that

AU = (UH)−1


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 = U


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 .

Hence,

[Ax⃗1 Ax⃗2 . . . Ax⃗n] = [λ1x⃗1 λ2x⃗2 . . . λnx⃗n],

and thus it follows Ax⃗j = λjx⃗j, j = 1, 2, . . . , n. □

Note by definition that if A is a symmetric (A = A⊤) real–valued matrix, then con-
sequently A = AH , so that A is Hermitian. Also recall that the tridiagonal matrices Jn

98



3. Topics in Integration 3.3. Gaussian Integration Methods

(3.3.1.3) are symmetric and real–valued. Thus by Theorems (3.3.1.10) and (3.3.1.17) there
exists a unitary matrix

U = [u⃗1 u⃗2 . . . u⃗n]

with UHJnU = diag(x1, x2, . . . , xn), where the xj, j = 1, 2, . . . , n are the roots of the n−th
w−orthogonal polynomial ϕn, and consequently are real and distinct. The eigenvectors
{u⃗j}nj=1 are orthogonal here, and we rescale these to obtain the quadrature weights wi.

Theorem 3.3.1.18 (Weights for Gaussian Quadrature). Let u⃗(i) := [u⃗
(i)
1 , u⃗

(i)
2 , . . . , u⃗

(i)
n ]⊤

be an eigenvector of Jn for the eigenvalue xi, i = 1, 2, . . . , n. Suppose that u⃗(i) is scaled
in such a way that ∥∥u⃗(i)

∥∥2
2
=
(
u⃗(i)
)H

u⃗(i) =
n∑

k=1

(
u⃗
(i)
k

)2
=

∫ b

a

w(x) dx.

Then the weights wi, i = 1, 2, . . . , n of the n−point Gaussian quadrature rule are given
by

wi = (u⃗
(i)
1 )2, i = 1, 2, . . . , n.

Proof. We first verify that the vector

ũ(i) := [ρ0ϕ0(xi) ρ1ϕ1(xi) . . . ρn−1ϕn−1(xi)]
⊤

where

ρj :=
1

C1C2 . . . CjCj+1

,

j = 0, 1, . . . , n− 1 is an eigenvector of Jn for the eigenvalue xi. By the recursion for ϕj, the
first row of Jnũ

(i) is, for any x,

B1ρ0ϕ0(x) + C2ρ1ϕ1(x) =
B1

C1

ϕ0(x) +
C2

C1C2

ϕ1(x)

= B1 + ϕ1(x)

= x

= xρ0ϕ0(x).

Similarly, for j = 2, . . . , n− 1, the j−th entry of Jnũ
(i) is

Cjρj−2ϕj−2(x) +Bjρj−1ϕj−1(x) + Cj+1ρjϕj(x)

= Cj(Cjρj−1)ϕj−2(x) +Bjρj−1ϕj−1(x) + ρj−1ϕj(x)

= ρj−1[C
2
j ϕj−2(x) +Bjϕj−1(x) + ϕj(x)]

= ρj−1[C
2
j ϕj−2(x) +Bjϕj−1(x) + ((x−Bj)ϕj−1(x)− C2

j ϕj−2(x))]

= xρj−1ϕj−1(x).

Finally, the last entry of Jnũ
(i) is

ρn−1[C
2
nϕn−2(x) +Bnϕn−1(x)] = xρn−1ϕn−1(x)− ρn−1ϕn(x),

so that
xiρn−1ϕn−1(xi)− ρn−1ϕn(xi) = xiρn−1ϕn−1(xi).

Thus Jnũ
(i) = xiũ

(i) for each i = 1, 2, . . . , n. This shows that ũ(i) is an eigenvector of Jn.
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Recall from (3.3.1.1) that

n∑
i=1

wiϕk(xi) =

{∫ b

a
w(x) dx, k = 0,

0, otherwise.

Define w⃗ := [w1, w2, . . . , wn]
⊤ and

U := [ũ(1) | ũ(2) | . . . | ũ(n)] =


ρ0ϕ0(x1) ρ0ϕ0(x2) . . . ρ0ϕ0(xn)
ρ1ϕ1(x1) ρ1ϕ1(x2) . . . ρ1ϕ1(xn)

...
...

. . .
...

ρn−1ϕn−1(x1) ρn−1ϕn−1(x2) . . . ρn−1ϕn−1(xn)

 .

For each k = 1, 2, . . . , n, row k of U is given by

[ρk−1ϕ(x1) ρk−1ϕk−1(x2) . . . ρk−1ϕk−1(xn)] = ρk−1[ϕk−1(x1) ϕk−1(x2) . . . ϕk−1(xn)].

Thus, the k−th entry of Uw⃗ is

(Uw⃗)k = ρk−1

n∑
i=1

wiϕk−1(xi).

We now solve for the weights wi, i = 1, 2, . . . , n by observing that

Uw⃗ =

[∫ b

a

w(x) dx, 0, . . . , 0

]⊤
,

since ρ0 = 1. Since the eigenvectors of Jn are orthogonal, we have(
ũ(i)
)⊤

Uw⃗ =
(
ũ(i)
)⊤

ũ(i)wi

=

(∫ b

a

w(x) dx

)(
ũ(i)
)⊤

e⃗1

=

(∫ b

a

w(x) dx

)
(ρ0ϕ0(xi))

=

∫ b

a

w(x) dx.

By the hypothesis, (
u⃗(i)
)⊤ (

u⃗(i)
)
=

∫ b

a

w(x) dx,

and we have already shown that u⃗(i) and ũ(i) are both eigenvectors of Jn with the associated
eigenvalue xi. Since there are n distinct eigenvalues, ũ(i) is a multiple of u⃗(i). the first entry
of ũ(i) is ρ0ϕ0(x) = 1, so that

u⃗(i) = u⃗
(i)
1 ũ(i).

Finally, observe that

wi =
1

(ũ(i))⊤(ũ(i))

∫ b

a

w(x) dx

=
(u⃗(i))⊤(u⃗(i))

(ũ(i))⊤(ũ(i))
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=
(
u⃗
(i)
1

)2
.

This completes the proof. □

Remark. Suppose that {u⃗j}nj=1 is a set of eigenvectors for Jn. Recall that we want to con-
struct a set {ũj}nj=1 of eigenvectors such that

∥ũj∥22 =
∫ b

a

w(x) dx

for each j = 1, 2, . . . , n. We may write

ũj = kju⃗j

for some kj ∈ R, so that then

∥ũj∥22 = ∥kju⃗j∥22 = k2
j ∥u⃗j∥22 ,

which implies that taking

k2
j :=

∫ b

a
w(x) dx

∥u⃗j∥22
will scale the eigenvectors as needed.

Example 3.3.1.19. We derive the abscissa xi and weights wi for w(x) := 1 on the interval
[−1, 1].

Note that the first three orthogonal polynomials are

ϕ0(x) = 1,

ϕ1(x) = x−
∫ 1

−1
x dx∫ 1

−1
dx

= x,

ϕ2(x) =

(
x−

∫ 1

−1
x3 dx∫ 1

−1
x2 dx

)
x−

∫ 1

−1
x2 dx∫ 1

−1
dx

= x2 −
[
1
3
x3
]1
−1

x|1−1

= x2 − 1

3
= (x− 0)ϕ1(x)−

1

3
ϕ0(x).

Thus the zeros of ϕ2 and thus the abscissas xi, i = 1, 2 are

x1 := − 1√
3
, x2 :=

1√
3
.

Moreover, the matrix J2 is given by

J2 =

[
B1 C2

C2 B2

]
=

[
0 1√

3
1√
3

0

]
.

Finding the eigenvectors of J2, we obtain

J2 − I2x1 = J2 +
1√
3
I2 =

[ 1√
3

1√
3

1√
3

1√
3

]
=⇒ u⃗1 = k1

[
1
−1

]
,

and

J2 − I2x2 = J2 −
1√
3
I2 =

[− 1√
3

1√
3

1√
3

− 1√
3

]
=⇒ u⃗2 = k2

[
1
1

]
.
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Noting that
∫ 1

−1
w(x) dx =

∫ 1

−1
dx = 2, choosing k1 = k2 = 1 scales the eigenvectors as

needed. Hence,

w1 =
(
u⃗
(1)
1

)2
= 1,

w2 =
(
u⃗
(2)
1

)2
= 1.

The quadrature rule is

Ĩ(f) = f

(
− 1√

3

)
+ f

(
1√
3

)
.

Example 3.3.1.20. We derive a quadrature rule Ĩ(f) that will integrate

I(f) =

∫ 1

−1

x2f(x) dx

exactly whenever f is a polynomial of degree 2 or less.
The first three orthogonal polynomials are

ϕ0(x) = 1,

ϕ1(x) = x−
∫ 1

−1
x3 dx∫ 1

−1
x2 dx

= x,

ϕ2(x) =

(
x−

∫ 1

−1
x5 dx∫ 1

−1
x4 dx

)
x−

∫ 1

−1
x4 dx∫ 1

−1
x2 dx

= x2 − 2/5

2/3
= x2 − 3

5
= (x− 0)ϕ1(x)−

3

5
ϕ0(x).

Thus the zeros of ϕ2 and therefore the quadrature abscissas xi, i = 1, 2 are

x1 := −
√

3

5
, x2 :=

√
3

5
.

Further, the matrix J2 is

J2 =

[
B1 C2

C2 B2

]
=

 0
√

3
5√

3
5

0

 .

Finding the eigenvectors of J2, we obtain

J2 − I2x1 = J2 +

√
3

5
I2 =

√3
5

√
3
5√

3
5

√
3
5

 =⇒ u⃗1 := k1

[
1
−1

]
,

and

J2 − I2x2 = J2 −
√

3

5
I2 =

−√3
5

√
3
5√

3
5

−
√

3
5

 =⇒ u⃗2 := k2

[
1
1

]
.

Note that ∥uj∥22 = 2 for j = 1, 2. Moreover,∫ 1

−1

w(x) dx =

∫ 1

−1

x2 dx =

[
1

3
x3

]
=

2

3
.

102



3. Topics in Integration 3.3. Gaussian Integration Methods

Put

k :=

√
2/3

2
=

√
1

3
and note ũj := ku⃗j is the required basis. We obtain

w1 = w2 =
(
ũ
(1)
1

)2
=

1

3
.

Hence, the quadrature rule is

Ĩ(f) =
1

3
f

(
−
√

3

5

)
+

1

3
f

(√
3

5

)
.

Theorem 3.3.1.21 (Error in Gaussian Quadrature). If f ∈ C2n[a, b], then∫ b

a

w(x)f(x) dx−
n∑

i=1

wif(xi) =
f (2n)(ξ)

(2n!)

∫ b

a

w(x)[ϕn(x)]
2 dx,

for some ξ ∈ (a, b).

Proof. Let p ∈ Π2n−1 be the unique Hermite interpolating polynomial satisfying

p(xi) = f(xi), p′(xi) = f ′(xi), i = 1, 2, . . . , n.

Since the Gaussian quadrature rule is exact on Π2n−1, we have∫ b

a

w(x)p(x) dx =
n∑

i=1

wip(xi) =
n∑

i=1

wif(xi).

Therefore, the error term has the integral representation

I(f)− Ĩ(f) =

∫ b

a

w(x)f(x) dx−
n∑

i=1

wif(xi)

=

∫ b

a

w(x)f(x) dx−
∫ b

a

w(x)p(x) dx

=

∫ b

a

w(x)(f(x)− p(x)) dx.

Since the xi, i = 1, 2, . . . , n are the roots of ϕn, it follows from the error in Hermite interpo-
lation (1.1.5.7) that there exists ζ ∈ (a, b) such that

f(x)− p(x) =
f (2n)(ζ)

(2n)!

n∏
i=1

(x− xi)
2 =

f (2n)(ζ)

(2n)!
[ϕn(x)]

2.

Next, the function
f (2n)(ζ(x))

(2n)!
=

f(x)− p(x)

[ϕn(x)]2

is continuous on [a, b]. Since w ≥ 0 on [a, b], by the weighted mean value theorem for integrals,
it follows

I(f)− Ĩ(f) =

∫ b

a

w(x)(f(x)− p(x)) dx
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=
1

(2n)!

∫ b

a

w(x)f (2n)(ζ)[ϕn(x)]
2 dx

=
f (2n)(ξ)

(2n)!

∫ b

a

w(x)[ϕn(x)]
2 dx

for some ξ ∈ (a, b). This completes the proof. □

Example 3.3.1.22. In the case
f(x) = x4,

we derive the explicit formula for the quadrature error I(f)− Ĩ(f) from the first example.
Recall n = 2, w(x) ≡ 1, and ϕ2(x) = x2 − 1

3
. Hence, applying (3.3.1.21), we have

I(f)− Ĩ(f) =
4!

4!

∫ 1

−1

(
x2 − 1

3

)2

dx

=

∫ 1

−1

x4 − 2

3
x2 +

1

3
dx

=

[
1

5
x5 − 2

9
x3 +

1

3
x

]1
−1

=
2

5
− 4

9
+

2

3
=

28

45
.
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4. Systems of Linear Equations

In this section we consider direct methods for solving systems of linear equations

Ax⃗ = b⃗, A =

a11 . . . a1n
...

. . .
...

an1 . . . an1

 , b⃗ =

b1...
bn

 .

Here A is a given square n× n matrix and b⃗ a given vector. The direct methods discussed

in this section produce the solution to the system Ax⃗ = b⃗ in finitely many steps, assuming
computations without roundoff errors.

This problem is closely related to that of computing the inverse A−1 of the matrix A

provided that this inverse exists. For if A−1 is known, the solution x⃗ of Ax⃗ = b⃗ can be
obtained by matrix–vector multiplication,

x⃗ = A−1⃗b.

Conversely, the i−th column āi of A
−1 = [ā1, . . . , ān]

⊤ is the solution of the linear system
Ax⃗ = e⃗i, where e⃗i = [0, . . . , 0, 1, 0, . . . , 0]⊤ is the i−th unit vector.

4.1. Gaussian Elimination: The Triangular Decomposition of a Matrix.

4.1.1. Gaussian Elimination. We seek a solution to a system of linear equations

Ax⃗ = b⃗, A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 , b⃗ =


b1
b2
...
bn.

 (4.1.1.1)

Here, A is a square n × n matrix and b⃗ ∈ Rn. The system (4.1.1.1) is transformed by
rearrangements and linear combinations into a system of the form

Rx⃗ = c⃗, R =


r11 r12 . . . r1n
0 r22 . . . rnn
...

. . . . . .
...

0 . . . 0 rnn

 ,

which has the same solution x⃗ as Ax⃗ = b⃗. Here, R is an upper triangular matrix, so we can
solve Rx⃗ = c⃗ easily by back substitution

xi :=

(
ci −

n∑
k=i+1

rikxk

)
rii

, i = n, n− 1, . . . , 1.

In the first step of the algorithm we subtract a multiple of the first equation from all other
equations so that the coefficients of x1 vanish in these equations. Thus x1 remains only in
the first equation, which is possible only if a11 ̸= 0, which can be achieved by swapping rows
as necessary, so long as at least one ai1 ̸= 0. The operations are carried out on the matrix

(A, b⃗) =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

an1 an2 . . . ann bn

 .
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4. Systems of Linear Equations 4.1. Gaussian Elimination

The first step of the Gaussian elimination process leads to a matrix (A′, b⃗′) of the form

(A′, b⃗′) =


a′11 a′12 . . . a′1n b′1
0 a′22 . . . a′2n b′2
...

...
. . .

...
...

0 a′n2 . . . a′nn b′n

 .

We may describe this step formally as follows:

Algorithm 4.1.1.1.

(1) Determine an element ar1 ̸= 0 and proceed with (2). If no such r exists, then A is

singular. Set (A′, b⃗′) = (A, b⃗) and stop.

(2) Interchange rows r and 1 of (A, b⃗). The result is the matrix (Ā,
¯⃗
b).

(3) For i = 2, 3, . . . , n, subtract the multiple

li1 :=
āi1
ā11

of row 1 from row i of the matrix (Ā,
¯⃗
b). The desired matrix (A′, b⃗′) is obtained as

the result.

The transition (A, b⃗) → (Ā,
¯⃗
b) → (A′, b⃗′) can be described by using matrix multiplications

(Ā,
¯⃗
b) = P1(A, b⃗), (A′, b⃗′) = G1(Ā,

¯⃗
b) = G1P1(A, b⃗), (4.1.1.2)

where P1 is a permutation matrix

P1 :=



0 0 1 0 0
1

. . .
1

1 0
1

. . .
0 1


and G1 is a lower triangular matrix

G1 :=


1 0 . . . 0

−l21 1
. . .

...
...

. . . 0
−ln1 0 . . . 1

 .

Matrices such as G1 that differ in at most one column from an identity matrix are called
Frobenius matrices. Both matrices P1 and G1 are nonsingular:

P−1
1 = P1, G−1

1 =


1 0 . . . 0

l21 1
. . .

...
...

. . . 0
ln1 0 . . . 1

 .
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4. Systems of Linear Equations 4.1. Gaussian Elimination

Thus, the equation systems Ax⃗ = b⃗ and A′x⃗ = b⃗′ have the same solution x⃗ :

Ax⃗ = b⃗ =⇒ A′x⃗ = G1P1Ax⃗ = G1P1⃗b = b⃗′,

A′x⃗ = b⃗′ =⇒ Ax⃗ = P−1
1 G−1

1 A′x⃗ = P−1
1 G−1

1 b⃗′ = b⃗.

The element ar1 = ā11 determined in (4.1.1.1)[1] is called the pivot element, and step (1)
is called pivot selection. Note that in pivot selection we may choose any ar1 ̸= 0 as the pivot.
For reasons of numerical stability, usually the choice

|ar1| = max
i

|ai1|

is made. It is assumed in making this choice that the orders of magnitudes of the elements
of A are roughly equal (in this situation A is said to be equilibrated). This sort of pivot
selection is called partial pivot selection.

We replace (1) and (2) in (4.1.1.1) as follows:

Algorithm 4.1.1.2.

(1) Determine r so that
|ar1| = max

i
|ai1|

and continue with (2) if ar1 ̸= 0. Otherwise, A is singular; set (A′, b⃗′) = (A, b⃗), stop.

(2) Interchange rows 1 and r of (A, b⃗). Let the resulting matrix be (Ā,
¯⃗
b).

After the first elimination step, the resulting matrix has the form

(A′, b⃗′) =

[
a′11 a′⊤ b′1
0 Ã b̃

]
with an (n − 1)−row matrix Ã. The next elimination step consists of simply applying the

same algorithm to the smaller matrix (Ã, b̃). Carrying on in this fashion, a sequence of
matrices

(A, b⃗) := (A(0), b⃗(0)) → (A(1), b⃗(1)) → · · · → (A(n−1), b⃗(n−1)) =: (R, c⃗)

is obtained which begins with the given matrix (A, b⃗) and ends with the desired matrix
(R, c⃗). In this sequence the j−th intermediate matrix has the form

(A(j), b⃗(j)) =



∗ . . . ∗ ∗ . . . ∗ ∗
. . .

...
...

...
...

0 ∗ ∗ . . . ∗ ∗
0 . . . 0 ∗ . . . ∗ ∗
...

...
...

...
...

0 . . . 0 ∗ . . . ∗ ∗


=

[
A

(j)
11 A

(j)
12 b⃗

(j)
1

0 A
(j)
22 b⃗

(j)
2

]

with a j−row upper triangular matrixA
(j)
11 . The matrix (A(j), b⃗(j)) is obtained from (A(j−1), b⃗(j−1))

by applying the elimination algorithm (4.1.1.1) on the (n − j + 1) × (n − j + 2) matrix

(A
(j−1)
22 , b⃗

(j−1)
2 ). The elements of A

(j)
11 , A

(j)
12 , and b⃗

(j)
1 do not change from this step on, and

thus they agree with the corresponding elements of (R, c⃗). Moreover, the ensuing steps can
be described using matrix multiplication. That is,

(A(j), b⃗(j)) = GjPj(A
(j−1), b⃗(j−1)),
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4. Systems of Linear Equations 4.1. Gaussian Elimination

(R, c⃗) = Gn−1Pn−1Gn−2Pn−2 . . . G1P1(A, b⃗),

with permutation matrices Pj and nonsingular Frobenius matrices Gj, j = 1, 2, . . . , n− 1 of
the form

Gj =



1 0
. . .

1
−lj+1,j 1

...
...

. . .
0 −ln,j 0 1


.

In the j−th elimination step (A(j−1), b⃗(j−1)) → (A(j), b⃗(j)), the elements below the diagonal in
the j−th column vanish. For implementation of this algorithm on a computer, the locations
which were once occupied by these elements may be used for the storage of the quantities
lij, i = j + 1, j + 2, . . . , n, of Gj, that is, we work with a matrix of the form

T (j) =



r11 r12 . . . r1j r1,j+1 . . . r1n c1
λ21 r22 . . . r2j r2,j+1 r2n c2

λ31 λ32
...

...
...

...
...

... rjj rj,j+1 . . . rj,n cj
...

... λj+1,j a
(j)
j+1,j+1 . . . a

(j)
j+1,n b

(j)
j+1

...
...

...
...

...
...

λn1 λn2 . . . λn1 a
(j)
n,j+1 . . . a

(j)
n,n b

(j)
n


.

Here, the subdiagonal elements λk+1,k, λk+2,k, . . . , λnk of the k−th column are a certain per-
mutation of the elements lk+1,k, lk+2,k, . . . , lnk in Gk.

The j−th step T (j−1) → T (j), j = 1, 2, . . . , n − 1 can be described as follows, where
the elements of T (j−1) are denoted by tik, and those of T (j) by t′ik, i = 1, 2, . . . , n, k =
1, 2, . . . , n+ 1 :

Algorithm 4.1.1.3.

(1) Partial pivot selection: Determine r so that

|trj| = max
i≥j

|tij|.

If trj = 0, set T (j) := T (j−1); A is singular, stop. Otherwise, continue with (2).
(2) Interchange rows r and j of T (j−1), and denote the result by T̄ = (t̄ik).
(3) Replace

t′ij := lij :=
t̄ij
t̄jj

, for i = j + 1, j + 2, . . . , n,

t′ik := t̄ik − lij t̄jk, for i = j + 1, j + 2, . . . , n and k = j + 1, j + 2, . . . , n,

t′ik := t̄ik, otherwise.

We note that in (3) the elements lj+1,j, lj+2,j, . . . , lnj of Gj are store in their natural order
as t′j+1,j, t

′
j+2,j, . . . , t

′
nj. This order, however, may be changed in the subsequent elimination

steps T (k) → T (k+1), k ≥ j, because in (2) the rows of the entire matrix T (k) are rearranged.
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This has the following effect: the lower triangular matrix L and the upper triangular matrix
R,

L :=


1 0 . . . 0

t21 1
. . .

...
...

. . . . . . 0
tn1 . . . tn,n−1 1

 , R :=


t11 t12 . . . t1n
0 t22 t2n
...

. . . . . .
...

0 . . . 0 tnn

 ,

which are contained in the final matrix T (n−1) = (tik), provide a triangular decomposition of
the matrix PA :

LR = PA.

In this decomposition, P is the product of all of the permutations

P = Pn−1Pn−2 . . . P2P1.

Example 4.1.1.4. 3 1 6
2 1 3
1 1 1

x1

x2

x3

 =

27
4

 .

 3∗ 1 6 2
2 1 3 7
1 1 1 4

→

 3 1 6 2
2
3

1
3

−1 17
3

1
3

2
3

∗ −1 10
3

→

 3 1 6 2
1
3

2
3

−1 10
3

2
3

1
3

−1 17
3


→

 3 1 6 2
1
3

2
3

−1 10
3

2
3

1
2

−1
2

4


Thus the triangular equation system is3 1 6

0 2
3

−1
0 0 −1

2

x1

x2

x3

 =

 2
10
3
4

 .

Its solution is

x3 = −2(4) = −8,

x2 =
3

2

(
10

3
+ x3

)
=

3

2

(
10

3
− 8

)
=

3

2

(
−14

3

)
= −7,

x1 =
1

3
(2− 6x3 − x2) =

1

3
(2− 6(−8)− (−7)) =

1

3
(57) = 19.

Further

P =

1 0 0
0 0 1
0 1 0

 , PA =

3 1 6
1 1 1
2 1 3

 ,

and the matrix PA has the triangular decomposition PA = LR with

L =

1 0 0
1
3

1 0
2
3

1
2

1

 , R =

3 1 6
0 2

3
−1

0 0 −1
2

 .
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If the lower–upper triangular decomposition is known for a matrix A, that is, if

PA = LR

is known, then the equation system Ax⃗ = b⃗ can be solved immediately with any right–hand

side b⃗, for it follows that

PAx⃗ = LRx⃗ = P b⃗,

from which x⃗ can be found by solving both of the triangular systems

L(Rx⃗) = Ly⃗ = P b⃗ (using forward substitution),

Rx⃗ = y⃗ (using back substitution).

Thus, with the help fo the Gaussian elimination algorithm, it can be shown constructively
that each square nonsingular matrix A has a triangular decomposition of the form

PA = LR.

We also note that Gaussian elimination and direct triangular decomposition differ only
in the ordering of operations. Both algorithms are, theoretically and numerically, entirely
equivalent. In Gaussian elimination, the scalar products are formed only in pieces, with
temporary storing of the intermediate results. Direct triangular decomposition forms each
scalar product as a whole.

A second result pertains to the determinant of A. Suppose that we are given a triangular
decomposition

PA = LR.

Note that det(P ) = ±1 and det(L) = 1. Thus it follows

det(A) = ± det(PA)

= ± det(LR)

= ± det(L) det(R)

= ± det(R)

= ±
n∏

k=1

rkk.

Hence, we may get ± det(A) by:

(1) Factor PA = LR,
(2) Take

∏n
k=1 rkk.

A further practical property of the method of triangular decomposition is that, for banded
matrices with bandwidth m,

A =



∗ . . . ∗ 0 . . . 0
...

. . . . . . . . .
...

∗ . . . . . . 0

0
. . . . . . ∗

...
. . . . . . . . .

...
0 . . . 0 ∗ . . . ∗


, aij = 0, for |i− j| ≥ m,
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the matrices L and R of the decomposition PA = LR are not full: R is a banded upper
triangular matrix with bandwidth 2m− 1,

R =



∗ . . . ∗ 0 . . . 0
. . . . . . . . .

...
. . . . . . 0

. . . ∗
. . .

...
∗


,

and in each column of L there are at most m elements different from zero. In contrast, the
inverses A−1 of banded matrices are usually filled with nonzero entries. Thus, if m << n (A

is n× n), using the triangular decomposition of A to solve Ax⃗ = b⃗ results in a considerable
savings in computation and storage over using A−1.

4.2. The Gauss–Jordan Algorithm.

4.2.1. Gauss–Jordan Algorithm. In the event that we want to find the inverse A−1 of a
nonsingular matrix A, we may use triangular decomposition or the Gauss–Jordan algorithm.
Both methods require the same amount of work.

If the triangular decomposition PA = LR is known, then the i−th column āi of A
−1 is

obtained as the solution of the system

LRāi = P e⃗i,

where e⃗i is the i−th coordinate vector. The Gauss–Jordan method is obtained if we attempt
to invert the mapping x⃗ 7→ Ax⃗ = y⃗, x⃗, y⃗ ∈ Rn, determined by A in a systematic manner.

Consider the system Ax⃗ = y⃗ :

a11x1 + · · ·+ a1nxn = y1,

...

an1x1 + · · ·+ annxn = yn.

In the first step of the Gauss–Jordan method, we switch x1 for one of the variables yr. To
do this, an ar1 ̸= 0 is found, for example by partial pivot selection

|ar1| := max
i

|ai1|,

and equations r and 1 are interchanged. In this way, a system

ā11x1 + · · ·+ ā1nxn = ȳ1,

... (4.2.1.1)

ān1x1 + · · ·+ ānnxn = ȳn

is obtained in which the variables ȳ1, . . . , ȳn are some permutation of the variables y1, . . . , yn
and ā11 = ar1, ȳ1 = yr holds. Now ā11 ̸= 0, for otherwise we would have ai1 = 0 for all
i = 1, 2, . . . , n, which means A is singular, a contradiction. By solving the first equation of
(4.2.1.1) for x1 and substituting the result into the remaining equations, the system
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a′11ȳ1 + a′12x2 + · · ·+ a′1nxn = x1,

a′21ȳ1 + a′22x2 + · · ·+ a′2nxn = ȳ2,

...

a′n1ȳ1 + a′n2x2 + · · ·+ a′nnxn = ȳn

is obtained with

a′11 :=
1

ā11
, a′1k := − ā1k

ā11
, a′i1 :=

āi1
ā11

,

a′ik := āik −
āi1ā1k
ā11

, for i, k = 2, 3, . . . , n.

In the next step, the variable x1 is exchanged for one of the variables ȳ2, . . . , ȳn, then x3 is
exchanged for one of the remaining y variables, and so on. If the successive equation systems
are represented by their matrices, then starting from A(0) := A, a sequence

A(0) → A(1) → · · · → A(n)

is obtained. The matrix A(j) = (a
(j)
ik ) stands for the matrix of a “mixed equation system” of

the form

a
(j)
11 ỹ1 + · · ·+ a

(j)
1j ỹj + a

(j)
1,j+1xj+1 + · · ·+ a

(j)
1nxn = x1,

...

a
(j)
j1 ỹ1 + · · ·+ a

(j)
jj ỹj + a

(j)
j,j+1xj+1 + · · ·+ a

(j)
jnxn = xj,

a
(j)
j+1,1ỹ1 + · · ·+ a

(j)
j+1,j ỹj + a

(j)
j+1,j+1xj+1 + · · ·+ a

(j)
j+1,nxn = ỹj+1,

...

a
(j)
n1 ỹ1 + · · ·+ a

(j)
nj ỹj + a

(j)
n,j+1xj+1 + · · ·+ a(j)nnxn = ỹn.

In this system (ỹ1, . . . , ỹj, ỹj+1, . . . , ỹn) is a certain permutation of the original variables
(y1, . . . , yn). In the transition A(j−1) → A(j) the variable xj is swapped according to the
rules given below. For simplicity, the elements of A(j−1) are denoted by aik, and those of
A(j) by a′ik.

Algorithm 4.2.1.1.

(1) Partial pivot selection: Determine r so that

|arj| = max
i≥j

|aij|.

If arj = 0, A is singular, stop.
(2) Interchange rows r and j of A(j−1), and call the result Ā = (āik).
(3) Compute A(j) = (a′ik) according to the formulas

a′jj :=
1

ājj
,

a′jk := − ājk
ājj

, a′ij :=
āij
ājj

for i, k ̸= j,
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a′ik := āik −
āij ājk
ājj

.

Note that

A(n)ŷ = x⃗, ŷ = [ŷ1, . . . , ŷn]
⊤,

where ŷ1, . . . , ŷn is a certain permutation of the original variables y1, . . . , yn, ŷ = P y⃗ which,
since it corresponds to the interchange step (4.2.1.1)[2], can easily be determined. It follows

(A(n)P )y⃗ = x⃗,

and therefore, since Ax⃗ = y⃗,

A−1 = A(n)P.

Example 4.2.1.2.

A := A(0) :=

1∗ 1 1
1 2 3
1 3 6

→ A(1) =

1 −1 −1
1 1∗ 2
1 2 5


→ A(2) =

 2 −1 1
−1 1 −2
−1 2 1∗

→ A(3) =

 3 −3 1
−3 5 −2
1 −2 1


= A−1.

4.3. The Choleski Decomposition.

4.3.1. The Choleski Decomposition. The methods discussed thus far for solving equations
can fail if no pivot selection is carried out, that is, if we restrict ourselves to taking the
diagonal elements in order as pivots. However, there is an important class of matrices for
which no pivot selection is necessary in computing triangular factors: the choice of each
diagonal element in order always yields a nonzero pivot. Furthermore, it is numerically
stable to use these pivots. We refer to the class of positive definite matrices.

Definition 4.3.1.1 (Positive Definite Matrix). A (possibly complex) n×n matrix A is said
to be positive definite if it satisfies:

(1) A = AH , that is, A is Hermitian;

(2) x⃗HAx⃗ > 0 for all x⃗ ∈ Cn, x⃗ ̸= 0⃗.

We call a matrix A = AH positive semidefinite if x⃗HAx⃗ ≥ 0 holds for all x⃗ ∈ Cn.

Theorem 4.3.1.2. For any positive definite matrix A the matrix A−1 exists and is positive
definite. All principal submatrices of a positive definite matrix are also positive definite, and
all principal minors of a positive definite matrix are positive.

Proof. The inverse of a positive definite matrix A exists: if it were not so, then x⃗ ̸= 0⃗ exists
with Ax⃗ = 0⃗. Consequently

x⃗HAx⃗ = x⃗H 0⃗ = 0,

a contradiction to the assumption that A is positive definite.
Moreover, A−1 is positive definite: we have

(A−1)H = (AH)−1 = A−1,
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and if y⃗ ̸= 0⃗ it follows

x⃗ = A−1y⃗ ̸= 0⃗.

Hence,

y⃗HA−1y⃗ = (Ax⃗)H x⃗ = x⃗HAH x⃗ = x⃗HAx⃗ > 0,

which shows that A−1 is indeed positive definite.
Every principal submatrix

Ã =

ai1i1 . . . ai1ik
...

...
aiki1 . . . aikik


of a positive definite matrix A is also positive definite: clearly ÃH = Ã. Moreover, every

x̃ := [x̃1, . . . , x̃k]
⊤ ∈ Ck, x̃ ̸= 0⃗,

can be expanded to

x⃗ := [x1, . . . , xn]
⊤ ∈ Cn, x⃗ ̸= 0⃗,

where

xµ :=

{
x̃j, µ = ij, j = 1, 2, . . . , k,

0, otherwise.

From this construction it follows that

x̃HÃx̃ = x⃗HAx⃗ > 0.

To complete the proof, it suffices to show that det(A) > 0 for any matrix A that is
positive definite. We use induction.

Case n = 1 is trivial.
Now assume for the induction hypothesis that the theorem holds for positive definite

matrices up to size (n− 1)× (n− 1), and let A be a positive definite n× n matrix. Then

A−1 =:

α11 . . . α1n
...

...
αn1 . . . αnn


is also positive definite, and consequently α11 = e⃗H1 A

−1e⃗1 > 0. Also, since

A

α11
...

αn1

 = e⃗1,

we have by Cramer’s Rule

α11 =

det



1 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 an2 . . . ann




det(A)
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=

det

a12 . . . a1n
...

. . .
...

an2 . . . ann


det(A)

,

where

det

a12 . . . a1n
...

. . .
...

an2 . . . ann

 > 0

by the induction hypothesis. Since α11 > 0, we get det(A) > 0, which proves the theorem.
□

Theorem 4.3.1.3. For each n× n positive definite matrix A there is a unique n× n lower
triangular matrix L, lik = 0 for k > i, with lii > 0, i = 1, 2, . . . , n, satisfying LLH . Moreover,
if A is real, then so is L.

Note that lii = 1 if not required here. The matrix L is called the Choleski factor of A,
and A = LLH its Choleski decomposition.

Proof. We use induction on n.
For case n = 1 the theorem is trivial: A positive definite 1 × 1 matrix A := (α) is a

positive number α > 0, which can be written uniquely in the form

α := l11l̄11, l11 := +
√
α.

Now assume for the induction hypothesis that the theorem holds for positive definite
matrices up to size (n − 1) × (n − 1). Let A be a positive definite n × n matrix. We may
partition A into

A =

[
An−1 b⃗

b⃗H ann

]
,

where b⃗ ∈ Cn−1 and An−1 is a positive definite (n− 1)× (n− 1) matrix by (4.3.1.2). By the
induction hypothesis, there is a unique matrix Ln−1 of size (n− 1)× (n− 1) satisfying

An−1 = Ln−1L
H
n−1, lik = 0 for k > i, lii > 0.

We consider a matrix L of the form

L =

[
Ln−1 0
c⃗H α

]
,

and try to determine c⃗ ∈ Cn−1, α > 0 such that

LU =

[
Ln−1 0
c⃗H α

] [
LH

n−1 c⃗
0 α

]
=

[
Ln−1L

H
n−1 Ln−1c⃗

c⃗HLH
n−1 c⃗H c⃗+ α2

]
=

[
An−1 b⃗

b⃗H ann

]
,

where

U :=

[
LH

n−1 c⃗
0 α

]
.

This implies that we must have

Ln−1c⃗ = b⃗,

c⃗H c⃗+ α2 = ann.
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The first equation must have a unique solution c⃗ = L−1
n−1b⃗, since Ln−1, as a triangular matrix

with strictly positive diagonal entries, has det(Ln−1) > 0. As for the second equation, define
α :=

√
ann − c⃗H c⃗. We need only show that ann − c⃗H c⃗ > 0 so that α ∈ R, α > 0. But since

c⃗H c⃗+ α2 = ann holds in any case,

det(A) = det(L) det(U) = det(Ln−1) det(L
H
n−1)α

2 > 0,

since A is positive definite by the hypothesis. But An−1 is also positive definite (4.3.1.2) so
that

det(Ln−1) det(L
H
n−1) = det(An−1) > 0.

Hence, α2 = ann − c⃗H c⃗ > 0, as required.
This completes the proof. □

Check notes for how to compute entries lij of L. We note here than an important impli-
cation of this computation of the entries lij is that

|lij| ≤
√
aii, j = 1, 2, . . . , k, k = 1, 2, . . . , n.

That is, the elements of L cannot grow too large.

4.4. Error Bounds.

4.4.1. Error Bounds. In general the solution x⃗ ∈ Cn to the system Ax⃗ = b⃗ is not computed
exactly. We get

x̃ = x⃗+∆x⃗, ∆x⃗ ̸= 0⃗.

We want to discuss the error
∆x⃗ := x̃− x⃗.

Definition 4.4.1.1 (Norm). A norm is a function ∥ · ∥ : Cn → R which assigns to each
vector x⃗ ∈ Cn a real value ∥x⃗∥, which serves as a measure for the “size” of x⃗. A norm
satisfies the following three properties:

(1) ∥x⃗∥ > 0 for all x⃗ ∈ Cn, x⃗ ̸= 0⃗ (positivity);
(2) ∥αx⃗∥ = |α|∥x⃗∥ for all α ∈ C, x⃗ ∈ Cn (homogeneity);
(3) ∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥ for all x⃗, y⃗ ∈ Cn.

Theorem 4.4.1.2 (Reverse Triangle Inequality). For each norm ∥ · ∥ the inequality

∥x⃗− y⃗∥ ≥ |∥x⃗∥ − ∥y⃗∥| ,
for all x⃗, y⃗ ∈ Cn, holds.

Proof. Observe that
∥x⃗∥ = ∥(x⃗− y⃗) + y⃗∥ ≤ ∥x⃗− y⃗∥+ ∥y⃗∥.

Consequently,
∥x⃗∥ − ∥y⃗∥ ≤ ∥x⃗− y⃗∥.

Similarly
∥x⃗− y⃗∥ = ∥y⃗ − x⃗∥ ≥ ∥y⃗∥ − ∥x⃗∥,

which gives
∥x⃗− y⃗∥ ≥ |∥x⃗∥ − ∥y⃗∥| ,

which proves the result. □

Example 4.4.1.3 (Vector Norms). Some common vector norms on Cn are as follows:
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(1) The Euclidean norm:

∥x⃗∥2 :=
√
x⃗H x⃗ =

(
n∑

i=1

|xi|2
)
.

(2) The maximum (infinity) norm:

∥x⃗∥∞ := max
i

|xi|.

Theorem 4.4.1.4 (Norms are Uniformly Continuous). Each norm ∥ · ∥ in Cn is a
uniformly continuous function with respect to the metric ρ(x⃗, y⃗) := maxi |xi − yi| on Cn.

Proof. Let x⃗ := [x1, . . . , xn]
⊤ ∈ Cn and y⃗ := [y1, . . . , yn]

⊤ ∈ Cn. By the reverse triangle
inequality,

|∥x⃗+ y⃗∥ − ∥x⃗∥| ≤ ∥(x⃗+ y⃗)− x⃗∥ = ∥y⃗∥.
Now y⃗ =

∑n
i=1 yie⃗i, where e⃗i, i = 1, 2, . . . , n are the usual unit vectors. Therefore

∥y⃗∥ ≤
n∑

i=1

|yi|∥e⃗i∥

≤ max
i

|yi|
n∑

i=1

∥e⃗i∥

≤ M max
i

|yi|,

with M :=
∑n

i=1 ∥e⃗i∥. Note that M depends only on ∥ · ∥ and n.
Fix ϵ > 0. Then for all y⃗ ∈ Cn satisfying

∥y⃗∥∞ <
ϵ

M
,

it follows

|∥x⃗+ y⃗∥ − ∥x⃗∥| ≤ ∥y⃗∥ < M
( ϵ

M

)
= ϵ.

Hence ∥ · ∥ is uniformly continuous. □

Theorem 4.4.1.5 (Equivalence of Norms). All norms on Cn are equivalent in the fol-
lowing sense: for each pair of norms ∥ · ∥a, ∥ · ∥b, there are positive constants m and M
satisfying

m∥x⃗∥b ≤ ∥x⃗∥a ≤ M∥x⃗∥b,
for all x⃗ ∈ Cn.

Proof. We show that any norm ∥ · ∥ is equivalent to the infinity norm,

m∥x⃗∥∞ ≤ ∥x⃗∥ ≤ M∥x⃗∥∞,

so that any pair of norms ∥ · ∥a, ∥ · ∥b, are thus equivalent to ∥ · ∥∞.
By the homogeneity of vector norms, it suffices to consider only those vectors in the set

S := {x⃗ ∈ Cn : ∥x⃗∥∞ = 1},
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which is compact in Cn. Since S is compact and ∥ · ∥ is uniformly continuous (4.4.1.4), it
follows from the extreme value theorem that

M := max
x⃗∈S

∥x⃗∥ > 0, m := min
x⃗∈S

∥x⃗∥ > 0

exist. Thus, for all y⃗ ̸= 0⃗, y⃗
∥y⃗∥∞ ∈ S, and we have

m ≤
∥∥∥∥ y⃗

∥y⃗∥∞

∥∥∥∥ =
1

∥y⃗∥∞
∥y⃗∥ ≤ M,

which shows
m∥y⃗∥∞ ≤ ∥y⃗∥ ≤ M∥y⃗∥∞.

This proves the theorem. □

For matrices A ∈ M(m,n) of fixed dimensions, norms ∥A∥ can be introduced. The
properties

(1) ∥A∥ > 0 for all A ̸= 0,
(2) ∥αA∥ = |α|∥A∥,
(3) ∥A+B∥ ≤ ∥A∥+ ∥B∥

hold.

Definition 4.4.1.6 (Consistent Matrix Norm). The matrix norm ∥ · ∥ is said to be consis-
tent with the vector norms ∥ · ∥a on Cn and ∥ · ∥b on Cm if

∥Ax⃗∥b ≤ ∥A∥∥x⃗∥a
for all x⃗ ∈ Cn and A ∈ M(m,n).

Definition 4.4.1.7 (Submultiplicative Matrix Norm). A matrix norm ∥ · ∥ for square ma-
trices A ∈ M(n, n) is called submultiplicative if

∥AB∥ ≤ ∥A∥∥B∥
for all A,B ∈ M(n, n).

Note that choosing B := I implies that ∥I∥ ≥ 1 for submultiplicative matrix norms.

Example 4.4.1.8 (Matrix Norms).

(1) Row-sum norm (also infinity norm):

∥A∥∞ := max
i

{
n∑

k=1

|aik|

}
.

(2) Schur–Norm (also Frobenius norm):

∥A∥F :=

(
n∑

i,k=1

|aik|2
)1/2

.

(3) Max norm:
∥A∥max := max

i,k
|aik|.

(4) Column-sum norm (also 1−norm):

∥A∥1 := max
k

{
n∑

i=1

|aik|

}
.
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Norms (1), (2), and (4) are submultiplicative, (3) is not. Norm (2) is consistent with the
Euclidean vector norm.

Definition 4.4.1.9 (Least Upper Bound Norm). Given a vector norm ∥ · ∥ on Cn, a corre-
sponding matrix norm for square matrices, the least upper bound norm or subordinate
matrix norm, can be defined by

lub(A) := max
x̸⃗=0

∥Ax⃗∥
∥x⃗∥

.

Theorem 4.4.1.10. Each subordinate matrix norm lubv(A) is consistent with the vector
norm ∥ · ∥v used to define it. Moreover, lubv(A) is the smallest of all the matrix norms
∥A∥ which are consistent with the vector norm ∥·∥v. Also, each subordinate matrix norm
lubv(A) is submultiplicative.

Proof. The norm lubv(A) is consistent with ∥ · ∥v : Observe for all x⃗ ̸= 0⃗ that

∥Ax⃗∥v =
{
∥Ax⃗∥v
∥x⃗∥v

}
∥x⃗∥v ≤ max

x̸⃗=0

{
∥Ax⃗∥v
∥x⃗∥v

}
∥x⃗∥v = lubv(A)∥x⃗∥v.

The norm lubv(A) is the smallest of all matrix norms ∥A∥ consistent with ∥ · ∥v : Note

that for a given matrix norm ∥ · ∥ and x⃗ ̸= 0⃗, we have

∥Ax⃗∥v ≤ ∥A∥∥x⃗∥v.

Thus for x⃗ ̸= 0⃗,
∥Ax⃗∥v
∥x⃗∥v

≤ ∥A∥

This is for all x⃗ ̸= 0⃗, so that finally

lubv(A) ≤ ∥A∥.
Each subordinate matrix norm lubv(A) is submultiplicative: Since lubv(A) is the smallest

matrix norm consistent with ∥ · ∥v, we have evidently that

lubv(AB) = max
x̸⃗=0

∥ABx⃗∥v
∥x⃗∥v

≤ max
x̸⃗=0

lubv(A)
∥Bx⃗∥v
∥x⃗∥v

= lubv(A)lubv(B).

This completes the proof. □

Also note that

lub(I) = max
x̸⃗=0

∥Ix⃗∥
∥x⃗∥

= 1.

The consistency of lub(A) shows that lub(A) is the greatest magnification which a vector
may attain under the mapping determined by A. That is, it shows how much ∥Ax⃗∥, the
norm of an image point, can exceed ∥x⃗∥, the norm of a source point.

Example 4.4.1.11. For the maximum norm ∥ · ∥∞ = maxv |x⃗|v, the subordinate matrix

norm is the row–sum norm. Observe for any matrix A = (aik) and x⃗ ̸= 0⃗,

∥Ax⃗∥∞
∥x⃗∥∞

=

maxi

∣∣∣∣ n∑
k=1

aikxk

∣∣∣∣
maxk |xk|
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≤
maxi

n∑
k=1

|aikxk|

maxk |xk|

=

maxi
n∑

k=1

|aik||xk|

maxk |xk|

≤
{maxk |xk|}maxi

n∑
k=1

|aik|

maxk |xk|
= ∥A∥∞.

This shows lub∞(A) ≤ ∥A∥∞.
To see that lub∞(A) ≥ ∥A∥∞, suppose that

∥A∥∞ = max
i

{
n∑

k=1

|aik|

}
=

n∑
k=1

|ai∗k|,

that is, say i∗ is the maximum row. Define a vector

x⃗ := [x1, x2, . . . , xn]
⊤

as follows:

xk :=

{
1, ai∗k ≥ 0,

−1, otherwise.

Clearly ∥x⃗∥∞ = 1. Thus

∥Ax⃗∥∞
∥x⃗∥∞

= ∥Ax⃗∥∞ = max
i

∣∣∣∣∣
n∑

k=1

aikxk

∣∣∣∣∣
=

∣∣∣∣∣
1∑

k=1

ai∗kxk

∣∣∣∣∣
=

n∑
k=1

ai∗kxk

=
n∑

k=1

|ai∗k|

= ∥A∥∞.

It follows that lub∞(A) ≥ ∥A∥∞.

Example 4.4.1.12. For the Euclidean vector norm ∥ · ∥2 =
√
x⃗H x⃗ we have the subordinate

matrix norm

lub2(A) = max
x̸⃗=0

∥Ax⃗∥2
∥x⃗∥2

= max
x̸⃗=0

√
(Ax⃗)H(Ax⃗)√

x⃗H x⃗
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= max
x̸⃗=0

√
x⃗HAHAx⃗√

x⃗H x⃗

=
√

λmax(AHA),

where λmax(A
HA) denotes the largest eigenvalue of the matrix AHA.

In the following we assume that ∥x⃗∥ is an arbitrary vector norm an ∥A∥ is a consistent
submultiplicative matrix norm. Specifically, we can always take the subordinate norm lub(A)
as ∥A∥.

Theorem 4.4.1.13. Let x⃗ be the solution to the system

Ax⃗ = b⃗

and suppose that x̃ := x⃗+∆x⃗ is an approximation to x⃗ such that

A(x⃗+∆x⃗) = b⃗+∆b⃗.

Then
∥∆x⃗∥ ≤ ∥A−1∥∥∆b⃗∥.

Proof. Observe that

Ax̃ = A(x⃗+∆x⃗)

= Ax⃗+A∆x⃗

= b⃗+A∆x⃗

= b⃗+∆b⃗,

where A∆x⃗ = ∆b⃗. Presumably A is invertible, so that

∆x⃗ = A−1∆b⃗.

It follows
∥∆x⃗∥ ≤ ∥A−1∆b⃗∥ ≤ ∥A−1∥∥⃗b∥.

□

Definition 4.4.1.14 (Condition Number). For a nonsingular square matrix A, the condi-
tion number κ(A) is defined by

κ(A) := ∥A∥∥A−1∥.

Theorem 4.4.1.15. Let x⃗ be the solution to the system

Ax⃗ = b⃗

and assume that x̃ := x⃗+∆x⃗ is an approximation to x⃗ such that

A(x⃗+∆x⃗) = b⃗+∆b⃗.

Then
∥∆x⃗∥
∥x⃗∥

≤ κ(A)
∥∆b⃗∥
∥⃗b∥

.
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Proof. By (4.4.1.13), we have ∥∆x⃗∥ ≤ ∥A−1∥∥∆b⃗∥. Thus

∥∆x⃗∥
∥x⃗∥

≤ ∥A−1∥∥∆b⃗∥
∥x⃗∥

=
∥A∥∥A−1∥∥∆b⃗∥

∥A∥∥x⃗∥

≤ κ(A)
∥∆b⃗∥
∥Ax⃗∥

= κ(A)
∥∆b⃗∥
∥⃗b∥

.

□

For the case that κ(A) := lub(A)lub(A−1), the condition of A is a measure of the
sensitivity of th relative error in the solution to relative changes in the RHS. Moreover, since
AA−1 = I, κ(A) satisfies

1 = lub(I) = lub(AA−1) ≤ lub(A)lub(A−1) = κ(A).

Note that this also holds for all submultiplicative matrix norms.

Definition 4.4.1.16 (Residual Operator). For a system Ax⃗ = b⃗, we define a residual oper-
ator r⃗(·) by

r⃗(y⃗) := b⃗−Ay⃗

for all y⃗ ∈ Cn.

For the true solution to Ax⃗ = b⃗, we have evidently that r⃗(y⃗) = 0⃗. Otherwise, ∥r⃗(x⃗)∥ > 0.
Note that we can express the error in (4.4.1.13) is terms of the residual r⃗(·). To see this,

let x̃ := x⃗+∆x⃗ be an approximate solution to the system Ax⃗ = b⃗ with residual

r⃗(x̃) := b⃗−Ax̃ = A(x⃗− x̃).

Then x̃ is the exact solution of

Ax̃ = b⃗− r⃗(x̃),

so that r⃗(x̃) = −∆b⃗. Hence, it follows

∥∆x⃗∥ ≤ ∥A−1∥∥r⃗(x̃)∥.

To motivate the following result, set B := A + ∆A. If A−1 exists, then we may find F
such that

AF = ∆A.

Moreover, in this situation,

B = A+AF = A(I+ F).

Then A−1B = I+ F.

Lemma 4.4.1.17. If F is an n× n matrix with ∥F∥ < 1, then (I+F)−1 exists and satisfies

∥(I+ F)−1∥ ≤ ∥I∥
1− ∥F∥

.
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Proof. By the reverse triangle inequality,

∥(I+ F)x⃗∥ = ∥x⃗+ Fx⃗∥ ≥ |∥x⃗∥ − ∥Fx⃗∥| ≥ ∥x⃗∥ − ∥Fx⃗∥
≥ ∥x⃗∥ − ∥F∥∥x⃗∥ = (1− ∥F∥)∥x⃗∥

holds for all x⃗. From 1 − ∥F∥ > 0, it follows that ∥(I + F)x⃗∥ > 0 for all x⃗ ̸= 0⃗, that is,

(I+ F)x⃗ = 0⃗ has only the trivial solution x⃗ = 0⃗, so that I+ F is nonsingular.
To prove the inequality, observe that

∥I∥ = ∥(I+ F)(I+ F)−1∥
= ∥(I+ F)−1 + F(I+ F)−1∥
≥
∣∣∥(I+ F)−1∥ − ∥F∥∥(I+ F)−1∥

∣∣
≥ ∥(I+ F)−1∥ − ∥F∥∥(I+ F)−1∥
=
(
∥(I+ F)−1∥

)
(1− ∥F∥) > 0,

from which we have

∥(I+ F)−1∥ ≤ ∥I∥
1− ∥F∥

.

This completes the proof. □

Before stating the next theorem, recall that matrix norms are submultiplicative for these
results.

Theorem 4.4.1.18. Let A be a nonsingular n×n matrix, B = A(I+F), ∥F∥ < 1, and

x⃗ and ∆x⃗ be defined by Ax⃗ = b⃗, B(x⃗+∆x⃗) = b⃗. It follows that

∥∆x⃗∥
∥x⃗∥

≤ ∥F∥
1− ∥F∥

∥I∥

as well as
∥∆x⃗∥
∥x⃗∥

≤ θ

1− θ
∥I∥,

where

θ := κ(A)
∥B−A∥

∥A∥
,

provided that θ < 1.

Recall that we defined

B−A = AF = ∆A.

Thus
∥B−A∥

∥A∥
=

∥∆A∥
∥A∥

gives a relative error for A.

Proof. The matrix B−1 exists by (4.4.1.17), and

∆x⃗ = B−1⃗b− x⃗ = B−1⃗b−A−1⃗b = (B−1 −A−1)⃗b

= B−1(A−B)A−1⃗b,
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where x⃗ = A−1⃗b. Furthermore,

∥∆x⃗∥
∥x⃗∥

=
∥B−1(A−B)A−1⃗b∥

∥A−1⃗b∥

≤ ∥B−1(A−B)∥∥A−1⃗b∥
∥A−1⃗b∥

= ∥B−1(A−B)∥.

Now B−1 = (I+ F)−1A−1 and A−B = −AF, so that by (4.4.1.17) we have

∥∆x⃗∥
∥x⃗∥

≤ ∥ − (I+ F)−1A−1AF∥

= ∥(I+ F)−1F∥
≤ ∥(I+ F)−1∥∥F∥

≤ ∥F∥
1− ∥F∥

∥I∥.

Moreover, since F = A−1(B−A) and

∥F∥ = ∥A−1(B−A)∥ ≤ ∥A−1∥∥B−A∥ = ∥A−1∥∥A∥∥B−A∥
∥A∥

= κ(A)
∥B−A∥

∥A∥
,

it follows

∥∆x⃗∥
∥x⃗∥

≤
κ(A)

∥B−A∥
∥A∥

1− κ(A)
∥B−A∥

∥A∥

∥I∥,

which completes the proof. □

According to (4.4.1.18), κ(A) also measures the sensitivity of the solution x⃗ of Ax⃗ = b⃗ to
perturbations of the matrix A.

If we put
C := (I+ F)−1 = B−1A, F = A−1B− I,

it then follows from (4.4.1.17) that

∥B−1A∥ ≤ ∥I∥
1− ∥I−A−1B∥

.

If further we assume that A = B(I + F̃) for some F̃ with ∥F̃∥ < 1, then interchanging A
and B and noting that A−1 = A−1BB−1 gives

∥A−1∥ ≤ ∥A−1B∥∥B∥ ≤ ∥I∥
1− ∥I−B−1A∥

∥B−1∥.

In particular, the residual estimate

∥∆x⃗∥ ≤ ∥A−1∥∥r⃗(x̃)∥
leads us to the bound

∥x̃− x⃗∥ ≤ ∥I∥∥B−1∥
1− ∥I−B−1A∥

∥r⃗(x̃)∥,
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where r⃗(x̃) = b⃗−Ax̃, and where B is an approximate inverse to A with ∥I−B−1A∥ < 1.
The estimates up to this point give bounds on the error ∆x⃗ := x̃− x⃗, but the evaluation

of the bounds requires at least an approximate knowledge of A−1. The estimates given next
do not require any knowledge of A−1.

In general, the given data A0, b⃗0 of an equation system A0x⃗ = b⃗0 are inexact, being

tainted, for example, by measurement errors ∆A, ∆b⃗. Thus, it is reasonable to accept an
approximate solution x̃ to the system as “correct” if x̃ is the exact solution to a “neighboring”
system

Ax̃ = b⃗,

with
A ∈ A := {A : |A−A0| ≤ ∆A},

b⃗ ∈ B := {⃗b : |⃗b− b⃗0| ≤ ∆b⃗}.
The notation used here is

|A| = (|aik|), where A = (aik),

|⃗b| = (|b1|, |b2|, . . . , |bn|)⊤, where b⃗ = (b1, b2, . . . , bn)
⊤,

and the relation ≤ between vectors and matrices is to be understood as holding componen-
twise.

Theorem 4.4.1.19. Let ∆A > 0 and ∆b⃗ > 0. Associated with any approximate solution x̃

of the system A0x⃗ = b⃗0, there is a matrix A ∈ A and vector b⃗ ∈ B satisfying

Ax̃ = b⃗

if and only if

|r⃗(x̃)| ≤ ∆A|x̃|+∆b⃗,

where r⃗(x̃) := b⃗0 −A0x̃ is the residual of x̃.

Proof. ( =⇒ ) Assume that Ax̃ = b⃗ for some A ∈ A and b⃗ ∈ B. Then

A = A0 + δA, b⃗ = b⃗0 + δ⃗b,

where
|δA| ≤ ∆A and |δ⃗b| ≤ ∆b⃗.

It follows

|r⃗(x̃)| = |⃗b0 −A0x̃|

= |(⃗b− δ⃗b)− (A− δA)x̃|

= |⃗b− δ⃗b−Ax̃+ δAx̃|

= |δAx̃− δ⃗b|

≤ |δA||x̃|+ |δ⃗b|

≤ ∆A|x̃|+∆b⃗,

which completes the proof for this case.
( ⇐= ) For the converse, suppose that

|r⃗(x̃)| ≤ ∆A|x̃|+∆b⃗.
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We introduce the following notation:

(1) x̃ =: (x1, x2, . . . , xn)
⊤,

(2) b⃗0 =: (b1, b2, . . . , bn)
⊤,

(3) r⃗ := r⃗(x̃) = (r1, r2, . . . , rn)
⊤,

(4) s⃗ := ∆b⃗+∆A|x̃| ≥ 0, s⃗ =: (s1, s2, . . . , sn)
⊤.

We construct δ⃗b, δA as follows. For i = 1, 2, . . . , n, if si = 0, then set (δ⃗b)i = 0 and set
(δA)ij = 0 for all j = 1, 2, . . . , n. Otherwise, si > 0. In this case, put

(δA)ij =
ri(∆A)ijsgn (xi)

si
for j = 1, 2, . . . , n, and

(δ⃗b)i =
−ri(∆b⃗)i

si
.

Since |r⃗(x̃)| ≤ ∆A|x̃|+∆b⃗ = s⃗,
|ri|
|si|

≤ 1

when si > 0.
Now take A := A0 + δA, b⃗ := b⃗0 + δ⃗b. Note by the construction that |δA| ≤ ∆A,

|δ⃗b| ≤ ∆b⃗, which implies that A ∈ A, b⃗ ∈ B.
We verify that b⃗ = Ax̃. For any i = 1, 2, . . . , n, there are two cases.
If si = 0, then

|r⃗(x̃)| ≤ ∆A|x̃|+∆b⃗ = s⃗

implies that

ri = 0 = (⃗b0 −A0x̃)i.

Furthermore, (δ⃗b)i = 0 and (δA)ij = 0 for j = 1, 2, . . . , n, so that bi = (⃗b)i and (A)ij =
(A0)ij. Thus

(⃗b−Ax̃)i = (⃗b0 −A0x̃)i = 0.

Now consider the case that si > 0. We may write

(⃗b0 −A0x̃)i = ri =
si
si
ri

=
[(∆b⃗)i +

∑n
j=1(∆A)ij|xj|]ri
si

=
(∆b⃗)iri

si
+

n∑
j=1

[
(∆A)ij

ri
si
sgn (xj)

]
xj

= −(δ⃗b)i +
n∑

j=1

(δA)ijxj

= (δAx̃− δ⃗b)i,

so that evidently (⃗b0 + δ⃗b)i = ((A0 + δA)x̃)i. Hence,

(⃗b)i = (Ax̃)i.

This completes the proof. □
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The criterion expressed in Theorem (4.4.1.19) allows us to draw conclusions about the
fitness of a solution from the smallness of its residual. For instance, if all components of A0

and b⃗0 have the same relative accuracy ϵ,

∆A = ϵ|A0|, ∆b⃗ = ϵ|⃗b0|,

then Theorem (4.4.1.19) is satisfied if

|r⃗(x̃)| = |A0x̃− b⃗0| ≤ ∆Ax̃+∆b⃗ = ϵ(|⃗b0|+ |A0||x̃|).

From this inequality, the smallest ϵ can be computed for which a given x̃ can still be accepted
as a usable solution.

4.5. Orthogonalization Techniques of Householder and Gram–Schmidt.

4.5.1. Orthogonalization Techniques of Householder and Gram–Schmidt. Recall that the
methods discussed thus far for solving

Ax⃗ = b⃗

have consisted of multiplying Ax⃗ by approximate matrices P (j), j = 1, 2, . . . , n, so that the
system obtained by the outcome

A(n)x⃗ = b⃗(n)

may be solved directly. The sensitivity of x⃗ to changes in the arrays of the intermediate
systems

A(j)x⃗ = b⃗(j), [A(j), b⃗()] = p(j)[A(j−1), b⃗(j−1)],

is given by

κ(A(j)) = lub(A(j))lub((A(j))−1).

Denote the roundoff error incurred in the j−th step of this process by ϵ(j) :

ϵ(j) := [A(j−1), b⃗(j−1)] → [A(j), b⃗(j)].

These roundoff errors are amplified by the factors κ(A(j)) in their effect on x⃗, and we have

∥∆x⃗∥
∥x⃗∥

≤̇
n−1∑
j=0

ϵ(j)κ(A(j)).

If there exists A(j) with

κ(A(j)) >> κ(A(0)),

then evidently the sequence of computations is not numerically stable. That is, ϵ(j) has a
stronger influence that the initial error ϵ(0). Our goal is to choose P (j) so that

κ(A(j−1)) ≥ κ(A(j)).

Lemma 4.5.1.1. Let U ∈ M(n, n) be unitary. Then

(1) ∥Ux⃗∥2 = ∥x⃗∥2 for all x⃗ ∈ Cn;
(2) lub2(U) = lub2(U

H) = 1.
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Proof. Let U ∈ M(n, n) be unitary. Then

∥Ux⃗∥22 = (Ux⃗)H(Ux⃗) = x⃗HUHUx⃗ = x⃗H x⃗ = ∥x⃗∥22,
which proves (1).

For (2), observe that

lub2(U) = max
x ̸=0

∥Ux⃗∥2
∥x⃗∥2

= max
x̸⃗=0

∥x⃗∥2
∥x⃗∥2

= 1.

Since UH is also unitary, this completes the proof. □

Lemma 4.5.1.2. Let A ∈ M(n, n) and let U ∈ M(n, n) be unitary. Then

κ(A) = κ(UA),

where κ(·) denotes the condition number of · with respect to the subordinate matrix norm
lub2(·). induced by the vector 2−norm.

Proof. Since lub2(·) is submultiplicative, we have

lub2(A) = lub2(U
HUA)

= lub2(U
H)lub2(UA)

≤ lub2(UA)

≤ lub2(U)lub2(A)

= lub2(A).

Thus
lub2(A) = lub2(UA).

Analogously,
lub2((UA)−1) = lub.(A

−1)

Hence,
κ(A) = lub2(A)lub2(A

−1) = lub2(UA)lub2((UA)−1) = κ(UA).

□

In this section we choose the transformation matrices P (j) to be unitary. From this
property it follows that the condition numbers associated with the systems

A(j)x⃗ = b⃗(j)

do not change. Furthermore, the matrices P (j) should be chosen so that the A(j) become
simpler, in this case, to reduce A to upper triangular form.

Definition 4.5.1.3 (Householder Matrix). A Householder Matrix P is a matrix

P := I− 2w⃗w⃗H ,

with w⃗Hw⃗ = 1, w⃗ ∈ Cn.

We get the following important properties for Householder matrices P.
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Theorem 4.5.1.4 (Properties of Householder Matrices). Let P be a Householder matrix.
Then P satisfies the following properties:

(1) P = PH (P is Hermitian);
(2) PHP = I (P is unitary);
(3) P 2 = I (P is involutory).

Proof. P is Hermitian: Observe

PH = (I− 2w⃗w⃗H)H

= IH − 2(w⃗w⃗H)H

= I− 2(w⃗H)Hw⃗H

= I− 2w⃗w⃗H = P.

P is unitary and involutory: We have

PHP = P 2 = (I− 2w⃗w⃗H)(I− 2w⃗w⃗H)

= I2 − 2Iw⃗w⃗H − 2Iw⃗w⃗H + 4(w⃗w⃗H)(w⃗w⃗H)

= I− 4w⃗w⃗H + 4w⃗(w⃗Hw⃗)w⃗H

= I− 4w⃗w⃗H + 4w⃗w⃗H

= I.

This completes the proof. □

Geometrically, the map x⃗ 7→ y =: Px⃗ = x⃗ − 2(w⃗H x⃗)w⃗ describes a reflection of w⃗ with
respect to the plane {z⃗ : w⃗H z⃗ = 0} and x⃗ and y⃗ then satisfy:

(1) y⃗H y⃗ = (Px⃗)H(Px⃗) = x⃗HPH x⃗ = x⃗H x⃗;
(2) x⃗H y⃗ = x⃗HPx⃗ = (x⃗HPx⃗)H ,

and x⃗H y⃗ is real.
The remainder of this section deals with the construction of the Householder matrix P.
We wish to determine a vector w⃗, and thereby P, so that a given vector

x⃗ := [x1, x2, . . . , xn]
⊤

is transformed into a multiple of the first coordinate vector e⃗1 :

ke⃗1 = Px⃗,

for then we may use P to eliminate every entry below the diagonal in a column of a given
matrix. Note that

∥x⃗∥22 = x⃗H x⃗ = x⃗HPHPx⃗ = (Px⃗)HPx⃗ = (ke⃗1)
Hke⃗1 = |k|2e⃗H1 e⃗1 = |k|2.

Also,

kx⃗H e⃗1 = x⃗H(ke⃗1) = x⃗H(Px⃗) = x⃗HPH x⃗ = (x⃗HPx⃗)H ∈ R,
which implies that kx⃗H e⃗1 is real.

Put x1 =: eiα|x1|. Then

kx⃗H e⃗1 = kx̄1 = k|x1|e−iα ∈ R,
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so that
k = ±|k|eiα.

Recalling that
∥x⃗∥22 = x⃗H x⃗ = |k|2,

we have
k = ±∥x⃗∥2eiα.

Now note
eiα =

x1

|x1|
by definition. Thus we arrive at

k = ± x1

|x1|
∥x⃗∥2.

In the case x1 = 0, we put k = ±∥x⃗∥2.
We now define

w⃗ :=
x⃗− ke⃗1

∥x⃗− ke⃗1∥2
.

We verify that this choice of w⃗ suffices. Clearly ∥w⃗∥2 = 1. Also,

2w⃗H x⃗

∥x⃗− ke⃗1∥2
=

2(x⃗H − (ke⃗1)
H)x⃗

∥x⃗− ke⃗1∥22

=
2x⃗H x⃗− 2e⃗H1 k̄x⃗

∥x⃗− ke⃗1∥22

= 2
∥x⃗∥22 − k̄x1

∥x⃗− ke⃗1∥22

= 2
∥x⃗∥22 ∓ |x1|∥x⃗∥22

x⃗H x⃗− k̄x1 − kx̄1 + |k|2

= 2
∥x⃗∥22 ∓ |x1|∥x⃗∥22
2∥x⃗∥22 ∓ |x1|∥x⃗∥22

= 1,

since

k̄x1 = ± x̄1

|x1|
∥x⃗∥2(x1) = ±|x1|∥x⃗∥2 = kx̄1.

Moreover,

2(w⃗H x⃗)w⃗ = 2w⃗H x⃗
x⃗− ke⃗1

∥x⃗− ke⃗1∥2

= (∥x⃗− ke⃗1∥2)
x⃗− ke⃗1

∥x⃗− ke⃗1∥2
= x⃗− ke⃗1.

Hence,
Px⃗ = x⃗− 2(w⃗H x⃗)w⃗ = ke⃗1.

We now turn to a consideration of the roundoff error induced by this process. Observe
that

∥x⃗− ke⃗1∥22 = |x1 − k|2 + |x2|2 + · · ·+ |xn|2
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=

∣∣∣∣x1 ∓
x1

|x1|
∥x⃗∥2

∣∣∣∣2 + |x2|2 + · · ·+ |xn|2

= |x1|2 ∓ 2|x1|∥x⃗∥2 + ∥x⃗∥22 + |x2|2 + · · ·+ |xn|2

= (|x1| ∓ ∥x⃗∥2)2 + |x2|2 + · · ·+ |xn|2.
In order to avoid roundoff-related cancellation error in the computation of |x1| ∓ ∥x⃗∥2, we
choose the sign in the definition of k to be negative:

k := − x1

|x1|
∥x⃗∥2.

In this case,

|x1 − k|2 =
∣∣∣∣x1 +

x1

|x1|
∥x⃗∥2

∣∣∣∣2 = |x1|2 + 2|x1|∥x⃗∥22 + ∥x⃗∥22,

from which it follows that

∥x⃗− ke⃗1∥22 = 2∥x⃗∥22 + 2|x1|∥x⃗∥2,
which can only be near zero when ∥x⃗∥2 ≈ 0, in which case we would have a nearly singular
matrix P.

Furthermore,

P = I− 2w⃗w⃗H

= I− 2
(x⃗− ke⃗1)(x⃗− ke⃗1)

H

∥x⃗− ke⃗1∥22

= I− 2
(x⃗− ke⃗1)(x⃗− ke⃗1)

H

2∥x⃗∥22 + 2|x1|∥x⃗∥2

= I− (x⃗− ke⃗1)(x⃗− ke⃗1)
H

∥x⃗∥22 + |x1|∥x⃗∥2
,

which we can now write as
P = I− βu⃗u⃗H ,

with

u⃗ := x⃗− ke⃗1 :=


x1 +

x1

|x1|∥x⃗∥2
x2
...
xn

 , β :=
1

∥x⃗∥22 + |x1|∥x⃗∥2
.

An n× n matrix A = A(0) can be reduced step by step using these unitary Householder
matrices P (j),

A(j) = P (j)A(j−1),

into an upper triangular matrix

P (n−1) . . . P (1)A(0) = A(n−1) = R =

r11 . . . r1n
. . .

...
0 rnn

 .
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To do this, the n× n unitary matrix P (1) is determined so that

P (1)a
(0)
1 = ke⃗1,

where a
(0)
1 denotes the first column of A(0). From this step we obtain

A(1) = P (1)A(0) =


k ∗ . . . ∗
0 a

(1)
22 . . . a

(1)
2n

...
...

0 a
(1)
n2 . . . a

(1)
nn

 .

If the matrix A(j−1) obtained after j − 1 steps has the form

A(j−1) =



∗ . . . ∗ ∗ . . . ∗
. . .

...
...

...
0 . . . ∗ ∗ . . . ∗

a
(j−1)
jj . . . a

(j−1)
jn

0
...

...

a
(j−1)
nj . . . a

(j−1)
nn


=:

[
D B

0 Ã(j−1)

]
,

then we determine the (n− j + 1)× (n− j + 1) unitary matrix P̃ (j) so that

P̃ (j)a⃗
(j−1)
j = P̃ (j)

a
(j−1)
jj
...

a
(j−1)
nj

 = k


1
0
...
0

 ∈ Cn−j+1.

Using P̃ (j) the desired n× n unitary matrix is constructed as

P (j) :=

[
Ij−1 0

0 P̃ (j)

]
.

After forming A(j) = P (j)A(j−1), the elements a
(j)
ij for i > j are annihilated, and the rows

above the horizontal line remain untouched. In this way an upper triangular matrix

R := A(n−1)

is obtained after n− 1 steps.
On a computer, the transformation of a matrix by

P̃ (j) = I− βju⃗ju⃗
H
j

is carried out as follows:

P̃ (j)Ã(j−1) = Ã(j−1) − u⃗j(βju⃗
H
j Ã

(j−1)) = Ã(j−1) − u⃗j v⃗
H
j ,

with v⃗Hj := βju⃗
H
j Ã

(j−1), that is, the vector v⃗j is computed first, and then Ã(j−1) is modified
as indicated.

The Householder reduction of an n× n matrix into triangular form requires about 2n3/3
operations. In this process one usually stores the data βj and u⃗j so that the n × n unitary
matrix

P = P (n−1) . . . P (1)
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consisting of Householder matrices P (j), j = 1, 2, . . . , n− 1, can be inverted:

P−1 = (P (n−1) . . . P (1))−1

= (P (1))−1 . . . (P (n−1))−1

= (P (1))H . . . (P (n−1))H

= (P (n−1) . . . P (1))H

= PH .

Hence,

PA = R,

or

A = PHR = QR, Q := P−1 = PH .

This is known as a QR−decomposition of the matrix A into a product of Q unitary and R
upper triangular,

A = QR.

Example 4.5.1.5. We apply Householder transformations to the 3× 3 matrix

A =

12 10 4
10 8 −5
4 −5 3


to produce a QR−decomposition,

A = QR.

For the first step we have

a⃗
(0)
1 = [12, 10, 4]⊤.

Hence we take

k = − 12

|12|
(2
√
65) = −2

√
65.

We take

w⃗ =
1

30.8381

12 + 2
√
65

10
4

 =

0.93390.3320
0.1328

 .

Thus,

P (1) =

1 0 0
0 1 0
0 0 1

− 2

0.93390.3320
0.1328

 · [0.9339, 0.3320, 0.1328]

=

1 0 0
0 1 0
0 0 1

− 2

0.8721 0.3101 0.1240
0.3101 0.1103 0.0441
0.1240 0.0441 0.0176


=

−0.7442 −0.6202 −0.2481
−0.6202 0.7795 −0.0882
−0.2481 −0.0882 0.9647

 .
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Thus

A(1) = P (1)A =

−0.7442 −0.6202 −0.2481
−0.6202 0.7795 −0.0882
−0.2481 −0.0882 0.9647

12 10 4
10 8 −5
4 −5 3


=

−16.1245 −11.1631 −0.6202
0 0.4752 −6.6428
0 −8.0099 2.3429

 .

For the second step we have

a⃗
(1)
2 = [0.4752,−8.0099]⊤.

Hence we take

k = − 0.4752

|0.4752|
(8.0240) = −8.0240.

We take

w⃗ =
1

11.6788

[
0.4752 + 8.0240

−8.0099

]
=

[
0.7277
−0.6858

]
.

Thus,

P̃ (2) =

[
1 0
0 1

]
− 2

[
0.7277
−0.6858

]
· [0.7277,−0.6858]

=

[
1 0
0 1

]
− 2

[
0.5296 −0.4991
−0.4991 0.4704

]
=

[
−0.0592 0.9982
0.9982 0.0592

]
.

So

P (2) :=

1 0 0
0 −0.0592 0.9982
0 0.9982 0.0592

 ,

and

R = A(2) = P (2)A(1) =

1 0 0
0 −0.0592 0.9982
0 0.9982 0.0592

−16.1245 −11.1631 −0.6202
0 0.4752 −6.6428
0 −8.0099 2.3429


=

−16.1245 −11.1631 −0.6202
0 −8.0240 2.7319
0 0 −6.4921

 .

Moreover,

P = P (2)P (1) =

1 0 0
0 −0.0592 0.9982
0 0.9982 0.0592

−0.7442 −0.6202 −0.2481
−0.6202 0.7795 −0.0882
−0.2481 −0.0882 0.9647


=

−0.7442 −0.6242 −0.2481
−0.2109 −0.1342 0.9682
−0.6338 0.7729 −0.0309

 .
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Thus we take

Q = PH =

−0.7442 −0.2109 −0.6338
−0.6242 −0.1342 0.7729
−0.2481 0.9682 −0.0309

 ,

and we see that

A =

12 10 4
10 8 −5
4 −5 3


=

−0.7442 −0.2109 −0.6338
−0.6242 −0.1342 0.7729
−0.2481 0.9682 −0.0309

−16.1245 −11.1631 −0.6202
0 −8.0240 2.7319
0 0 −6.4921


= QR.

Example 4.5.1.6. We apply Householder transformations to the 2× 2 matrix

A =

[
3 5
4 −12

]
to produce a QR−decomposition,

A = QR.

Note that we have a⃗1 = [3, 4]⊤. Hence we take

k = − 3

|3|
(5) = −5.

We take

w⃗ =
1

4
√
5

[
3 + 5
4

]
=

[ 2√
5
1√
5

]
.

Thus,

P = I− 2w⃗w⃗H

=

[
1 0
0 1

]
− 2

[ 2√
5
1√
5

]
·
[

2√
5
,
1√
5

]
=

[
1 0
0 1

]
− 2

[
4
5

2
5

2
5

1
5

]
=

[
−3

5
−4

5
−4

5
3
5

]
.

We find

R = PA =

[
−3

5
−4

5
−4

5
3
5

] [
3 5
4 −12

]
=

[
−5 33

5
0 −56

5

]
.

Also,

Q = PH =

[
−3

5
−4

5
−4

5
3
5

]
,
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and we see that

A =

[
3 5
4 −12

]
=

[
−3

5
−4

5
−4

5
3
5

] [
−5 33

5
0 −56

5

]
= QR.

Note that the columns of Q are orthonormal. To solve Ax⃗ = b⃗, we see

Ax⃗ = QRx⃗ = b⃗ =⇒ Rx⃗ = Q−1⃗b = P b⃗,

which means one matrix–vector product and a back–substitution solve.
Also recall that Householder matrices help reduce roundoff error effects as compared to

Gaussian elimination.

4.6. Data Fitting.

4.6.1. The Data Fitting Problem. In many applications we are concerned with determining
the values of certain constants

x1, x2, . . . , xn.

Often it is difficult to measure the xi, i = 1, 2, . . . , n, directly. In such cases another more
easily measurable quantity y is sampled, which depends in some way on the xi and on further
controllable experimental conditions z :

y = f(z;x1, x2, . . . , xn).

In order to determine the xi, experiments are carried out under m different conditions
z1, z2, . . . , zm and the corresponding results

yk = f(zk;x1, x2, . . . , xn), k = 1, 2, . . . ,m, (4.6.1.1)

are measured. In general, at least n experiments, m ≥ n, must be carried out so that the
xi can be uniquely determined. If m > n, however, then the equations (4.6.1.1) form an
overdetermined system for the unknown parameters x1, x2, . . . , xn, which does not usually
have a solution because the observed quantities yi are perturbed by measurement errors.
Consequently, instead of finding an exact solution to (4.6.1.1), the problem becomes one of
finding the “best possible solution.” Such a solution to (4.6.1.1) is taken to mean a set of
values for the unknown parameters for which the expression

m∑
k=1

(yk − fk(x1, x2, . . . , xn))
2

is minimized, where fk(·) := f(zk; ·).
Put rk := yk − fk(·) for each k = 1, 2, . . . ,m. The rk are called residuals, and the data

fitting problem becomes one of minimizing

m∑
k=1

∥rk∥22,
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which in turn minimizes
m∑
k=1

∥rk∥2,

for ∥rk∥2 ≥ 0.
If the functions fk(x1, x2, . . . , xn) have continuous partial derivatives in all of the variables

xi, i = 1, 2, . . . , n, then we may give a necessary conditions for x⃗ := (x1, x2, . . . , xn)
⊤ to

minimize the data fitting problem:

∂

∂xi

m∑
k=1

(yk − fk(x1, x2, . . . , xn))
2 = 0, i = 1, 2, . . . , n.

These are called the normal equations for x⃗.
An important special case is the linear least squares problem, where all of the functions

fk(x1, x2, . . . , xn) are linear in the parameters xi. In this case there is an m × n matrix A
with

Ax⃗ =

f1(x1, x2, . . . , xn)
...

fm(x1, x2, . . . , xn)

 .

Putting y⃗ := (y1, y2, . . . , ym)
⊤, the normal equations reduce to a linear system

∇x((y⃗ −Ax⃗)⊤(y⃗ −Ax⃗)) = ∇x((y⃗
⊤ − (Ax⃗)⊤)(y⃗ −Ax⃗))

= ∇x(y⃗
⊤y⃗ − y⃗⊤Ax⃗− (Ax⃗)⊤y⃗ + (Ax⃗)⊤Ax⃗)

= 2A⊤Ax⃗− 2A⊤y⃗ = 0,

or equivalently,

∂

∂xi

m∑
k=1

(yk − fk(x1, x2, . . . , xn))
2 = 2

m∑
k=1

[(
yk −

m∑
j=1

akjxj

)
(−aki)

]
= 0.

In any case, we get that
A⊤Ax⃗ = A⊤y⃗

are the normal equations.

4.6.2. Linear Least Squares: The Normal Equations. In the following ∥ ·∥ will always denote
the Euclidean norm

∥x⃗∥ := ∥x⃗∥2 =
√
x⃗H x⃗.

Let a real m× n matrix A and a vector y⃗ ∈ Rm be given, and let

∥y⃗ −Ax⃗∥22 = (y⃗ −Ax⃗)⊤(y⃗ −Ax⃗) (4.6.2.1)

be minimized as a function of x⃗. We want to show that x⃗ ∈ Rn is a solution to the normal
equations

A⊤Ax⃗ = A⊤y⃗

if and only if x⃗ is also a minimum point of (4.6.2.1).

137



4. Systems of Linear Equations 4.6. Data Fitting

Theorem 4.6.2.1. The linear least squares problem

min
x⃗∈Rn

∥y⃗ −Ax⃗∥

has at least one minimum point x⃗0. If x⃗1 is another minimum point, then Ax⃗0 = Ax⃗1.
The residual r⃗ := y⃗ −Ax⃗0 is uniquely determined and satisfies the equation

A⊤r⃗ = 0⃗.

Every minimum point x⃗0 is also a solution of the normal equations

A⊤Ax⃗ = A⊤y⃗

and conversely.

Proof. We first show that every minimum point x⃗0 is a solution to the normal equations and
conversely. Let R ⊆ Rm be the linear subspace (column space) of the matrix A :

R(A) := {Ax⃗ : x⃗ ∈ Rn},
which is spanned by the columns of A, and let R⊥ be its orthogonal complement

R⊥ := {r⃗ : r⃗⊤z⃗ = 0⃗ for all z⃗ ∈ R(A)}
= {r⃗ : r⃗⊤A = 0⃗}.

Note that Rm = R⊕R⊥. The vector y⃗ ∈ Rm can be written uniquely in the form

y⃗ = s⃗+ r⃗, s⃗ ∈ R, r⃗ ∈ R⊥,

and there is at least one x⃗0 with
Ax⃗0 = s⃗.

Now A⊤r⃗ = (r⃗⊤A)⊤ = 0⃗⊤ = 0⃗, so x⃗0 satisfies

A⊤y⃗ = A⊤(s⃗+ r⃗) = A⊤s⃗+A⊤r⃗ = A⊤s⃗ = A⊤Ax⃗0,

that is, x⃗0 is a solution of the normal equations. In other words, the normal equations are
solvable. Conversely, each solution x⃗1 of the normal equations corresponds to a representation

y⃗ = s⃗+ r⃗, s⃗ := Ax⃗1, r⃗ := y⃗ −Ax⃗1,

s⃗ ∈ R, r⃗ ∈ R⊥.

Since this representation is unique, it follows that

Ax⃗0 = Ax⃗1

for all solutions x⃗0, x⃗1 of the normal equations.
We now show that each solution x⃗0 of the normal equations is a minimum point for the

problem
min
x⃗∈Rn

∥y⃗ −Ax⃗∥.

To see this, let x⃗ ∈ Rn be arbitrary, and set

z⃗ := Ax⃗−Ax⃗0, r⃗ := y⃗ −Ax⃗0.

Now z⃗ ∈ R⊥, so that r⃗⊤z⃗ = 0⃗. Thus,

∥y⃗ −Az⃗∥2 ≤ ∥(y⃗ −Ax⃗0) + (Ax⃗0 −Ax⃗)∥2

= ∥r⃗ − z⃗∥2
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= (r⃗ − z⃗)⊤(r⃗ − z⃗)

= (r⃗⊤ − z⃗⊤)(r⃗ − z⃗)

= r⃗⊤r⃗ − r⃗⊤z⃗ − z⃗⊤r⃗ − z⃗⊤z⃗

= ∥r⃗∥2 + ∥z⃗∥2 − r⃗⊤z⃗ − (r⃗⊤z⃗)⊤

= ∥r⃗∥2 + ∥z⃗∥2 ≥ ∥r⃗∥2

= ∥y⃗ −Ax⃗0∥2,

that is, x⃗0 is a minimum point of the problem

min
x⃗∈Rn

∥y⃗ −Ax⃗∥.

Since we have shown that the normal equations are solvable, we have shown the existence
of a solution to the linear least squares problem.

This completes the proof. □

If the columns of A are linearly independent, that is, if x⃗ ̸= 0⃗ implies Ax⃗ ̸= 0⃗, then the
matrix A⊤A is positive definite, and thus, nonsingular. If this were not the case, then there
would exist x⃗ ̸= 0⃗ satisfying A⊤Ax⃗ = 0⃗, from which

0 = x⃗⊤(A⊤Ax⃗) = (Ax⃗)⊤(Ax⃗) = ∥Ax⃗∥2

would yield a contradiction, for Ax⃗ ̸= 0⃗. Therefore the normal equations

A⊤Ax⃗ = A⊤y⃗

have a unique solution

x⃗ = (A⊤A)−1A⊤y⃗,

which may be computed using for instance the Choleski factorization of A⊤A.

4.6.3. The Use of Orthogonalization in Solving Linear Least–Squares Problems. The linear
least–squares problem of determining an x⃗ ∈ Rn that minimizes

∥y⃗ −Ax⃗∥, A ∈ Mat(m,n), m ≥ n,

can be solved using the orthogonalization techniques (QR−factorization, Gram–Schmidt)
discussed in the previous section. Let the matrix A =: A(0) and the vector y⃗ =: y⃗(0) be
transformed by a sequence of Householder transformations P (i), A(i) = P (i)A(i−1), y⃗ =
P (i)y⃗(i−1), i = 2, . . . , n. The final matrix A(n) has the form

A(n) =

[
R
0

]
, with R =:

r11 . . . rnn
. . .

...
0 rnn

 , (4.6.3.1)

since m ≥ n (here R is n × n and 0 is (m − n) × (m − n).). Let the vector h⃗ := y⃗(n) be
partitioned correspondingly:

h⃗ =

[
h⃗1

h⃗2

]
, h⃗1 ∈ Rn, h⃗2 ∈ Rm−n. (4.6.3.2)
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Note that the matrix P = P (n) . . . P (1) is a product of unitary matrices and thus is unitary
itself:

PHP = (P (1))
H
. . . (P (n))

H
P (n) . . . P (1) = I,

and satisfies

A(n) = PA, h⃗ = P y⃗.

Recall that unitary matrices U leave the Euclidean norm ∥x⃗∥2 of a vector x⃗ invariant:

∥Ux⃗∥22 = (Ux⃗)H(Ux⃗) = x⃗HUHUx⃗ = x⃗H x⃗ = ∥x⃗∥2.

Thus,

∥y⃗ −Ax⃗∥ = ∥P (y⃗ −Ax⃗)∥ = ∥y⃗(n) −A(n)x⃗∥.

However, from (4.6.3.1) and (4.6.3.2), the vector y⃗(n) −A(n)x⃗ has the structure

y⃗(n) −A(n)x⃗ =

[
h⃗1

h⃗2

]
−
[
R
0

]
x⃗ =

[
h⃗1 −Rx⃗

h⃗2

]
.

Hence, ∥y⃗ −Ax⃗∥ is minimized if x⃗ is chosen so that

h⃗1 = Rx⃗.

The matrix R, being upper triangular, is nonsingular if and only if the columns of A are
linearly independent (A has full rank), for then in this situation R has nonzero diagonal

entries and thus a nonzero determinant. Furthermore, Az⃗ = 0⃗ for a vector z⃗ ∈ Rn if and
only if

PAz⃗ = 0⃗,

and since PA = R, PAz⃗ = 0⃗ if and only if

Rz⃗ = 0⃗.

If we assume that the columns of A are linearly independent, then

h⃗1 = Rx⃗,

which is a triangular system, can be solved uniquely for x⃗ (specifically, x⃗ = R−1h⃗1.). This x⃗
is, moreover, the unique minimum point for the given least–squares problem. (Note that if
the columns of A are linearly dependent, then, although the value of minx⃗∈Rn ∥y⃗ −Ax⃗∥ is
uniquely determined, there are many minimum points x⃗.)

In the case that h⃗1 = Rx⃗, then the size of the residual is seen to be

∥y⃗ −Ax⃗∥ = ∥y⃗(n) −A(n)x⃗∥ = ∥h⃗2∥.

Lastly, note that instead of using Householder matrices, the Gram–Schmidt technique
(with reorthogonalization) can be used to obtain the solution.
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4.6.4. The Pseudoinverse of a Matrix. For any arbitrary (complex) m × n matrix A there
is an n × m matrix A+, called the pseudoinverse (or Moore-Penrose inverse) of A. It is
associated with A in a natural fashion and agrees with the inverse A−1 of A in the case
m = n and A is nonsingular.

Denote by R(A) the range space of A and N(A) the null space of A,

R(A) := {Ax⃗ ∈ Cm : x⃗ ∈ Cn},
N(A) := {x⃗ ∈ Cn : Ax⃗ = 0⃗},

together with their orthogonal complement spaces R(A)⊥ ∈ Cm, N(A)⊥ ∈ Cn. Further, let
P be the n×n matrix which projects Cn onto N(A)⊥, and let P̄ be the m×m matrix which
projects Cm onto R(A) :

Px⃗ = 0⃗ ⇐⇒ x ∈ N(A), P = PH = P 2,

P̄ y⃗ = y⃗ ⇐⇒ y⃗ ∈ R(A), P̄ = P̄H = P̄ 2.

For each y⃗ ∈ R(A) there is a uniquely determined x⃗1 ∈ N(A)⊥ satisfying Ax⃗1 = y⃗, that is,
there is a well–defined mapping f : R(A) → Cn with

Af(y⃗) = y⃗, f(y⃗) ∈ N(A)⊥ for all y⃗ ∈ R(A).

For, given y⃗ ∈ R(A), there is an x⃗ which satisfies y⃗ = Ax⃗. Hence,

y⃗ = A(Px⃗+ (I− P )x⃗) = APx⃗ = Ax⃗1,

where x⃗1 := Px⃗ ∈ N(A)⊥, since (I − P )x⃗ ∈ N(A). Furthermore, if x⃗1, x⃗2 ∈ N(A)⊥,
Ax⃗1 = Ax⃗2 = y⃗, it follows that

x⃗1 − x⃗2 ∈ N(A) ∩N(A)⊥ = {⃗0},
which implies that x⃗1 = x⃗2. Note f is linear.

The composite mapping f ◦ P̄ : y⃗ ∈ Cm → f(P̄ (y⃗)) ∈ Cn is well–defined and linear,
since P̄ y⃗ ∈ R(A). Hence, it is represented by an n ×m matrix, which is precisely A+, the
pseudoinverse of A : A+y⃗ = f(P̄ (y⃗)) for all y⃗ ∈ Cm.

We get the following properties for the pseudoinverse A+.

Theorem 4.6.4.1 (Properties of the Pseudoinverse). Let A be an m × n matrix. The
pseudoinverse A+ is an n×m matrix satisfying:

(1) A+A = P is the orthogonal projector P : Cn → N(A)⊥ and AA+ = P̄ is the
orthogonal projector P̄ : Cm → R(A).

(2) The following formulas hold:
(a) A+A = (A+A)H ;
(b) AA+ = (AA+)H ;
(c) AA+A = A;
(d) A+AA+ = A+.

Proof. According to the definition of A+,

A+Ax⃗ = f(P̄ (Ax⃗)) = f(Ax⃗) = Px⃗

for all x⃗, so that A+A = P. Since PH = P, part (a) is satisfied.
Furthermore, from the definition of f,

AA+ = A(f(P̄ y⃗)) = P̄ y⃗
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for all y⃗ ∈ Cm. Thus, AA+ = P̄ = P̄H . Since P̄H = P̄ , part (b) follows as well.
Finally, for all x⃗ ∈ Cn,

(A+)Ax⃗ = P̄Ax⃗ = Ax⃗

according to the definition of P, and for all y⃗ ∈ Cm,

A+(AA+)y⃗ = A+P̄ y⃗ = f(P̄ 2y⃗) = f(P̄ y⃗) = A+y⃗.

Hence, (c) and (d) hold.
This completes the proof. □

The properties (2a–d) of (4.6.4.1) uniquely characterize A+.

Theorem 4.6.4.2. If Z is a matrix satisfying

(1) ZA = (ZA)H ;
(2) AZ = (AZ)H ;
(3) AZA = A;
(4) ZAZ = Z;

then Z = A+.

Proof. We have the following chain of equalities:

Z = ZAZ

= Z(AA+A)A+(AA+A)Z

= (ZA)H(A+A)HA+(AA+)H(AZ)H

= AHZHAHA+H
A+A+H

AHZHAH

= (AHZHAH)A+H
A+A+H

(AHZHAH)

= (AZA)HA+H
A+A+H

(AZA)H

= AHA+H
A+A+H

AH

= (A+A)HA+(AA+)H

= A+AA+AA+

= A+.

This completes the proof. □

We also have the following.

Corollary 4.6.4.3. For all matrices A,

A++ = A

and
(A+)H = (AH)+.

Proof. This holds because Z := A (respectively Z := (A+)H) has the properties of (A+)+

(respectively (AH)+) in (4.6.4.2). □

The pseudoinverse is often used to give an elegant representation of the solution to the
least–squares problem

min
x⃗∈Rn

∥y⃗ −Ax⃗∥2.
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Theorem 4.6.4.4 (Solution to Least–Squares Problem Using Pseudoinverse). The vec-
tor x̄ := A+y⃗ satisfies:

(1) ∥Ax⃗− y⃗∥2 ≥ ∥Ax̄− y⃗∥2 for all x⃗ ∈ Cn;
(2) ∥Ax⃗− y⃗∥2 = ∥Ax̄− y⃗∥2 and x⃗ ̸= x̄ imply ∥x⃗∥2 > ∥x̄∥2.

In other words, x̄ := A+y⃗ is the minimum point of the least–squares problem that has the
smallest Euclidean norm, in the case that the least squares problem does not have a unique
minimum point.

Proof. From (4.6.4.1), AA+ is the orthogonal projector on R(A). Thus, for all x⃗ ∈ Cn, it
follows that

Ax⃗− y⃗ = u⃗− v⃗,

u := A(x⃗−A+y⃗) ∈ R(A), v⃗ := (I−AA+)y⃗ = y⃗ −Ax̄ ∈ R(A)⊥.

Consequently, for all x⃗ ∈ Cn,

∥Ax⃗− y⃗∥22 = ∥u⃗− v⃗∥22
= u⃗H u⃗− u⃗H v⃗ − v⃗H u⃗+ v⃗H v⃗

= ∥u⃗∥22 + ∥v⃗∥22
≥ ∥v⃗∥22
= ∥Ax̄− y⃗∥22,

and ∥Ax⃗− y⃗∥2 holds precisely if

Ax⃗ = AA+y⃗.

Now, A+A is the orthogonal projector on N(A)⊥. Therefore, for all x⃗ such that Ax⃗ =
AA+y⃗,

x⃗ = u⃗1 + v⃗1,

u⃗1 := A+Ax⃗ = A+AA+y⃗ = A+y⃗ = x̄ ∈ N(A)⊥,

v⃗1 := x⃗− u⃗1 = x⃗− x̄ ∈ N(A).

From this observation it follows that

∥x⃗∥22 = ∥u⃗1 + v⃗1∥22
= u⃗H u⃗+ u⃗H v⃗ + v⃗H u⃗+ v⃗H v⃗

= ∥u⃗∥22 + ∥v⃗∥22
≥ ∥u⃗∥22
= ∥x̄∥22

for all x⃗ ∈ Cn satisfying x⃗− x̄ ̸= 0⃗ and ∥Ax⃗− y⃗∥2 = ∥Ax̄− y⃗∥2. □

If the m×n matrix A with m ≥ n has maximal rank, that is, rank(A) = n (which occurs
if and only if the columns of A are linearly independent), then there is an explicit formula
for A+ : It is easily verified that the matrix

Z := (AHA)−1AH
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has all properties given in (4.6.4.2) characterizing the pseudoinverse A+ so that

A+ = (AHA)−1AH .

By means of the QR−decomposition of A, A = QR, this formula for A+ is equivalent to

A+ = ((QR)H(QR))−1(QR)H

= (RHQHQR)−1RHQH

= (RHR)−1RHQH

= R−1(RH)−1RHQH

= R−1QH .

This allows a numerically more stable computation of the pseudoinverse A+ = R−1QH .
If m < n and rank(A) = m then because of (A+)H = (AH)+, the pseudoinverse A+ is

given by
A+ = Q(RH)−1,

if the matrix AH has the QR−decomposition AH = QR.
For general m× n matrices A of arbitrary rank, the pseudoinverse A+ can be computed

by means of the singular value decomposition of A.
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