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1. GENERAL MEASURE THEORY

1.1. Weak Convergence and Compactness for Radon Measures.

t1.9-1 Theorem 1.1.1. Let µ, {µk}+∞
k=1 be Radon measures on Rn. The following three statements are

equivalent:

Date: June 23, 2023.
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

(i) limk→+∞
∫
Rn f dµk =

∫
Rn f dµ for all f ∈ Cc(Rn);

(ii) lim supk→+∞ µk(K) ≤ µ(K) for each compact set K ⊆ Rn and µ(U) ≤ lim infk→+∞ µk(U)
for each open set U ⊆ Rn;

(iii) limk→+∞ µk(B) = µ(B) for each bounded Borel set B ⊆ Rn with µ(∂B) = 0.

Remark. Recall that Radon measures on Rn are characterized by inner and outer regularity. Let
B ⊆ Rn be a Borel set, and let K ⊆ B ⊆ U with K compact and U open. If {µk}+∞

k=1 is converging
to µ in any sense, we should expect µk(K) ≤ µ(K) for all k ∈ N and µk(U) ≥ µ(U) for all k ∈ N.
Conditions (ii) and (iii) tell us that this in fact holds up to a subsequence.

Definition (Weak Convergence of Radon Measures). Let µ, {µk}+∞
k=1 be Radon measures on

Rn. We say that {µk}+∞
k=1 converges weakly to µ, and write

µk ⇀ µ,

if

lim
k→+∞

∫
Rn

f dµk =

∫
Rn

f dµ

for every f ∈ Cc(Rn).

Proof. Assume first that (i) holds. Let U ⊆ Rn be open, and choose a compact set K ⊆ U.
Next apply Urysohn’s Lemma to choose a function f ∈ Cc(Rn) such that

0 ≤ f ≤ 1, supp(f) ⊆ U, and f ≡ 1 on K.

Then

µ(K) =

∫
K

dµ =

∫
K

f dµ ≤
∫
Rn

f dµ = lim
k→+∞

∫
Rn

f dµk ≤ lim inf
k→+∞

∫
U

dµk

= lim inf
k→∞

µk(U).

Thus

µ(U) = sup{µ(K) : K compact, K ⊆ U}
≤ lim inf

k→+∞
µk(U).

This proves the second part of (ii). The first part is similar.
Next suppose that (ii) holds. Let B ⊆ Rn be a bounded Borel set, µ(∂B) = 0. Then by

(ii),

µ(B) = µ(B◦) ≤ lim inf
k→+∞

µk(B
◦)

≤ lim sup
k→+∞

µk(B)

≤ µ(B)

= µ(B).

Since µk(B
◦) = µk(B) = µk(B) for all k ∈ N since µ(∂B) = 0, it follows

lim inf
k→+∞

µk(B) = lim sup
k→+∞

µk(B).

Thus limk→+∞ µk(B) exists, and

lim
k→+∞

µk(B) = µ(B),
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

as required.
Finally assume that (iii) holds. Fix ϵ > 0 and f ∈ C+

c (Rn). Let R > 0 be such that
supp(f) ⊆ B(0, R) and µ(∂B(0, R)) = 0. Choose a partition

0 := t0 < t1 < · · · < tN = 2∥f∥L∞(Rn)

of [0, 2∥f∥L∞(Rn)] such that 0 < ti − ti−1 < ϵ, and µ(f−1{ti}) = 0 for each i = 1, . . . , N. Put
Bi := f−1((ti−1, ti]), i = 2, . . . , N. Then µ(∂Bi) = 0 for each i ≥ 2. Now

N∑
i=2

ti−1µk(Bi) =
N∑
i=2

ti−1

∫
Bi

dµk ≤
N∑
i=2

∫
Bi

f dµk

≤
∫
Rn

f dµk

≤
N∑
i=2

tiµk(Bi) + t1µk(B(0, R)),

and
N∑
i=2

ti−1µ(Bi) =
N∑
i=2

ti−1

∫
Bi

dµ ≤
N∑
i=2

∫
Bi

f dµ

≤
∫
Rn

f dµ

≤
N∑
i=2

tiµ(Bi) + t1µ(B(0, R)).

Thus (iii) implies

lim sup
k→+∞

∣∣∣∣∫
Rn

f dµk −
∫
Rn

f dµ

∣∣∣∣
≤ lim sup

k→+∞

∣∣∣∣∣
{

N∑
i=2

tiµk(Bi) + t1µk(B(0, R))

}
−

N∑
i=2

ti−1µ(Bi)

∣∣∣∣∣
≤ lim sup

k→+∞

N∑
i=2

|tiµk(Bi)− ti−1µ(Bi)|+ lim sup
k→+∞

t1µk(B(0, R))

=
N∑
i=2

|ti − ti−1|µ(Bi) + t1µ(B(0, R))

≤ 2ϵµ(B(0, R)).

Since ϵ > 0 was arbitrary, taking the limit at ϵ → 0 shows that

lim sup
k→+∞

∣∣∣∣∫
Rn

f dµk −
∫
Rn

f dµ

∣∣∣∣ = 0,

and hence
lim

k→+∞

∫
Rn

f dµk =

∫
Rn

f dµ.

The proof is complete. □
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

t1.9-2 Theorem 1.1.2 (Weak Compactness for Measures). Let {µk}+∞
k=1 be a sequence of Radon mea-

sures on Rn satisfying
sup
k∈N

µk(K) < +∞

for each compact set K ⊆ Rn. Then there exists a subsequence {µkj}+∞
j=1 and a Radon measure µ

on Rn such that
µkj ⇀ µ as j → +∞.

Proof.
(i). Assume first that

sup
k∈N

µk(Rn) < +∞. (1.1.1) {eq:1.9-1}

(ii). Let {fk}+∞
k=1 be a countable dense subset of Cc(Rn). Note that (

eq:1.9-1
1.1.1) implies that the

sequence {
∫
Rn f1 dµj}+∞

j=1 is bounded, for∣∣∣∣∫
Rn

f1 dµj

∣∣∣∣ ≤ ∫
Rn

|f1| dµj ≤ max
x∈supp(f)

|f(x)|µj(Rn) < +∞.

Thus we may find a subsequence {µ1
j}+∞

j=1 and a1 ∈ R such that∫
Rn

f1 dµ
1
j → a1 as j → +∞.

Continuing, we find subsequences {µk
j}+∞

j=1 of {µk−1
j }+∞

j=1 and numbers ak ∈ R such that∫
Rn

fk dµ
k
j → ak as j → +∞

for each k ∈ N. Set νj := µj
j. Then∫

Rn

fk dνj → ak as j → +∞

for all k ∈ N, for if j ≥ k, then νj = µj
j ∈ {µk

j}+∞
j=1. Define L(fk) := ak, and note that L is

linear and
|L(fk)| ≤ M∥fk∥L∞(Rn)

by (
eq:1.9-1
1.1.1), where

M := sup
k∈N

µk(Rn).

By the Hahn–Banach Theorem, L may be uniquely extended to a bounded linear func-
tional L defined on all of Cc(Rn). Then, by the Riesz Representation Theorem, there exists
a unique Radon measure µ on Rn such that

L(f) =

∫
Rn

f dµ

for all f ∈ Cc(Rn).
(iii). Choose any f ∈ Cc(Rn). Since {fk}+∞

k=1 is dense in Cc(Rn), there exists a subsequence
{fki}+∞

i=1 such that fi → f uniformly. Fix ϵ > 0 and then choose i ∈ N so large that

∥fki − f∥L∞(Rn) <
ϵ

4M
. (1.1.2) {eq:1.9-2}
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

Next choose J ∈ N so that for all j > J,∣∣∣∣∫
Rn

fki dνj −
∫
Rn

fki dµ

∣∣∣∣ < ϵ

2
.

Then for any j > J, we have by (
eq:1.9-2
1.1.2) and the Principle of Uniform Boundedness∣∣∣∣∫

Rn

f dνj −
∫
Rn

f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
Rn

f − fki dνj

∣∣∣∣+ ∣∣∣∣∫
Rn

fki dνj −
∫
Rn

fki dµ

∣∣∣∣ +∣∣∣∣∫
Rn

fki − f dµ

∣∣∣∣
≤ ϵ

2
+ ∥f − fki∥L∞(Rn)νj(Rn) + ∥f − fki∥L∞(Rn)µ(Rn)

< ϵ,

as required.
(iv). In the general case that (

eq:1.9-1
1.1.1) fails to hold, but

sup
k∈N

µk(K) < +∞

for each compact set K ⊆ Rn, we apply the above argument to the measures

µl
k := µk B(0, l), k, l = 1, 2, . . . ,

and use a diagonalization argument. The proof is complete. □

For the remainder of this section, we assume that
(i) U ⊆ Rn is open;

(ii) 1 ≤ p < +∞.

Definition (Weak Convergence in Lp(U)). A sequence {fk}+∞
k=1 ⊂ Lp(U) is said to converge

weakly to f ∈ Lp(U), written
fk ⇀ f in Lp(U),

if

lim
k→+∞

∫
U

fkg dLn =

∫
U

fg dLn

for each g ∈ Lq(U), where p and q are conjugate exponents, 1
p
+ 1

q
= 1, 1 < q ≤ +∞.

t1.9-3 Theorem 1.1.3 (Weak Compactness in Lp). Suppose that 1 < p < +∞. Let {fk}+∞
k=1 ⊆ Lp(U)

satisfying
sup
k∈N

∥fk∥Lp(U) < +∞.

Then there exists a subsequence {fkj}+∞
j=1 of {fk}+∞

k=1 and a function f ∈ Lp(U) such that

fkj ⇀ f in Lp(U) as j → +∞.

Remark. This assertion is in general false for p = 1. The key property here is reflexivity. Recall
that Lp(U) is reflexive if and only if 1 < p < +∞.
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

Definition. We denote by
ν := µ f

the signed measure with density f with respect to µ, that is, the signed measure

ν(K) =

∫
K

f dµ,

provided that this holds for all compact sets K ⊆ Rn.

Proof.
(i). If U ̸= Rn, we extend each function fk to Rn by setting fk = 0 on Rn \ U. This done,

we may assume that U = Rn. We may also assume that

fk ≥ 0 Ln − a.e.,

for otherwise we could apply the following analysis to f+
k and f−

k .
(ii). Define the Radon measures

µk := Ln fk, k ∈ N.
Then for each compact set K ⊆ Rn, by Hölder’s inequality, we have

µk(K) =

∫
K

fk dLn ≤ ∥fk∥Lp(K) · Ln(K)
p−1
p < +∞,

and thus
sup
k∈N

µk(K) < +∞.

Therefore, we may apply Theorem (
t1.9-2
1.1.2) to obtain a Radon measure µ on Rn and a sub-

sequence
µkj ⇀ µ.

(iii). We now show that µ << Ln. Let A ⊆ Rn be bounded with Ln(A) = 0. Fix ϵ > 0
and choose an open bounded set V ⊇ A such that Ln(V ) < ϵ. Then by Theorem (

t1.9-1
1.1.1)

and Hölder’s inequality,

µ(A) ≤ µ(V ) ≤ lim inf
j→+∞

µkj(V ) = lim inf
j→+∞

∫
V

fkj dLn

≤ lim inf
j→+∞

∥fkj∥Lp(V ) · Ln(V )
p−1
p

≤ Cϵ
p−1
p .

Since ϵ > 0 was arbitrary and p−1
p

> 0, µ(A) = 0, as required. Therefore µ << Ln.

(iv). By the Radon–Nikodym Theorem, there exists f ∈ L1
loc(Rn) such that

µ(A) =

∫
A

f dLn

for every Borel set A ⊆ Rn.
(v). We prove that f ∈ Lp(Rn). Let ϕ ∈ Cc(Rn). Then∫

Rn

fϕ dLn =

∫
Rn

ϕ dµ = lim
j→+∞

∫
Rn

ϕ dµkj

= lim
j→+∞

∫
Rn

ϕfkjdLn
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General Measure Theory 1.1 — Weak Convergence and Compactness for Radon Measures

≤ sup
k∈N

∥fkj∥Lp(Rn)∥ϕ∥Lq(Rn)

≤ C∥ϕ∥Lq(Rn).

Thus

∥f∥Lp(Rn) = sup
ϕ∈Cc(Rn)

∥ϕ∥Lq(Rn)=1

∣∣∣∣∫
Rn

fϕ dLn

∣∣∣∣ ≤ C < +∞,

and we see that f ∈ Lp(Rn).
(vi). Finally, we show that fkj ⇀ f in Lp(Rn). Fix ϵ > 0. By the above,∫

Rn

fkjϕ dLn →
∫
Rn

fϕ dLn

as j → +∞ for all ϕ ∈ Cc(Rn). Thus we may choose J ∈ N so large so that for all j > J,∣∣∣∣∫
Rn

fkjϕ− fϕ dLn

∣∣∣∣ < ϵ (1.1.3) {eq:1.9-3}

for all ϕ ∈ Cc(Rn). Given g ∈ Lq(Rn), choose by the density of Cc(Rn) in Lq(Rn) a function
ϕ ∈ Cc(Rn) such that

∥g − ϕ∥Lq(Rn) < ϵ.

Then by (
eq:1.9-3
1.1.3), Hölder’s inequality, and the Principle of Uniform Boundedness, we have

for all j > J∣∣∣∣∫
Rn

fkjg dLn −
∫
Rn

fg dLn

∣∣∣∣ ≤ ∫
Rn

|fkjg − fkjϕ| dLn +

∣∣∣∣∫
Rn

fkjϕ− fϕ dLn

∣∣∣∣ +∫
Rn

|fϕ− fg| dLn

≤ ϵ+

∫
Rn

|fkj ||g − ϕ| dLn +

∫
Rn

|f ||ϕ− g| dLn

≤ ϵ+ ϵ∥fkj∥Lp(Rn) + ϵ∥f∥Lp(Rn)

≤ (2C + 1)ϵ.

The proof is complete. □
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Hausdorff Measure 2.1 — Definitions and Elementary Properties; Hausdorff Dimension

2. HAUSDORFF MEASURE

2.1. Definitions and Elementary Properties; Hausdorff Dimension.

Definition (Hs
δ). Let A ⊆ Rn, 0 ≤ s < +∞, 0 < δ ≤ +∞. We define

Hs
δ(A) := inf

{
+∞∑
j=1

α(s)

2s
(diamCj)

s : A ⊆
+∞⋃
j=1

Cj, diamCj ≤ δ

}
,

where

α(s) :=
π

s
2

Γ(1 + s
2
)

denotes the volume of the unit ball in Rs.

Note in the above definition that s need not be an integer.

Definition (Hs, s−Dimensional Hausdorff Measure). Let A ⊆ Rn, 0 ≤ s < +∞. We define
the s−dimensional Hausdorff measure Hs on Rn by

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A).

Note that taking the limit as δ → 0 coincides with taking the supremum over δ > 0, for,
as δ → 0, we are taking the infimum over smaller and smaller sets. That is, if δ1 < δ2, then
there exist coverings {Cj}+∞

j=1 of A such that diamCj ≤ δ2 but diamCj > δ1.

Remark.
(i) Requiring δ → 0 forces the coverings to “follow the local geometry" of the set A;

(ii) Recall that
Ln(B(x, r)) = α(n)rn

for all balls B(x, r) ⊆ Rn. In fact if s = k is an integer, then Hk coincides with the ordi-
nary “k−dimensional surface area" on nice sets. This is the reason that the normalizing
constant α(s) is included in the definition of Hs

δ.

t2.1-1 Theorem 2.1.1. Hs is a Borel regular measure, 0 ≤ s < +∞.

Remark.
(i) Recall that this means that Hs is Borel and for each A ⊆ Rn there exists a Borel set B such

that A ⊆ B and Hs(A) = Hs(B).

(ii) Hs is not a Radon measure if 0 ≤ s < n, since Rn is not σ−finite with respect to Hs.

Proof.
(i). Hs

δ is a measure. Choose {Ak}+∞
k=1 ⊆ Rn and suppose that Ak ⊆ ∪+∞

j=1C
k
j , where

diamCk
j ≤ δ. Then {Ck

j }+∞
j,k=1 covers ∪+∞

k=1Ak. Thus

Hs
δ

(
+∞⋃
k=1

Ak

)
≤

+∞∑
k=1

+∞∑
j=1

α(s)

2s
(diamCk

j )
s.

Taking infima over all such covers {Ck
j }+∞

k=1 of Ak, we find

Hs
δ

(
+∞⋃
k=1

Ak

)
≤

+∞∑
k=1

Hs
δ(Ak),
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Hausdorff Measure 2.1 — Definitions and Elementary Properties; Hausdorff Dimension

as required.
(ii). Hs is a measure. Choose {Ak}+∞

k=1 ⊆ Rn. Since Hs(∪+∞
k=1Ak) = supδ>0Hs

δ(∪+∞
k=1Ak), we

have

Hs
δ

(
+∞⋃
k=1

Ak

)
≤

+∞∑
k=1

Hs
δ(Ak) ≤

+∞∑
k=1

Hs(Ak).

Taking the limit as δ → 0 on the LHS shows that

Hs

(
+∞⋃
k=1

Ak

)
≤

+∞∑
k=1

Hs(Ak).

(iii). Hs is a Borel measure. Choose A,B ⊆ Rn with dist(A,B) > 0. Select 0 < δ <
1
4
dist(A,B). Let A ∪B ⊆ ∪+∞

k=1Ck with diamCk ≤ δ.
Put

A := {Cj : Cj ∩ A ̸= ∅}
and

B := {Cj : Cj ∩B ̸= ∅}.
Then A ⊆ ∪Cj∈ACj and B ⊆ ∪Cj∈BCj, with Ci ∩ Cj = ∅ if Ci ∈ A, Cj ∈ B. Thus∑

−j = 1+∞α(s)

2s
(diamCj)

s ≥
∑
Cj∈A

α(s)

2s
(diamCj)

s +
∑
Cj∈B

α(s)

2s
(diamCj)

s

≥ Hs
δ(A) +Hs

δ(B).

Taking the infimum over all such sets {Cj}+∞
j=1, 0 < δ < 1

4
dist(A,B), we find

Hs
δ(A ∪B) ≥ Hs

δ(A) +Hs
δ(B).

Letting δ → 0, we obtain
Hs(A ∪B) ≥ Hs(A) +Hs(B).

Consequently
Hs(A ∪B) = Hs(A) +Hs(B)

for all A,B ⊆ Rn with dist(A,B) > 0. By Caratheodory’s Criterion, Hs is a Borel measure.
(iv). Hs is Borel regular. First note that diamC = diamC for all C ⊆ Rn. Thus

Hs
δ(A) = inf

{
+∞∑
j=1

α(s)

2s
(diamCj)

s : A ⊆
+∞⋃
j=1

Cj, diamCj ≤ δ, Cj closed

}
.

Choose A ⊆ Rn such that Hs(A) < +∞. Then Hs
δ(A) < +∞ for all δ > 0. For each k ≥ 1,

choose closed sets {Ck
j }+∞

j=1 so that diamCk
j ≤ 1

k
, A ⊆ ∪+∞

j=1C
k
j , and

+∞∑
j=1

α(s)

2s
(diamCk

j )
s ≤ Hs

1/k(A) +
1

k
.

Put Ak := ∪+∞
j=1C

k
j and B := ∩+∞

k=1Ak. Then B is Borel. Also A ⊆ Ak for each k ∈ N, so
A ⊆ B. Moreover, since B ⊆ Ak for each k,

Hs
1/k(B) ≤

+∞∑
j=1

α(s)

2s
(diamCk

j )
s ≤ Hs

1/k(A) +
1

k
.
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Hausdorff Measure 2.1 — Definitions and Elementary Properties; Hausdorff Dimension

Letting k → +∞, we find
Hs(B) ≤ Hs(A).

But since A ⊆ B, we have by monotonicity

Hs(A) = Hs(B).

The proof is complete. □

t2.1-2 Theorem 2.1.2 (Elementary Properties of Hausdorff Measure).
(i) H0 is counting measure;

(ii) H1 = L1 on R;
(iii) Hs ≡ 0 on Rn for all s > n;
(iv) Hs(λA) = λsHs(A) for all λ > 0, A ⊆ Rn;
(v) Hs(L(A)) = Hs(A) for each affine isometry L : Rn → Rn, A ⊆ Rn.

Proof.
(iv). Fix 0 < δ ≤ +∞, and suppose that A ⊆ ∪+∞

j=1Cj, with diamCj ≤ δ. Then λA ⊆
∪+∞

j=1λCj, and diamλCj = λ diamCj ≤ λδ. Thus

λs

+∞∑
j=1

α(s)

2s
(diamCj)

s =
+∞∑
j=1

α(s)

2s
(λ diamCj)

s

≥ Hs
λδ(λA).

Taking the infimum over all such covers {Cj}+∞
j=1 of A, we deduce

λsHs
δ(A) ≥ Hs

λδ(λA),

and taking the limit as δ → 0 shows

λsHs(A) ≥ Hs(λA.)

The reverse inequality may be shown similarly.
(v). This follows at once from (iv) along with the translation invariance of Hs.
(i). First note that α(0) = 1. Thus obviously H0({a}) = 1 for all a ∈ Rn, and (i) follows.
(ii). Choose A ⊆ R and δ > 0. Then

L1(A) = inf

{
+∞∑
j=1

diamCj : A ⊆
+∞⋃
j=1

Cj

}

≤ inf

{
+∞∑
j=1

diamCj : A ⊆
+∞⋃
j=1

Cj, diamCj ≤ δ

}
= H1

δ(A)

≤ H1(A).

On the other hand, set Ik := [kδ, (k + 1)δ], k ∈ Z. Then diam(Cj ∩ Ik) ≤ δ, and, since
∪+∞

k=1Cj ∩ Ik = Cj,
+∞∑

k=−∞

diam(Cj ∩ Ik) ≤ diamCj.
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Hausdorff Measure 2.1 — Definitions and Elementary Properties; Hausdorff Dimension

Hence,

L1(A) = inf

{
+∞∑
j=1

diamCj : A ⊆
+∞⋃
j=1

Cj

}

≥ inf

{
+∞∑
j=1

+∞∑
k=−∞

diam(Cj ∩ Ik) : A ⊆
+∞⋃
j=1

Cj

}
= H1

δ(A).

Therefore L1 = H1
δ for all δ > 0, so that taking the supremum over all δ > 0, we have

L1 = H1 on R.
(iii). Fix an integer m ≥ 1. The unit cube Q(n) in Rn may be decomposed into mn cubes

with side length 1
m

and diameter
√
n

m
. Thus

Hs√
n/m(Q(n)) ≤

mn∑
j=1

α(s)

(√
n

m

)s

= α(s)n
s
2mn−s,

and the RHS tends to zero as m → +∞ if s > n. Hence Hs(Q(n)) = 0, so Hs ≡ 0. The
proof is complete. □

A convenient way to check that Hs vanishes on a set A ⊆ Rn is the following lemma.

l2-1-1 Lemma 2.1.1. If A ⊆ Rn and Hs
δ(A) = 0 for some 0 < δ ≤ +∞, then Hs(A) = 0.

Proof. The conclusion is obvious if s = 0, and so we may assume that s > 0.
Fix ϵ > 0. There exist sets {Cj}+∞

j=1 such that A ⊆ ∪+∞
j=1Cj and

+∞∑
j=1

α(s)

2s
(diamCj)

s ≤ ϵ.

In particular for each j ∈ N,

diamCj ≤ 2

(
ϵ

α(s)

) 1
s

=: δ(ϵ).

Hence Hs
δ(ϵ) < ϵ. But since δ(ϵ) → 0 and ϵ → 0, we have

Hs(A) = 0.

The proof is complete. □

We next want to define the Hausdorff dimension of a subset of Rn.

l2.1-2 Lemma 2.1.2. Let A ⊆ Rn and 0 ≤ s < t < +∞.

(i) If Hs(A) < +∞, then Ht(A) = 0;
(ii) If Ht(A) > 0, then Hs(A) = +∞.

Proof.
(i). Let Hs(A) < +∞ and δ > 0. Then there exist sets {Cj}+∞

j=1 such that A ⊆ ∪+∞
j=1Cj,

diamCj ≤ δ, and
+∞∑
j=1

α(s)

2s
(diamCj)

s ≤ Hs
δ(A) + 1 ≤ Hs(A) + 1.

11
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Then

Ht
δ(A) ≤

+∞∑
j=1

α(t)

2t
(diamCj)

t

=
α(t)

α(s)
2s−t

+∞∑
j=1

α(s)

2s
(diamCj)

s · (diamCj)
t−s

≤ α(t)

α(s)
2s−tδt−s(Hs(A) + 1).

Sending δ → 0, we conclude that Ht(A) = 0. This proves (i).
(ii). Assertion (ii) follows at once from (i), by contrapositive. The proof is complete. □

Definition (Hausdorff Dimension). We define the Hausdorff dimension of a set A ⊆ Rn by

Hdim(A) := inf{0 ≤ s < +∞ : Hs(A) = 0.}

Remark. Observe for any set A ⊆ Rn that Hdim(A) ≤ n. Let s := Hdim(A). Then by the
preceding lemma, Ht(A) = 0 for all t > s and Ht(A) = +∞ for all t < s. Moreover, Hs(A) may
be any number between 0 and +∞, inclusive. The point is that s = Hdim is the only number such
that Hs(A) can be a positive finite number for any A ⊆ Rn.

Also note that Hdim(A) need not be an integer. Even if Hdim(A) = k is an integer and 0 <
Hk(A) < +∞, A need not be a “k−dimensional surface" in any sense, and may be extremely
complicated geometrically. Examples include Cantor–like subsets A of Rn and other fractals.

2.2. Isodiametric Inequality; Hn = Ln. We want to prove that Hn = Ln on Rn, where
n ∈ N. Recall that Ln is defined as the n−fold product of one–dimensional Lebesgue
measure L1, so that

L1(A) := inf

{
n∑

i=1

Ln(Qi) : Qi cubes , A ⊆
n⋃

i=1

Qi

}
.

On the other hand, Hn is computed in terms of arbitrary coverings of small diameter.

l2.2-1 Lemma 2.2.1. Let f : Rn → [0,+∞] be Ln−measurable. Then the region “under the graph" of
f,

A := {(x, y) : x ∈ Rn, y ∈ R, 0 ≤ y ≤ f(x)}
is Ln+1−measurable.

Proof. Define
B := {x ∈ Rn : f(x) = +∞}

and
C := {x ∈ Rn : 0 ≤ f(x) < +∞.}

Also define

Cj,k :=

{
x ∈ C :

j

k
≤ f(x) <

j + 1

k

}
, j ∈ N0, k ∈ N,

12
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so that C = ∪+∞
j=0Cj,k. Finally, put

Dk :=
+∞⋃
j=0

(
Cj,k ×

[
0,

j

k

])
∪ (B × [0,+∞]),

Ek :=
+∞⋃
j=0

(
Cj,k ×

[
0,

j + 1

k

])
∪ (B × [0,+∞]).

Clearly Dk and Ek are Ln+1 measurable, and we have for each k ∈ N Dk ⊆ A ⊆ Ek.
Write D := ∪+∞

k=1Dk and E := ∩+∞
k=1Ek. Then also D ⊆ A ⊆ E, with D and E both

Ln+1−measurable. Now for any Ln+1−measurable set F with Ln+1(F ) < +∞,

Ln+1((E \D) ∩ F ) ≤ Ln+1((Ek \Dk) ∩ F ) ≤ 1

k
Ln(F ),

and the RHS tends to zero as k → +∞. Thus Ln+1((E \ D) ∩ F ) = 0, and, because
F was arbitrary, Ln+1(E \ D) = 0. Hence Ln+1(A \ D) = 0, and consequently A is
Ln+1−measurable. □

We now define the process of Steiner symmetrization, which takes a bounded Borel–
measurable set A ⊆ Rn and transforms A into a set Ã having the same Lebesgue measure
such that diam(Ã) ≤ diam(A).

Fix a, b ∈ Rn, ∥a∥ = 1. We define

La
b := {b+ ta : t ∈ R}, the line through b in the direction of a,

and

Pa := {x ∈ Rn : x · a = 0}, the plane through the origin perpendicular to a.

Definition (Steiner Symmetrization). Choose a ∈ Rn with ∥a∥ = 1, and let A ⊆ Rn. We define
the Steiner symmetrization of A with respect to the hyperplane Pa to be the set

Sa(A) :=
⋃
b∈Pa

A∩La
b ̸=∅

{
b+ ta : ∥t∥ ≤ 1

2
H1(A ∩ La

b )

}
.

Note that the Steiner symmetrization is the union of all line segments b + ta of length
less than H1(A ∩ La

b ), where b is in the plane through the origin perpendicular to a and
there exists x ∈ A such that b+ ta = x.

l2.2-2 Lemma 2.2.2 (Properties of Steiner Symmetrization).
(i) diamSa(A) ≤ diamA.

(ii) If A is Ln−measurable, then so is Sa(A), and Ln(Sa(A)) = Ln(A).

Proof.
(i). Statement (i) is trivial if diamA = +∞, so we may assume that diamA < +∞. We

may also suppose that A is closed, for

diamA◦ = diamA = diamA.

Fix ϵ > 0 and choose x, y ∈ Sa(A) such that

diamSa(A) ≤ ∥x− y∥+ ϵ.

13
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FIGURE 2.2.1. Steiner Symmetrization.

Write b := x− (x · a)a and c := y − (y · a)a. Then b, c ∈ Pa. Put

r := inf{t : b+ ta ∈ A},
s := sup{t : b+ ta ∈ A},
u := inf{t : c+ ta ∈ A},
v := sup{t : c+ ta ∈ A}.

Without loss of generality, we may assume that v − r ≥ s− u. Then

v − r ≥ 1

2
(v − r) +

1

2
(s− u)

=
1

2
(s− r) +

1

2
(v − u)

≥ 1

2
H1(A ∩ La

b ) +
1

2
H1(A ∩ La

c).

Now, |x · a| ≤ 1
2
H1(A ∩ La

b ), |y · a| ≤ 1
2
H1(A ∩ La

b ), and consequently,

v − r ≥ |x · a|+ |y · a| ≥ |x · a− y · a|.
Hence,

(diamSa(A)− ϵ)2 ≤ ∥x− y∥2

= ∥x∥2 − 2x · y + ∥y∥2

= ∥b∥2 + 2(x · a)(b · a) + |xȧ|2 − 2(b+ (x · a)a) · (c+ (y · a)a) + ∥c∥2 +
2(y · a)(b · a) + |y · a|2

= (∥b∥2 − 2b · c+ ∥c∥2) + (|x · a|2 − 2(x · a)(y · a) + |y · a|2) +
2(x · a)(b · a)− 2(b · a)(y · a)− 2(c · a)(x · a) + 2(y · a)(b · a)

= ∥b− c∥2 + ∥x · a− y · a∥2

14
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≤ ∥b− c∥2 + (v − r)2

= ∥b∥2 − 2b · c+ ∥c∥2 + v2 − 2rv + r2

= (∥b∥2 + 2b · ra+ ∥ra∥2)− 2(b · c− b · va− c · ra− rv∥a∥2) +
(∥c∥2 + 2c · va+ ∥va∥2)

= ∥(b+ ra)− (c+ va)∥2

≤ (diamA)2,

since b, c ⊥ a and A is closed, so that b + ra, c + va ∈ A. Thus diamSa(A) − ϵ ≤ diamA,
and since ϵ > 0 was arbitrary, this proves (i).

(ii). Since Ln is rotation invariant, we may assume that a = en. Then Pa = Pen = Rn−1.
Since L1 = H1 on R, Tonelli’s Theorem implies that the map f : Rn−1 → R defined by
f(b) = H1(A ∩ La

b ) is Ln−1−measurable and Ln(A) =
∫
Rn−1 f(b) dLn−1(b), for∫

Rn−1

f(b) dLn−1(b) =

∫
Rn−1

L1(A ∩ La
b ) dLn−1(b) = Ln(A).

Therefore

Sa(A) =

{
(b, y) : 0 ≤ |y| ≤ f(b)

2

}
\ {(b, 0) : La

b ∩ A = ∅}

is Ln−measurable by Lemma (
l2.2-1
2.2.1), and

Ln(Sa(A)) =

∫ n

R
1Sa(A) dLn =

∫
Rn−1

∫
R
1Sa(A) dL1 dLn−1

=

∫
Rn−1

∫
R
(1Sa(A))(e1,...,en−1)(y) dL1(y) dLn−1

=

∫
Rn−1

∫ f(b)/2

−f(b)/2

dL1 dLn−1

=

∫
Rn−1

f(b) dLn−1(b) = Ln(A).

The proof is complete. □

Remark. In proving Hn = Ln below, notice that we use only statement (ii) above in the special
case that a is a standard coordinate vector. Since Hn is obviously rotation invariant, we in fact
prove that Ln is rotation invariant also.

t2.2-1 Theorem 2.2.1 (Isodiametric Inequality). For all sets A ⊆ Rn,

Ln(A) ≤ α(n)

2n
(diamA)n.

Remark.

(i) Geometrically, the isodiametric inequality says that of all sets of fixed diameter in Rn, the
n−sphere has greatest volume.

(ii) This inequality is particularly interesting because it is not necessarily the case that A is
contained in a ball of diameter diamA, for in R2 consider the case of an equilateral triangle

15
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with side length 1. The smallest closed ball B which inscribes the triangle has radius 1/
√
3,

so
diamB =

2√
3
> 1.

Proof. If diamA = +∞, the inequality is trivial. Therefore we may assume that diamA <
+∞.

Let {e1, . . . , en} be the standard basis for Rn. Define A1 := Se1(A), A2 := Se2(A1), . . . ,
An := Sen(An−1). Write A∗ := An.

(i). We first show that A∗ is symmetric with respect to the origin. We use induction.
Clearly A1 is symmetric with respect to Pe1 . Let k be an integer such that 1 ≤ k < n
and suppose that Ak is symmetric with respect to Pe1 , . . . , Pek . Clearly Ak+1 = Sek+1

(Ak)
is symmetric with respect to Pek+1

. Fix 1 ≤ j < k and let Sj : Rn → Rn be the reflec-
tion through Pej . Let b ∈ Pek+1

. Since Ak is symmetric with respect to Pe1 , . . . , Pek by the
induction hypothesis and 1 ≤ j ≤ k, we have Sj(Ak) = Ak, and so

H1(Ak ∩ L
ek+1

b ) = H1(Ak ∩ L
ek+1

Sjb
).

Consequently

{t ∈ R : b+ tek+1

∫
Ak+1} = {t ∈ R : Sjb+ tek+1 ∈ Ak+1}.

Thus Sj(Ak+1) = Ak+1, that is, Ak+1 is symmetric with respect to Pej . Since j was arbitrary,
A∗ = An is symmetric with respect to Pe1 , . . . , Pen , and so with respect to the origin.

(ii). We show that

Ln(A∗) ≤ α(n)

2n
(diamA∗)n.

Choose x ∈ A∗. Then −x ∈ A∗ by (i), and so diamA∗ ≥ 2|x|. Thus A∗ ⊆ B(0, 1
2
diamA∗),

and it follows by monotonicity of the Lebesgue measure

Ln(A∗) ≤ Ln

(
B

(
0,

1

2
diamA∗

))
=

α(n)

2n
(diamA∗)2.

(iii). We now prove the isodiametric inequality. Note that A is Ln−measurable, and
thus the above Lemma (

l2.2-2
2.2.2) implies that

Ln((A)∗) = Ln(A),

as well as
diam(A)∗ ≤ diamA.

Hence, monotonicity of the Lebesgue measure together with (ii) give

Ln(A) ≤ Ln(A) = Ln((A)∗)

≤ α(n)

2n
(diam(A)∗)n

≤ α(n)

2n
(diam(A))n

=
α(n)

2n
(diamA)n.

The proof is complete. □

16
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t2.2-2 Theorem 2.2.2. On Rn, Ln = Hn.

Proof. (i). We first show that Ln(A) ≤ Hn(A) for all A ⊆ Rn. Fix δ > 0. Choose sets {Cj}+∞
j=1

such that A ⊆ ∪+∞
j=1Cj and diamCj ≤ δ. Then by monotonicity and the Isodiametric In-

equality (cf. (
t2.2-1
2.2.1)),

Ln(A) ≤
+∞∑
j=1

Ln(Cj) ≤
+∞∑
j=1

α(n)

2n
(diamCj)

n.

Taking the infimum of the RHS over all cover countable covers of A with diameter less
than δ, we obtain Ln(A) ≤ Hn

δ (A). Taking the limit as δ → 0, we have

Ln(A) ≤ Hn
δ (A) ≤ Hn(A),

as required.
(ii). From the definition of Ln as the n−fold product of L1 × · · · × L1, we see that for all

A ⊆ Rn and δ > 0,

Ln(A) = inf

{
+∞∑
i=1

Ln(Qi) : Qi cubes, A ⊆
+∞⋃
i=1

, diamQi ≤ δ

}
.

We may consider only cubes parallel to the coordinate axes in Ln.

(iii). We now show that Hn is absolutely continuous with respect to Ln. Set Cn := α(n)
2n

.
Then for each cube Q ⊆ Rn,

α(n)

2n
(diamQ)n = CnLn(Q).

Thus for any A ⊆ Rn,

Hn
δ (A) = inf

{
n∑

i=1

α(n)

2n
(diamUi)

n : A ⊆
+∞⋃
i=1

Ui, diamUi ≤ δ

}

≤ inf

{
+∞∑
i=1

α(n)

2n
(diamQi)

n : Qi cubes , A ⊆
+∞⋃
i=1

Qi, diamQi ≤ δ

}
= CnLn(A).

Taking the supremum over all δ > 0, we’ve:

Hn(A) ≤ CnLn(A).

Thus Hn(A) = 0 whenever Ln(A) = 0. This proves (iii).
(iv). We now show that Hn(A) ≤ Ln(A) for all A ⊆ Rn. To this end, fix δ > 0 and ϵ > 0.

We may choose cubes {Qi}+∞
i=1 ⊆ Rn such that A ⊆ ∪+∞

i=1Qi, diamQi ≤ δ, and
+∞∑
i=1

Ln(Qi) < Ln(A) + ϵ.

Now for each i ∈ N there exist disjoint closed balls {Bi
k}+∞

k=1 ⊆ Q◦
i such that

diamBi
k ≤ δ

17
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and

Ln

(
Qi \

+∞⋃
k=1

Bi
k

)
= Ln

(
Q◦

i \
+∞⋃
k=1

Bi
k

)
= 0.

Since Hn,Hn
δ are absolutely continuous with respect to Ln by (iii), Hn(Qi \ ∪+∞

k=1B
i
k) =

Hn
δ (Qi \ ∪+∞

k=1B
i
k) = 0. Therefore Hn(Qi) = Hn(∪+∞

k=1B
i
k) and Hn

δ (Qi) = Hn
δ (∪+∞

k=1B
i
k), and

we have

Hn
δ (A) ≤

+∞∑
i=1

Hn
δ (Qi) =

+∞∑
i=1

Hn
δ

(
+∞⋃
k=1

Bi
k

)
≤

+∞∑
i=1

+∞∑
k=1

Hn
δ (B

i
k) ≤

+∞∑
i=1

+∞∑
k=1

Hn(Bi
k)

=
+∞∑
i=1

+∞∑
k=1

α(n)

2n
(diamBi

k)
n =

+∞∑
i=1

+∞∑
k=1

Ln(Bi
k) =

+∞∑
i=1

Ln

(
∞⋃
k=1

Bi
k

)

=
+∞∑
i=1

+∞∑
i=1

Ln(Qi) < Ln(A) + ϵ.

Since ϵ > 0 was arbitrary, it follows Hn(A) ≤ Ln(A). The proof is complete. □

2.3. Densities. We first recall the Lebesgue Density Theorem:

Theorem (Lebesgue Density Theorem). Let E ⊆ Rn be a Lebesgue measurable set. For any
r > 0 and x ∈ Rn, define the approximate Lebesgue density of E in the r−neighborhood of x by

dr(x) :=
Ln(B(x, r) ∩ E)

α(n)rn
.

Further define the Lebesgue density of E at x by

d(x) := lim
r→0

dr(x).

Then

d(x) = lim
r→0

Ln(B(x, r) ∩ E)

α(n)rn
=

{
1, for Ln − a.e. x ∈ E,

0, for Ln − a.e. x ∈ Rn \ E.

Since Hn = Ln for n ∈ N, the above result clearly holds for Hn as well. We want to
develop some analogous results for lower–dimensional Hausdorff measures. Thus we
assume throughout this section that 0 < s < n.

We first establish a theorem that tells us the lower–dimensional Hausdorff density of a
set at a.e. point outside the set is zero.

t2.3-1 Theorem 2.3.1. Assume that E ⊆ Rn with E Hs−measurable and Hs(E) < +∞. Then

lim
r→0

Hs(B(x, r) ∩ E)

α(s)rs
= 0

for Hs−a.e. x ∈ Rn \ E.

18
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Proof. Fix t > 0 and define

At :=

{
x ∈ Rn \ E : lim sup

r→0

Hs(B(x, r) ∩ E)

α(s)rs
> t

}
.

It suffices to show that Hs(At) = 0.
Note that Hs E is a Radon measure, and so, if we fix ϵ > 0, there exists a compact set

K ⊆ E such that
Hs(E \K) ≤ ϵ.

Set U := Rn \K. Then U is open and At ⊆ U because K ⊆ E. Fix δ > 0 and consider

F :=

{
B(x, r) : B(x, r) ⊆ U, 0 < r < δ,

Hs(B(x, r) ∩ E)

α(s)rs
> t

}
.

By the Vitali Covering Lemma, there exists a countable family of balls {B(xi, ri)}+∞
i=1 such

that

At ⊆
+∞⋃
i=1

B(xi, 5ri).

Thus by monotonicity

Hs
10δ(At) ≤ Hs

10δ

(
+∞⋃
i=1

B(xi, 5ri)

)
≤

+∞∑
i=1

α(s)

2s
(10ri)

s ≤
+∞∑
i=1

5sα(s)rs

≤ 5s

t

+∞∑
i=1

Hs(B(xi, ri) ∩ E) ≤ 5s

t
Hs(U ∩ E) =

5s

t
Hs(E \K)

≤ 5s

t
ϵ.

Letting δ → 0, we obtain Hs(At) ≤ 5s

t
ϵ. Since ϵ > 0 was arbitrary, we have Hs(At) = 0 for

each t > 0. The proof is complete. □

Now we prove that the lower–dimensional Hausdorff density of a set at a.e. point in the
set is nonzero. Note that this contrasts with the Lebesgue Density Theorem: the density
may not be 1. However, it is bounded below if we replace the limit with limit superior.

t2.3-2 Theorem 2.3.2. Assume that E ⊆ Rn with EHs−measurable and Hs(E) < +∞. Then

1

2s
≤ lim sup

r→0

Hs(B(x, r) ∩ E)

α(s)rs
≤ 1

for Hs−a.e. x ∈ E.

Remark. It is possible to have

lim sup
r→0

Hs(B(x, r) ∩ E)

α(s)rs
< 1

and

lim inf
r→0

Hs(B(x, r) ∩ E)

α(s)rs
= 0

for Hs−a.e. x ∈ E, even if 0 < Hs(E) < +∞.
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Proof. (i) We first show the upper inequality. Fix ϵ > 0, t > 1, and define

Bt :=

{
x ∈ E : lim sup

r→0

Hs(B(x, r) ∩ E)

α(s)rs
> t

}
.

Since Hs E is Radon, there exists an open set U containing Bt such that

Hs(U ∩ E) ≤ Hs(Bt) + ϵ.

Define

F :=

{
B(x, r) : B(x, r) ⊆ U, 0 < r < δ,

Hs(B(x, r) ∩ E)

α(s)rs
> t

}
.

By a corollary of the Vitali Covering Lemma, there exists a countable family of disjoint
balls {B(xi, ri)}+∞

i=1 such that

Bt ⊆

(
m⋃
i=1

B(xi, ri)

)
∪

(
+∞⋃

i=m+1

B(xi, 5ri)

)
.

Thus

Hs
10δ(Bt) ≤ Hs

10δ

(
m⋃
i=1

B(xi, ri)

)
+Hs

10δ

(
+∞⋃

i=m+1

B(xi, 5ri)

)

≤
m∑
i=1

α(s)

2s
(2ri)

s +
+∞∑

i=m+1

α(s)

2s
(10ri)

s

≤
m∑
i=1

α(s)rs +
+∞∑

i=m+1

5sα(s)rs

≤ 1

t

m∑
i=1

Hs(B(xi, ri) ∩ E) +
5s

t

+∞∑
i=m+1

Hs(B(xi, ri) ∩ E)

≤ 1

t
Hs(U ∩ E) +

5s

t
Hs

(
+∞⋃

i=m+1

B(xi, ri) ∩ E

)
.

Note that this holds for each m = 1, 2, . . . . Thus taking the limit as m → ∞ gives

Hs
10δ(Bt) ≤

1

t
Hs(U ∩ E) ≤ 1

t
(Hs(Bt) + ϵ).

Letting δ → 0, we obtain

Hs(Bt) ≤
1

t
(Hs(Bt) + ϵ),

and then taking the limit as ϵ → 0 gives

Hs(Bt) ≤
1

t
Hs(Bt).

Since Hs(Bt) ≤ Hs(E) < +∞, this implies that Hs(Bt) = 0 for each t > 1, as required.
(ii) We now show that

lim sup
r→0

Hs
∞(B(x, r) ∩ E)

α(s)rs
≥ 1

2s

for Hs−a.e. x ∈ E.
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For any δ > 0 and 0 < τ < 1, denote by E(δ, τ) the set of all points x ∈ E such that

Hs
δ(C ∩ E) ≤ α(s)

2s
τ(diamC)s,

whenever C ⊆ Rn, x ∈ C, and diamC ≤ δ. Then if {Ci}+∞
i=1 ⊆ Rn with diamCi ≤ δ,

E(δ, τ) ⊆ ∪+∞
i=1 ci, and Ci ∩ E(δ, τ) ̸= ∅, we have

Hs
δ(E(δ, τ)) ≤

+∞∑
i=1

Hs
δ(Ci ∩ E(δ, τ)) ≤ τ

+∞∑
i=1

α(s)

2s
(diamCi)

s.

Taking the infimum over all such covers {Ci}+∞
i=1 of E(δ, τ), we see that

Hs
δ(E(δ, τ)) ≤ τHs

δ(E(δ, τ)),

and so Hs
δ(E(δ, τ)) = 0, since 0 < τ < 1 and Hs

δ(E(δ, τ)) ≤ Hs
δ(E) ≤ Hs(E) < +∞. In

particular,
Hs(E(1− δ, δ)) = 0 (2.3.1) {eq:2.3-1}

for any 0 < δ < 1. Now if x ∈ E and

lim sup
r→0

Hs
∞(B(x, r) ∩ E)

α(s)rs
<

1

2s
,

there exists δ > 0 such that
Hs

∞(B(x, r) ∩ E)

α(s)rs
<

1− δ

2s
(2.3.2) {eq:2.3-2}

for all 0 < r ≤ δ. Thus if x ∈ C and diamC ≤ δ,

Hs
δ(C ∩ E) = Hs

∞(C ∩ E)

≤ Hs
∞(B(x, diamC) ∩ E)

≤ (1− δ)
α(s)

2s
(diamC)s,

by (
eq:2.3-2
2.3.2). Consequently x ∈ E(δ, 1− δ), and it follows{

x ∈ E : lim sup
r→0

Hs
∞(B(x, r) ∩ E)

α(s)rs
<

1

2s

}
⊆

{
+∞⋃
k=2

E

(
1

k
, 1− 1

k

)}
.

But since the RHS has Hs−measure zero by (
eq:2.3-1
2.3.1), this proves (ii).

(iii) Since Hs(B(x, r) ∩ E) ≥ Hs
∞(B(x, r) ∩ E) for any x ∈ E and r > 0, (ii) immediately

gives the required lower estimate

lim sup
r→0

Hs(B(x, r) ∩ E)

α(s)rs
≥ 1

2s
.

The proof is complete. □

2.4. Hausdorff Measure and Elementary Properties of Functions. We establish some
properties relating the behavior of certain functions and Hausdorff measure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2.4.1. Hausdorff Measure and Lipschitz Mappings.

Definition (Lipschitz). A function F : Rn → Rm is called Lipschitz if there exists a constant
C > 0 such that

|f(x)− f(y)| ≤ C|x− y|
for all x, y ∈ Rn.

Definition (Lipschitz Constant). We define the Lipschitz constant of a Lipschitz function f :
Rn → Rm by

Lip(f) := sup
x,y∈Rn

x ̸=y

|f(x)− f(y)|
|x− y|

.

Note that for any Lipschitz function f,

|f(x)− f(y)| ≤ Lip(f)|x− y|.

t2.4-1 Theorem 2.4.1. Let f : Rn → Rm be Lipschitz, A ⊆ Rn, 0 ≤ s < +∞. Then

Hs(f(A)) ≤ (Lip(f))sHs(A).

Proof. Fix δ > 0 and choose sets {Ci}+∞
i=1 ⊆ Rn such that diamCi ≤ δ, A ⊆ ∪+∞

i=1Ci. Then

diam f(Ci) ≤ Lip(f) diamCi ≤ δ Lip(f),

and f(A) ⊆ f(∪+∞
i=1Ci) = ∪+∞

i=1 f(Ci). Thus

Hs
δ Lip(f)(f(A)) ≤

+∞∑
i=1

α(s)

2s
(diam f(Ci))

s

≤ (Lip(f))s
+∞∑
i=1

α(s)

2s
(diamCi)

s.

Taking the infimum over all such sets {Ci}+∞
i=1 which cover A, we find on the RHS

Hs
δ Lip(f)(f(A)) ≤ (Lip(f))sHs

δ(A).

Taking the limit as δ → 0, we obtain

Hs(f(A)) ≤ (Lip(f))sHs(A),

as required. The proof is complete. □

c2.4-1 Corollary 2.4.1. Suppose that n > k. Let P : Rn → Rk be the usual projection, A ⊆ Rn,
0 ≤ s < +∞. Then

Hs(P (A)) ≤ Hs(A).

Proof. Since P is the standard projection map from Rn to Rk, Lip(P ) = 1. Applying the
above theorem (cf. (

t2.4-1
2.4.1)) gives the required estimate. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2.4.2. Graphs of Lipschitz Functions.

Definition (Graph). For f : Rn → Rm, A ⊆ Rn, we define the graph Γ(f ;A) of f over A by

Γ(f ;A) := {(x, f(x)) : x ∈ A} ⊆ Rn × Rm = Rn+m.

t2.4-2 Theorem 2.4.2. Assume that f : Rn → Rm, Ln(A) > 0.

(i) Then Hdim(Γ(f ;A)) ≥ n;
(ii) If f is Lipschitz, then Hdim(Γ(f ;A)) = n.

Remark. We thus see that the graph of a Lipschitz function f has the expected Hausdorff di-
mension (think of a continuous function f : R → R). We will see from the Area Formula that
Hs(Γ(f ;A)) can be computed according to the usual rules of calculus.

Proof.
(i). Let P : Rn+m → Rn be the usual projection. Then by (

c2.4-1
2.4.1),

Hn(Γ(f ;A)) ≥ Hn(A) > 0.

Thus Hn(Γ(f ;A)) > 0, so that Hdim(Γ(f ;A)) ≥ n.
(ii). Let Q denote any cube in Rn of side length 1. Subdivide Q into kn subcubes

{Q1, . . . , Qkn} of side length 1
k
. Note that diamQi =

√
n
k

for each i = 1, . . . , kn. Define

aij := min
x∈Qj

f i(x), bij := max
x∈Qj

f i(x),

where i = 1, . . . ,m and j = 1, . . . , kn. Since f is Lipschitz,

|bij − aij| ≤ Lip(f) diamQj = Lip(f)

√
n

k
.

For each j = 1, . . . , kn, put

Cj := Qj ×
m∏
i=1

(aij, b
i
j).

Then
Γ(f ;Qj ∩ A) = {(x, f(x)) : x ∈ Qj ∩ A} ⊆ Cj,

and diamCj ≤ C
k

for some constant C > 0. Since

Γ(f ;A ∩Q) = Γ(f ;A ∩ ∪kn
j=1Qj) =

kn⋃
j=1

Γ(f ;A ∩Qj) ⊆
jn⋃
j=1

Cj,

we have by monotonicity

Hn
C/k(G(f ;A ∩Q)) ≤

kn∑
j=1

α(n)

2n
(diamCj)

n

≤ knα(n)

2n

(
C

k

)n

=
Cnα(n)

2n
.

Then upon letting k → +∞, we find Hn(Γ(f ;A∩Q)) < +∞, and so Hdim(Γ(f ;A∩Q)) ≤ n.
Recall that this estimate is valid for each cube Q ⊆ Rn of side length 1. Consequently
Hdim(Γ(f ;A)) ≤ n. Applying (i), it follows Hdim(Γ(f ;A)) = n. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2.4.3. The Set Where an Integrable Function is Large. If a function f is locally integrable, we
can estimate the Hausdorff measure of the set where f is locally large.

t2.4-3 Theorem 2.4.3. Let f ∈ L1
loc(Rn), let 0 ≤ s < n, and define

Λs :=

{
x ∈ Rn : lim sup

r→0

1

rs

∫
B(x,r)

|f(y)| dLn(y) > 0.

}
Then

Hs(Λs) = 0.

Proof. We may as well assume that f ∈ L1(Rn). By the Lebesgue Differentiation Theorem,

lim
r→0

–
∫

B(x,r)

|f(y)| dLn(y) = |f(x)|

for Ln−a.e. x ∈ Rn, and thus

lim
r→0

1

rs

∫
B(x,r)

|f(y)| dLn(y) = lim
r→0

α(n)rn−s –
∫

B(x,r)

|f(y)| dLn(y) = lim
r→0

α(n)rn−s|f(x)| = 0

for Ln−a.e. x ∈ Rn, since 0 ≤ s < n. Hence

Ln(Λs) = 0.

Fix ϵ > 0, δ > 0, σ > 0. Since f is Ln−integrable, there exists η > 0 such that Ln(Ω) ≤ η
implies ∫

Ω

|f(x)| dLn(x) < σ.

Define

Λϵ
s :=

{
x ∈ Rn : lim sup

r→0

1

rs

∫
B(x,r)

|f(y)| dLn(y) > ϵ

}
.

By the above analysis,
Ln(Λϵ

s) = 0.

Thus there exists an open set Ω ⊆ Rn such that Λϵ
s ⊆ Ω and Ln(Ω) < η. Put

F :=

{
B(x, r) : x ∈ Λϵ

s, 0 < r < δ,B(x, r) ⊆ Ω,

∫
B(x,r)

|f(y)| dLn(y) > ϵrs
}
.

By the Vitali Covering Lemma, there exists a countable family {B(xi, ri)}+∞
i=1 of disjoint

balls in F such that

Λϵ
s ⊆

+∞⋃
i=1

B(xi, 5ri).

We thus compute

Hs
10δ(Λ

ϵ
s) ≤

+∞∑
i=1

α(s)

2s
(diamB(xi, 5ri))

s ≤
+∞∑
i=1

α(s)(5ri)
s

≤ α(s)5s

ϵ

+∞∑
i=1

∫
B(xi,ri)

|f(y)| dLn(y)

≤ α(s)5s

ϵ

∫
Ω

|f(y)| dLn(y)
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≤ α(s)5s

ϵ
σ.

Taking the limit as δ → 0, we have

Hs(Λϵ
s) ≤

α(s)5s

ϵ
σ,

and then upon sending σ → 0 we obtain

Hs(Λϵ
s) = 0.

Since ϵ > 0 was arbitrary, it follows

Hs(Λs) = 0.

The proof is complete. □
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3. AREA AND COAREA FORMULAS

3.1. Lipschitz Functions, Rademacher’s Theorem.

Definition (Lipschitz). Let A ⊆ Rn. A function f : A → Rm is called Lipschitz provided that

|f(x)− f(y)| ≤ C|x− y| (3.1.1) {eq:3.1-1}

for some constant C > 0 and all x, y ∈ A. The smallest constant C such that (
eq:3.1-1
3.1.1) holds for all

x, y ∈ A is denoted

Lip(f) := sup

{
|f(x)− f(y)|

|x− y|
: x, y ∈ A, x ̸= y

}
.

Definition (Locally Lipschitz). A function f : A → Rm is called locally Lipschitz if for each
compact set K ⊆ A, there exists a constant CK > 0 such that

|f(x)− f(y)| ≤ CK |x− y|
for all x, y ∈ K.

t3.1-1 Theorem 3.1.1 (Extension of Lipschitz Functions). Assume that A ⊆ Rn, and let f : A →
Rm be Lipschitz. There exists a Lipschitz function f : Rn → Rm such that

(i) f = f on A;
(ii) Lip(f) ≤

√
mLip(f).

Proof.
(i). First assume that f : A → R. Define

f(x) := inf
x∈A

{f(a) + Lip(f)|x− a|} .

If b ∈ A, then we have f(b) = f(b). This follows because if b ∈ A, then

f(b) ≤ f(b) + Lip(f)|b− b| = f(b).

On the other hand, for all a ∈ A, we’ve:

f(a) + Lip(f)|b− a| ≥ f(a) +
f(b)− f(a)

|b− a|
|b− a| = f(b).

Taking the infimum over all a ∈ A on the LHS thus gives f(b) ≥ f(b). Now if x, y ∈ Rn,
then

f(x) ≤ inf
a∈A

{f(a) + Lip(f)(|x− y|+ |y − a|)}

= inf
a∈A

{f(a) + Lip(f)|y − a|}+ Lip(f)|x− y|

= f(y) + Lip(f)|x− y|.

Similarly
f(y) ≤ f(x) + Lip(f)|x− y|.

Therefore
|f(x)− f(y)

|x− y|
≤ Lip(f)

for all x, y ∈ A. This proves the result for functions f : A → R.
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(ii). In the general case f : A → Rm, f = (f 1, . . . , fm), define f := (f
1
, . . . , f

m
), where

f
i
, i = 1, . . . ,m, are defined as in (i). Then

|f(x)− f(y)|2 =
m∑
i=1

∣∣∣f i
(x)− f

i
(y)
∣∣∣2 ≤ m(Lip(f))2|x− y|2.

Taking square roots,
f(x)− f(y) ≤

√
mLip(f)|x− y|,

as required. The proof is complete. □

Remark. In fact there exists an extension f of f with Lip(f) = Lip(f). This is Kirszbraun’s
Theorem.

We now prove Rademacher’s Theorem, which states that a locally Lipschitz function is
differentiable Ln−a.e. Note that the inequality

|f(x)− f(y)| ≤ Lip(f)|x− y|
says nothing about the possibility of locally approximating f by a linear map.

Definition (Differentiable). The function f : Rn → Rm is said to be differentiable at x ∈ Rn if
there exists a linear mapping

L : Rn → Rm

such that

lim
y→x

|f(y)− f(x)− L(x− y)|
|x− y|

= 0,

or, equivalently,
f(y) = f(x) + L(x− y) + o(|y − x|), y → x.

Remark.
(i) Note that this is actually the definition of the Fréchet derivative.

(ii) If such a linear mapping L exists, it is unique, and we write

Df(x)

for L. We call Df(x) the derivative of f at x.

t3.1-2 Theorem 3.1.2 (Rademacher’s Theorem). Let f : Rn → Rm be a locally Lipschitz function.
Then f is differentiable Ln−a.e.

Proof.
(i). We may assume that m = 1, for otherwise, repeat the below argument m times.

Since differentiability is a local property, we may as well also suppose that f is Lipschitz.
(ii). Fix any v ∈ Rn with |v| = 1, and for any x ∈ Rn, define the Gateaux derivative

Dvf(x) := lim
t→0

f(x+ tv)− f(x)

t

at x, provided that this limit exists.
(iii). We show that Dvf(x) exists for Ln−a.e. x ∈ Rn. Since f is continuous,

Dvf(x) = lim sup
t→0

f(x+ tv)− f(x)

t
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= lim
k→+∞

sup
0<|t|< 1

k
t∈Q

f(x+ tv)− f(x)

t

is Borel measurable, as is

Dvf(x) := lim inf
t→0

f(x+ tv)− f(x)

t
.

Thus

Av := {x ∈ Rn : Dvf(x) does not exist}
=
{
x ∈ Rn : Dvf(x) < Dvf(x)

}
,

being the complement of the set of all points of which the pointwise limit of measurable
functions exists, is Borel measurable.

Now, for each x, v ∈ Rn with |v| = 1, define ϕ : R → R by

ϕ(t) := f(x+ tv).

Note that for any t ∈ R,

|ϕ(t)− ϕ(s)| = |f(x+ tv)− f(x+ sv)| ≤ Lip(f)|(x+ tv)− (x+ sv)|
= Lip(f)|t− s|,

so that ϕ is Lipschitz. Therefore ϕ is absolutely continuous, and thus differentiable L1−a.e.
Thus for any line L parallel to v, the set of all points on L such that f is not differentiable
has Lebesgue measure zero. That is,

H1(Av ∩ L) = 0

for each line L parallel to v. Thus the Fubini–Tonelli Theorem implies

Ln(Av) = 0,

as required.
(iv). Noting that

∂

∂xj

f(x) = Dejf(x) = lim
t→0

f(x+ tej)− f(x)

t

for each j = 1, . . . , n, we have by (iii) that

∇f(x) =

(
∂

∂x1

f(x), . . . ,
∂

∂xn

f(x)

)
exists for Ln−a.e. x ∈ Rn.

(v). Next we show that Dvf(x) = v · ∇f(x) for Ln−a.e. x ∈ Rn. Let ζ ∈ C∞
c (Rn). Then∫

Rn

[
f(x+ tv)− f(x)

t

]
ζ(x) dx =

1

t

[∫
Rn

f(x+ tv)ζ(x) dx−
∫
Rn

f(x)ζ(x) dx

]
=

1

t

[∫
Rn

f(x)ζ(x− tv) dx−
∫
Rn

f(x)ζ(x) dx

]
= −

∫
Rn

f(x)

[
ζ(x)− ζ(x− tv)

t

]
dx.
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This is the integration by parts formula for difference quotients. Let t = 1
k

for k = 1, 2, . . . ,
in the above equality and note that

|f(x+ 1
k
v)− f(x)|
1
k

≤ Lip(f).

Thus, by Lebesgue’s Dominated Convergence Theorem, we have∫
Rn

Dvf(x)ζ(x) dx
LDC
= −

∫
Rn

f(x)Dvζ(x) dx

= −
n∑

j=1

vi

∫
Rn

f(x)
∂

∂xj

ζ(x) dx

=
n∑

j=1

vi

∫
Rn

∂

∂xj

f(x)ζ(x) dx

=

∫
Rn

(v · ∇f(x))ζ(x) dx,

where we have used integration by parts and the partial derivatives on f are understood
in the a.e. sense. Since the above equality holds for every ζ ∈ C∞

c (Rn), we have Dvf =
v · ∇f Ln−a.e.

(vi). Choose {vk}+∞
k=1 to be a countable, dense subset of ∂B(0, 1). Set

Ak := {x ∈ Rn : Dvkf(x), ∇f(x) exist and Dvkf(x) = vk · ∇f(x)}
for each k ∈ N. Note that by (iii)-(v), Ln(Rn \ Ak) = 0 for each k ∈ N. Define

A :=
+∞⋂
k=1

Ak

and observe that

Ln(Rn \ A) = Ln(Rn \ ∩+∞
k=1Ak) = Ln(∪+∞

k=1(R
n \ Ak)) = 0.

(vii). We now show that f is differentiable at each point x ∈ A. Fix any x ∈ A. Choose
v ∈ ∂B(0, 1), t ∈ R, t ̸= 0, and write

Q(x, v, t) :=
f(x+ tv)− f(x)

t
− v · ∇f(x).

Then if w ∈ ∂B(0, 1), we have

|Q(x, v, t)−Q(x,w, t)| =
∣∣∣∣f(x+ tv)− f(x+ tw)

t
− (v − w) · ∇f(x)

∣∣∣∣
≤
∣∣∣∣f(x+ tv)− f(x+ tw)

t

∣∣∣∣+ |(v − w) · ∇f(x)|

≤ Lip(f)|v − w|+ |∇f(x)||v − w|
≤ (1 +

√
n) Lip(f)|v − w|. (3.1.2) {eq:3.1-2}

Fix ϵ > 0 and choose N ∈ N so large that if v ∈ ∂B(0, 1), then

|v − vk| ≤
ϵ

2(1 +
√
n) Lip(f)
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for some k = 1, . . . , N. Note that since x ∈ A,

lim
t→0

Q(x, vk, t) = lim
t→0

{
f(x+ tvk)− f(x)

t
− vk · ∇f(x)

}
= Dvkf(x)− vk · ∇f(x)

= 0

for each k = 1, . . . , N. Thus there exists δ > 0 so that for all 0 < |t| < δ,

|Q(x, vk, t)| <
ϵ

2
(3.1.3) {eq:3.1-3}

holds for each k = 1, . . . , N. Consequently for each v ∈ ∂B(0, 1) there exists k ∈ {1, . . . , k}
such that

|Q(x, v, t)| ≤ |Q(x, v, t)−Q(x, vk, t)|+ |Q(x, vk, t)|

< (1 +
√
n) Lip(f)|v − vk|+

ϵ

2
< ϵ,

by (
eq:3.1-2
3.1.2) and (

eq:3.1-3
3.1.3), provided that 0 < |t| < δ. Note that this is the same δ > 0 for all

v ∈ ∂B(0, 1).
Now choose any x, y ∈ Rn, y ̸= x. Write

v :=
y − x

|y − x|
,

so that y = x+ tv, where t := |x− y|. Then

|f(y)− f(x)−∇f(x) · (y − x)|| = |f(x+ tv)− f(x)−∇f(x) · tv|
= |Q(x, t, v)||t|
< ϵ|t|,

so that
f(y)− f(x)−∇f(x) · (y − x) = o(t) = o(|x− y|), y → x.

Hence, f is differentiable at x, with

Df(x) = ∇f(x).

The proof is complete. □

c3.1-1 Corollary 3.1.1.
(i) Let f : Rn → Rm be locally Lipschitz, and

Z := {x ∈ Rn : f(x) = 0}.
Then Df(x) = 0 for Ln−a.e. x ∈ Z.

(ii) Let f, g := Rn → Rn be locally Lipschitz, and

Y := {x ∈ Rn : g(f(x)) = x}.
Then

Dg(f(x))Df(x) = I

for Ln−a.e. x ∈ Y.
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Proof.
(i). We may assume that m = 1 in (i), otherwise, repeat the following argument m times.
(ii). Choose x ∈ Z so that Df(x) exists, and

lim
r→0

Ln(Z ∩B(x, r))

Ln(B(x, r))
= 1. (3.1.4) {eq:3.1-4}

Note that this holds for Ln−a.e. x ∈ Z. Since x ∈ Z, it follows

f(y) = Df(x) · (y − x) + o(|y − x|). (3.1.5) {eq:3.1-5}

By contradiction, suppose that Df(x) = α ̸= 0, and set

S :=

{
v ∈ ∂B(0, 1) : α · v ≥ 1

2
|α|
}
.

Note that S is nonempty, for otherwise Df(x) = 0. Now for each v ∈ S and t > 0, set
y := x+ tv in (

eq:3.1-5
3.1.5) to obtain

f(x+ tv) = α · tv + o(|tv|)

≥ |α|
2
t+ o(t).

Hence, there exists δ > 0 such that for all 0 < t < δ and all v ∈ S,

f(x+ tv) > 0.

But this contradicts (
eq:3.1-4
3.1.4), since for all 0 < r < δ, B(x, r) ∩ Z = {x}. This proves (i).

(iii). We now show (ii). Define

domDf := {x ∈ Rn : Df(x) exists}
and

domDg := {x ∈ Rn : Dg(x) exists}.
Put

X := Y ∩ domDf ∩ f−1(domDg).

Then

Y \X = Y ∩
(
Y C ∪ (domDf)C ∪ (f−1(domDg))C

)
= (Y \ domDf) ∪ (Y \ f−1(domDg))

⊆ (Rn \ domDf) ∪ g(Rn \ domDg). (3.1.6) {eq:3.1-6}

This follows since if x ∈ Y \ f−1(domDg), then f(x) ∈ f(Y ) ⊆ Rn, and f(x) /∈ domDg, so
that

f(x) ∈ Rn \ domDg.

Thus
x = g(f(x)) ∈ g(Rn \ domDg.)

By Rademacher’s Theorem (cf. (
t3.1-2
3.1.2)),

Ln(Rn \ domDf) = 0

and
Ln(Rn \ domDg) = 0.
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Moreover, since g is Lipschitz (cf. (
t2.4-1
2.4.1)), we have

Ln(g(Rn \ domDg)) ≤ (Lip(g))nLn(Rn \ domDg) = 0.

Thus, by (
eq:3.1-6
3.1.6),

Ln(Y \X) = 0.

Now if x ∈ X, Dg(f(x)) and Df(x) exist, and so the chain rule implies

Dg(f(x))Df(x) = D(g ◦ f)(x)
exists. Finally, since (g ◦ f)(x)− x = g(f(x))− x = 0 on Y, assertion (i) gives

Dg(f(x))Df(x) = D(g ◦ f)(x) = I

Ln−a.e. on Y. The proof is complete. □

3.2. Linear Maps and Jacobians. We first review some basic linear algebra. Our goal in
this section is to define the Jacobian of a map f : Rn → Rm.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1. Linear Maps.

Definition (Orthogonal Linear Map). A linear map O : Rn → Rm is orthogonal if

Ox ·Oy = x · y
for all x, y ∈ Rn.

Definition (Symmetric Linear Map). A linear map S : Rn → Rn is symmetric if

x · Sy = Sx · y
for all x, y ∈ Rn.

Definition (Diagonal Linear Map). A linear map D : Rn → Rn is diagonal if there exist
d1, . . . , dn ∈ R such that

Dx = (d1x1, . . . , dnxn)

for all x ∈ Rn.

Definition (Adjoint). Let A : Rn → Rm be a linear map. The adjoint of A is the linear map
A∗ : Rm → Rn defined by

x · A∗y = Ax · y
for all x ∈ Rn, y ∈ Rm.

Recall that the existence of adjoints in Euclidean space with the Euclidean metric is
guaranteed, and, since Rn is a Hilbert space under the Euclidean metric, the adjoint oper-
ator has the above form by the Riesz Representation Theorem.

t3.2-1 Theorem 3.2.1.
(i) A∗∗ = A;

(ii) (A ◦B)∗ = B∗ ◦ A∗;
(iii) If O : Rn → Rn is orthogonal, then O∗ = O−1;
(iv) If S : Rn → Rn is symmetric, then S∗ = S;
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(v) If S : Rn → Rn is symmetric, there exists an orthogonal map O : Rn → Rn and a diagonal
map D : Rn → Rn such that

S = O ◦D ◦O−1;

(vi) If O : Rn → Rm is orthogonal, then n ≤ m and

O∗ ◦O = I on Rn,

O ◦O∗ = I on O(Rn).

Proof.
(i). Since the dot product is symmetric, we have for all x, y ∈ Rn that

x · (A∗∗y) = x · (A∗)∗y = A∗x · y = y · A∗x = Ay · x
= x · Ay.

Since this is for all x ∈ Rn, assertion (i) follows.
(ii). For any x, y ∈ Rn,

x · (A ◦B)∗y = (A ◦B)x · y = A(Bx) · y = Bx · A∗y

= x ·B∗(A∗y).

This is for all x ∈ Rn, so this proves (ii).
(iii). Let x, y ∈ Rn. Then

x · y = Ox ·Oy = x ·O∗(Oy),

and
x · y = O(O−1x) · y = O−1x ·O∗y = x ·O(O∗y).

This shows O∗ = O−1.
(iv). If x, y ∈ Rn, then

x · Sy = Sx · y = x · S∗y,

and since this is for all x ∈ Rn, assertion (iv) follows. □

t3.2-2 Theorem 3.2.2 (Polar Decomposition). Let L : Rn → Rm be a linear mapping.
(i) If n ≤ m, there exists a symmetric map S : Rn → Rn and an orthogonal map O : Rn →

Rm such that
L = O ◦ S.

(ii) If n ≥ m, there exists a symmetric map S : Rm → Rm and an orthogonal map O : Rm →
Rn such that

L = S ◦O∗.

Proof.
(i). First suppose n ≤ m. Consider the mapping C := L∗ ◦ L : Rn → Rn. Now for any

x, y ∈ Rn,

Cx · y = (L∗ ◦ L)x · y = L∗(Lx) · y = Lx · Ly = x · L∗(Ly) = x · (L∗ ◦ L)y
= x · Cy,

and also
Cx · x = (L∗ ◦ L)x · x = L∗(Lx) · x = Lx · Lx ≥ 0.
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Thus C is symmetric and positive semidefinite. Hence there exist µ1, . . . , µn ≥ 0 and an
orthonormal basis {xk}nk=1 of Rn such that

Cxk = µkxk,

k = 1, . . . , n. Write µk := λ2
k, λk ≥ 0, k = 1, . . . , n.

(ii). We show that there exists an orthonormal set {zk}nk=1 in Rm such that

Lxk = λkzk,

k = 1, . . . , n. To see this, if λk ̸= 0, define

zk :=
1

λk

Lxk.

Then if λk, λl ̸= 0,

zk · zl =
1

λk

Lxk ·
1

λl

Lxl =
1

λkλl

Lxk · Lxl =
1

λkλl

xk · L∗(Lxl) =
1

λkλl

xk · Cxl

=
λ2
l

λkλl

xk · xl

=
λl

λk

δkl,

by (i) and the fact that {xk}nk=1 is an orthonormal set. Thus the set {zk : λk ̸= 0} is orthonor-
mal. If λk = 0, define zk to be any unit vector such that the set {zk}nk=1 is orthonormal,
applying the Gram–Schmidt process if necessary.

(iii). Define S : Rn → Rn by
Sxk := λkxk,

k = 1, . . . , n and O : Rn → Rm by
Oxk := zk,

k = 1, . . . , n. Then

(O ◦ S)xk = O(Sk) = O(λk)xk = λkOxk = λkzk = Lxk,

and, since {xk}nk=1 is a basis for Rn,

L = O ◦ S.
Notice that the mapping S is clearly symmetric. Moreover, O is orthogonal because

Oxk ·Oxl = zk · zl = δkl = xk · xl.

This proves assertion (i) of the theorem.
(iv). To prove assertion (ii), we apply assertion (i) to L∗ and apply (

t3.2-1
3.2.1) to obtain

L∗ = (O ◦ S)∗ = S∗ ◦O∗ = S ◦O∗.

The proof is complete. □

We now define the Jacobian of a linear map.

Definition (Jacobian). Let L : Rn → Rm be a linear map.
(i) If n ≤ m, write L = O ◦ S (cf. (

t3.2-2
3.2.2)), and we define the Jacobian of L to be

[[L]] := | detS|;
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(ii) If n ≥ m, write L = S ◦O∗ (cf. (
t3.2-2
3.2.2)), and we define the Jacobian of L to be

[[L]] := | detS|.

Remark.
(i) It will follow from Theorem (

t3.2-3
3.2.3) below that the definition of [[L]] is independent of the

particular choices of O and S.
(ii) Note that if, say, n ≤ m, then L = O ◦ S implies

L∗ = (O ◦ S)∗ = S∗ ◦O∗ = S ◦O∗.

This is the same O and S, and it clearly follows

[[L]] = [[L∗]].

t3.2-3 Theorem 3.2.3.
(i) If n ≤ m,

[[L]]2 = det(L∗ ◦ L);
(ii) If n ≥ m,

[[L]]2 = det(L ◦ L∗).

Proof.
(i). Assume that n ≤ m, and apply Theorem (

t3.2-2
3.2.2) to write

L = O ◦ S
and

L∗ = (O ◦ S)∗ = S∗ ◦O∗ = S ◦O∗.

Then
L∗ ◦ L = (S ◦O∗) ◦ (O ◦ S) = S ◦ (O∗ ◦O) ◦ S = S ◦ S = S2

(cf. (
t3.2-1
3.2.1)). Hence,

det(L∗ ◦ L) = det(S2) = (detS)2 = [[L]],

as required.
(ii). The proof of (ii) is similar. The proof is complete. □

Theorem (
t3.2-3
3.2.3) provides us with a nice way to compute the Jacobian [[L]] of a linear

map. We augment this with the Binet–Cauchy formula below.

Definition (Λ(m,n)). If n ≤ m, we define

Λ(m,n) := {λ : {1, . . . , n} → {1, . . . ,m} : λ strictly increasing}.

Note that this is the set of all functions λ that take {1, . . . , n} to {1, . . . ,m} such that
λ(k) > λ(l) if k > l, k, l ∈ {1, . . . , n}.

Definition (Pλ). If n ≤ m, for each λ ∈ Λ(m,n), we define Pλ : Rm → Rn by

Pλ(x1, . . . , xm) := (xλ(1), . . . , xλ(n)).

We may think of Pλ as a mapping that “deletes" points from (x1, . . . , xm).

Remark. For each λ ∈ Λ(m,n), there exists an n−dimensional subspace

Sλ := span{eλ(1), . . . , eλ(n)} ⊆ Rm

such that Pλ is the projection of Rm onto Sλ.
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t3.2-4 Theorem 3.2.4 (Binet–Cauchy Formula). Let n ≤ m and let L : Rn → Rm be a linear map.
Then

[[L]]2 =
∑

λ∈Λ(m,n)

(det(Pλ ◦ L))2.

Remark.
(i) To calculate [[L]], we compute the sums of the squares of the determinants of each n × n

submatrix of the m × n matrix representing L, with respect to the standard bases of Rn

and Rm;
(ii) This is a kind of higher dimensional version of the Pythagorean Theorem.

Proof.
(i). Identifying linear maps with their matrices with respect to the standard bases of Rn

and Rm, we write
L : +((lij))m×n, A := L∗ ◦ L = ((aij))n×n;

so that

aij =
m∑
k=1

lkilkj, i, j = 1, . . . , n.

(ii). Note that

[[L]]2 = detA =
∑
σ∈Σ

sgn(σ)
n∏

i=1

ai,σ(i),

where Σ denotes the set of all permutations of {1, . . . , n}. Thus

[[L]]2 =
∑
σ∈Σ

sgn(σ)
n∏

i=1

m∑
k=1

lkilkσ(i)

=
∑
σ∈Σ

sgn(σ)
∑
ϕ∈Φ

n∏
i=1

lϕ(i)ilϕ(i)σ(i),

where Φ denotes the set of all one–to–one mappings of {1, . . . , n} into {1, . . . ,m}.
(iii). Now for each ϕ ∈ Φ, we can uniquely write ϕ := λ◦θ, where θ ∈ Σ and λ ∈ Λ(m,n).

Consequently we have

[[L]]2 =
∑
σ∈Σ

sgn(σ)
∑

λ∈Λ(m,n)

∑
θ∈Σ

n∏
i=1

lλ◦θ(i),ilλ◦θ(i),σ(i)

=
∑
σ∈Σ

sgn(σ)
∑

λ∈Λ(m,n)

∑
θ∈Σ

n∏
i=1

lλ(i),θ−1(i)lλ(i),σ◦θ−1(i)

=
∑

λ∈Λ(m,n)

∑
θ∈Σ

∑
σ∈Σ

sgn(σ)
n∏

i=1

lλ(i),θ(i)lλ(i),σ◦θ(i).

Set ρ := σ ◦ θ. Then

[[(]]L)2 =
∑

λ∈Λ(m,n)

∑
ρ∈Σ

∑
θ∈Σ

sgn(θ) sgn(ρ)
n∏

i=1

lλ(i),θ(i)lλ(i),ρ(i)
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=
∑

λ∈Λ(m,n)

(∑
θ∈Σ

sgn(θ)
n∏

i=1

lλ(i),θ(i)

)2

=
∑

λ∈Λ(m,n)

(det(Pλ) ◦ L)2,

as required. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.2. Jacobians. Let f : Rn → Rm be a Lipschitz mapping. By Rademacher’s Theorem (cf.
(
t3.1-2
3.1.2)), f is differentiable Ln−a.e., and therefore Df(x) exists and may be regarded as a

linear mapping from Rn into Rm for Ln−a.e. x ∈ Rn. We recall the definition of a gradient
matrix.

Definition (Gradient Matrix). If f : Rn → Rm is Lipschitz, f = (f 1, . . . , fm), we define the
gradient matrix

Df(x) :=


∂

∂x1

f 1(x) · · · ∂

∂xn

f 1(x)

... . . . ...
∂

∂x1

fm(x) · · · ∂

∂xn

fm(x)

 .

Definition (Jacobian). If f : Rn → Rm is Lipschitz, the Jacobian of f is

Jf(x) := [[Df(x)]], Ln − a.e.

Note that in view of Theorem (
t3.2-3
3.2.3), we have

(Jf(x))2 = det(Df(x)∗ ◦Df(x)) = det(Df(x) ◦Df(x)∗).

3.3. The Area Formula. Throughout this section we assume that

n ≤ m.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1. Preliminaries.

l3.3-1 Lemma 3.3.1. Suppose that L : Rn → Rm is linear, n ≤ m. Then

Hn(L(A)) = [[L]]Ln(A)

for all A ⊆ Rn.
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Proof.
(i). Write L := O ◦ S, where O : Rn → Rm is an orthogonal map and S : Rn → Rn a

symmetric map (cf (
t3.2-2
3.2.2)). Recall that [[L]] = | detS|.

(ii). If [[L]] = 0, then dimS(Rn) ≤ n − 1, and so dimL(Rn) ≤ n − 1. Consequently
Hn(L(A)) = 0, and the inequality is trivial.

(iii). If [[L]] > 0, then
Hn(L(B(x, r)))

Ln(B(x, r))
=

Ln(O∗ ◦ L(B(x, r)))

Ln(B(x, r))

=
Ln(O∗ ◦O ◦ S(B(x, r)))

Ln(B(x, r))

=
Ln(S(B(x, r)))

Ln(B(x, r))

=
Ln(S(B(0, 1)))

α(n)

= | detS| = [[L]].

(iv). Define ν(A) := Hn(L(A)) for all A ⊆ Rn. Then ν is a Radon measure, ν << Ln, and

DLnν(x) = lim
r→0

ν(B(x, r))

Ln(B(x, r))
= [[L]]

by (iii). Thus for all Borel sets B ⊆ Rn,

Hn(L(B)) = [[L]]Ln(B).

Since ν and Ln are Radon measures, the same identity holds for all sets A ⊆ Rn. The proof
is complete. □

For the remainder of the section we assume that f : Rn → Rm is Lipschitz.

l3.3-2 Lemma 3.3.2. Let A ⊆ Rn be Ln−measurable. Then
(i) f(A) is Hn−measurable;

(ii) The mapping y 7→ H0(A ∩ f−1(y)) is Hn−measurable on Rm;
(iii)

∫
Rm H0(A ∩ f−1(y)) dHn ≤ (Lip(f))nLn(A).

Proof.
(i). We may assume without loss of generality that A is bounded.
(ii). There exist compact sets Ki ⊆ A such that

Ln(Ki) ≥ Ln(A)− 1

i
, i = 1, . . . , n.

Since Ln(A) < +∞ by the assumption and A is Ln−measurable, Ln(A\Ki) ≤ 1
i
. Since f is

continuous, f(Ki) is compact and thus Hn−measurable. Hence, f(∪+∞
i=1Ki) = ∪+∞

i=1 f(Ki)
is Hn−measurable. Moreover

Hn

(
f(A) \ f

(
+∞⋃
i=1

Ki

))
≤ Hn

(
f

(
A \

+∞⋃
i=1

Ki

))

≤ (Lip(f))nLn

(
A \

+∞⋃
i=1

Ki

)
= 0.
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Thus f(A) is Hn−measurable. This proves (i).
(iii). Put

Bk :=

{
Q : Q = (a1, b1]× · · · × (an, bn], ai :=

ci
k
, bi :=

ci + 1

k
, ci ∈ Z, i = 1, . . . , n

}
,

and notice that
Rn =

⋃
Q∈Bk

Q.

Define
gk :=

∑
Q∈Bk

1f(A∩Q),

and note that gk is Hn−measurable by assertion (i). Also gk(y) gives the number of cubes
Q ∈ Bk such that f−1(y) ∩ (A ∩Q) ̸= ∅. Thus

gk(y) → H0(A ∩ f−1(y)) as k → +∞
for each y ∈ Rm, and so y 7→ H0(A ∩ f−1(y)) is Hn−measurable.

(iv). Note that gk as defined in (iii) satisfies

0 ≤ g1 ≤ g2 ≤ · · · .
Thus by the Monotone Convergence Theorem,∫

Rm

H0(A ∩ f−1(y)) dHn(y) =

∫
Rm

lim
k→+∞

gk(y) dHn(y)

MCT
= lim

k→+∞

∫
Rm

gk(y) dHn(y)

= lim
k→+∞

∑
Q∈Bk

Hn(f(A ∩Q))

≤ lim sup
k→+∞

∑
Q∈Bk

(Lip(f))n(A ∩Q)

= (Lip(f))nLn(A),

as required. The proof is complete. □

l3.3-3 Lemma 3.3.3. Let t > 1 and define

B := {x ∈ Rn : Df(x) exists, Jf(x) > 0}.
Then there is a countable collection {Ek}+∞

k=1 of Borel subsets of Rn such that
(i) B = ∪+∞

k=1Ek;
(ii) f |Ek

is one–to–one, k = 1, 2, . . . ;
(iii) For each k = 1, 2, . . . , there exists a symmetric automorphism Tk : Rn → Rn such that

Lip((f |Ek
) ◦ T−1

k ) ≤ t, Lip(Tk ◦ (f |Ek
)−1) ≤ t,

t−n| detTk| ≤ Jf |Ek
≤ tn| detTk|.

Proof.
(i). Fix ϵ > 0 such that

1

t
+ ϵ < 1 < t− ϵ.
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Let C be a countable dense subset of B and let S be a countable dense subset of the
symmetric automorphisms of Rn.

(ii). Then for each c ∈ C and T ∈ S, and i = 1, 2, . . . , define E(c, T, i) to be the set of all
b ∈ B ∩B(c, 1

i
) satisfying (

1

t
+ ϵ

)
|Tv| ≤ |Df(b)v| ≤ (t− ϵ)|Tv| (3.3.1) {eq3.3-1}

for all v ∈ Rn and
|f(a)− f(b)−Df(b) · (a− b)| ≤ ϵ|T (a− b)| (3.3.2) {eq3.3-2}

for all a ∈ B(b, 2
i
). Note that E(c, T, i) is a Borel set since Df is Borel measurable. Note

that from (
eq3.3-1
3.3.1) and (

eq3.3-2
3.3.2) follows the estimate

1

t
|T (a− b)| ≤ |f(a)− f(b)| ≤ t|T (a− b)| (3.3.3) {eq3.3-3}

holding for all b ∈ E(c, T, i) and a ∈ B(b, 2
i
).

(iii). We next show that if b ∈ E(c, T, i), then(
1

t
+ ϵ

)n

| detT | ≤ Jf(b) ≤ (t− ϵ)n| detT |.

To see this, first note that Df is a linear map. Thus there exists an orthogonal map O :
Rn → Rm and a symmetric map S : Rn → Rn (cf. (

t3.2-2
3.2.2)) such that Df = O ◦ S. Then

Jf(b) = [[Df(b)]] = | detS|.
By (

eq3.3-1
3.3.1), (

1

t
+ ϵ

)
|Tv| ≤ |(O ◦ S)v| = |Sv| ≤ (t− ϵ)|Tv|

for all v ∈ Rn, and so (
1

t
+ ϵ

)
|v| ≤ |(S ◦ T−1)v| ≤ (t− ϵ)|v|

for all v ∈ Rn. Thus
(S ◦ T−1)(B(0, 1)) ⊂ B(0, t− ϵ),

so that
| det(S ◦ T−1)|α(n) ≤ Ln(B(0, t− ϵ)) = α(n)(t− ϵ)n,

and hence
| detS| ≤ (t− ϵ)n| detT |.

The proof of the reverse inequality follows from the fact that

|(S ◦ T−1)v| ≥
(
1

t
+ ϵ

)
,

and thus

B

(
0,

1

t
+ ϵ

)
⊂ (S ◦ T−1)(B(0, 1)).

(iv). Relabel the countable collection {E(c, T, i) : c ∈ C, T ∈ S, i ∈ N} as {Ek}+∞
k=1.

Choose any b ∈ B, write Df = O ◦ S, and choose T ∈ S such that

Lip(T ◦ S−1) ≤
(
1

t
+ ϵ

)−1

, Lip(S ◦ T−1) ≤ t− ϵ.

40



Area and Coarea Formulas 3.3 — The Area Formula

Now choose i ∈ N and c ∈ C such that |b− c| < 1
i

and

|f(a)− f(b)−Df(b) · (a− b)| ≤ ϵ

Lip(T−1)
|a− b| ≤ ϵ|T (a− b)|

for all a ∈ B(b, 2
i
). Then by (iii), b ∈ E(c, T, i). Since this holds for all b ∈ B, this proves

assertion (i).
(v). Next choose any set Ek = E(c, T, i). Let Tk := T. By (

eq3.3-3
3.3.3),

1

t
|Tk(a− b)| ≤ |f(a)− f(b)| ≤ t|Tk(a− b)|

for all b ∈ Ek, a ∈ B(b, 2
i
). Since Ek ⊂ B(c, 1

i
) ⊂ B(b, 2

i
), we have

1

t
|Tk(a− b)| ≤ |f(a)− f(b)| ≤ t|Tk(a− b)| (3.3.4) {eq3.3-4}

holding for all a, b ∈ Ek. Thus f |Ek
is one–to–one.

(vi). Finally notice that (
eq3.3-4
3.3.4) implies

Lip((f |Ek
) ◦ T−1

k ) ≤ t, Lip(Tk ◦ (f |Ek
)−1) ≤ t.

Thus (iii) provides the esitmate

t−n| detTk| ≤ Jf |Ek
≤ tn| detTk|,

which proves assertion (iii). The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.2. Proof of the Area Formula.

t3.3-1 Theorem 3.3.1 (The Area Formula). Let f : Rn → Rm be Lipschitz, n ≤ m. Then for each
Ln−measurable subset A ⊆ Rn,∫

A

Jf(x) dLn(x) =

∫
Rm

H0(A ∩ f−1(y)) dHn(y).

Proof.
(i). In view of Rademacher’s Theorem (cf. (

t3.1-2
3.1.2)), we may assume that Df(x) and

Jf(x) exist for all x ∈ A. We may also assume that Ln(A) < +∞, for otherwise both sides
of the equality are +∞.

(ii). Suppose now that A ⊂ {x ∈ Rn : Jf(x) > 0}. Fix t > 1 and choose Borel sets
{Ek}+∞

k=1 as in Lemma (
l3.3-3
3.3.3). That is,

(1) B = ∪+∞
k=1Ek,

(2) f |Ek
is one–to–one, k = 1, 2, . . . ,

(3) For each k = 1, 2, . . . , there exists a symmetric automorphism Tk : Rn → Rn such
that

Lip((f |Ek
) ◦ T−1

k ) ≤ t, Lip(Tk ◦ (f |Ek
)−1) ≤ t,

and
t−n| detTk| ≤ Jf |Ek

≤ tn| detTk|.
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FIGURE 3.3.1. The Area Formula.

Upon passing to the collection Fk := Ek \ (∪k−1
i=1Ek) if necessary, we may also suppose that

the set {Ek}+∞
k=1 are disjoint. Define Bk as in the proof of Lemma (

l3.3-2
3.3.2), that is,

Bk := {Q : Q = (a1, b1]× · · · × (an, bn], ai :=
ci
k
, bi :=

ci + 1

k
, ci ∈ Z, i = 1, . . . , n}.

Set
F i
j := Ej ∩Qi ∩ A, Qi ∈ Bk, j = 1, . . . , n.

Then the sets F i
j are disjoint because {Ek}+∞

k=1 is disjoint, and A = ∪+∞
i,j=1F

i
j .

(iii). We claim that

lim
k→+∞

+∞∑
i,j=1

Hn(f(F i
j )) =

∫
Rm

H0(A ∩ f−1(y)) dHn(y).

To see this, put

gk :=
+∞∑
i,j=1

1f(F i
j )
.

Note that gk(y) is equal to the number of sets {F i
j} such that F i

j ∩f−1(y) ̸= ∅. Then gk(y) →
H0(A ∩ f−1(y)) as k → +∞. Notice that this is also an increasing sequence. Thus by the
Monotone Convergence Theorem,∫

Rm

H0(A ∩ f−1(y))dHn(y) =

∫
Rm

lim
k→+∞

gk(y) dHn(y)

MCT
= lim

k→+∞

∫
Rm

gk(y) dHn(y)

= lim
k→+∞

+∞∑
i,j=1

Hn(f(F i
j )),
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where the last inequality follows from the fact that {F i
j} is disjoint.

(iv). Next note that

Hn(f(F i
j )) = Hn(f |Ej

(F i
j )) = Hn(f |Ej

◦ T−1
j ◦ Tj(F

i
j )) ≤ tnLn(Tj(F

i
j ))

and
Ln(Tj(F

i
j )) = Hn(Tj ◦ (f |Ej

)−1 ◦ f |Ej
(F i

j )) ≤ tnHn(f(F i
j ))

by Lemma (
l3.3-3
3.3.3) (cf. (

t2.4-1
2.4.1)). Thus

t−2nHn(f(F i
j )) ≤ t−nLn(Tj(F

i
j ))

= t−n| detTj|Ln(F i
j )

≤
∫
F i
j

Jf(x) dLn(x)

≤ tn| detTj|Ln(F i
j )

= tnLn(Tj(F
i
j ))

≤ t2nHn(f(F i
j ))

(cf. Lemmas (
l3.3-1
3.3.1) and (

l3.3-3
3.3.3)). Now summing on i and j, and recalling that A = ∪+∞

i,j=1F
i
j ,

we have

t−2n

+∞∑
i,j=1

Hn(f(F i
j )) ≤

∫
A

Jf(x) dLn(x) ≤ t2n
+∞∑
i,j=1

Hn(f(F i
j )).

Letting k → +∞, we have by (iii) that

t−2n

∫
Rm

H0(A ∩ f−1(y)) dHn(y) ≤
∫
A

Jf(x) dLn(x) ≤ t2n
∫
Rm

H0(A ∩ f−1(y)) dHn(y).

Finally, taking the limit as t → 1+ shows that∫
A

Jf(x) dLn(x) =

∫
Rm

H0(A ∩ f−1(y)) dHn(y),

which completes the proof for the case A ⊂ {x ∈ Rn : Jf(x) > 0}.
(v). Now consider the case A ⊂ {x ∈ Rn : Jf(x) = 0}. Fix ϵ > 0. We factor f := p ◦ g,

where
g : Rn → Rm × Rn, g(x) := (f(x), ϵx), x ∈ Rn,

and
p : Rm × Rn → Rm, p(y, z) := y, y ∈ Rm, z ∈ Rn.

(vi). We now claim that there exists a constant C > 0 such that

0 < Jg(x) ≤ Cϵ

for all x ∈ A. To prove this claim, write g = (f 1, . . . , fm, ϵx1, . . . , ϵxm). Then

Dg(x) =

[
Df(x)
ϵI

]
.

Since Jg(x)2 equals the sum of squares of the (n×n) subdeterminants of Dg(x) according
to the Binet–Cauchy Formula (cf. (

t3.2-4
3.2.4)), we see that

Jg(x)2 ≥ ϵ2n > 0.
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Moreover, since |Df | ≤ Lip(f) < +∞, we may use the Binet–Cauchy formula to also
compute

Jg(x)2 = Jf(x)2 + {sum of squares of terms each involving at least one ϵ} ≤ Cϵ2

for each x ∈ A.
(vii). Since p : Rm×Rn → Rm is a projection, Lip(p) ≤ 1, and we can compute using the

first case A ⊂ {x ∈ Rn : Jf(x) > 0}
Hn(f(A)) ≤ Hn(g(A))

≤
∫
Rn+m

H0(A ∩ g−1(y, z)) dHn(y, z)

=

∫
A

Jg(x) dLn(x)

≤ CϵLn(A).

Letting ϵ → 0, we conclude that Hn(f(A)) = 0, and thus∫
Rn

H0(A ∩ f−1(y)) dHn(y) = 0,

since suppH0(A ∩ f−1(y)) ⊂ f(A). But then since Jf(x) = 0 on A by the assumption, it
follows ∫

Rn

H0(A ∩ f−1(y)) dHn(y) = 0 =

∫
A

Jf(x) dLn(x),

as required.
(viii). In the general case, write A := A1 ∪ A2, with A1 ⊂ {x ∈ Rn : Jf(x) > 0},

A2 ⊂ {x ∈ Rn : Jf(x) = 0}, and apply the above arguments. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.3. Change of Variables Formula.

t3.3-2 Theorem 3.3.2. Let f : Rn → Rm be Lipschitz, n ≤ m. Then for each Ln−integrable function
g : Rn → R, ∫

Rn

g(x)Jf(x) dLn(x) =

∫
Rm

 ∑
x∈f−1(y)

g(x)

 dHn(y).

Proof.
(i). Consider first the case g ≥ 0. Recall that the sequence {sn}+∞

n=1 of simple functions
defined by

sj(x) :=

j2j∑
k=0

k

2j
1g−1[ k

2j
, k+1

2j
)(x) + j1g−1[j,+∞](x)

satisfies sj → g as j → +∞ and

0 ≤ s1 ≤ s2 ≤ · · · .
Thus the Monotone Convergence Theorem implies that∫

Rn

g(x)Jf(x) dLn(x) =

∫
Rn

lim
j→+∞

sj(x)Jf(x) dLn(x)
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MCT
= lim

j→+∞

∫
Rn

sj(x)Jf(x) dLn(x)

B.L.
= lim

j→+∞

j2j∑
k=1

k

2j

∫
g−1[ k

2j
, k+1

2j
)

Jf(x) dLn(x)

= lim
j→+∞

j2j∑
k=1

k

2j

∫
Rm

H0

(
g−1

[
k

2j
,
k + 1

2j

)
∩ f−1(y)

)
dHn(y)

B.L.
= lim

j→+∞

∫
Rm

+∞∑
k=1

k

2j

∑
x∈f−1(y)

1g−1[ k

2j
, k+1

2j
)(x) dH

n(y)

MCT
=

∫
Rm

∑
x∈f−1(y)

lim
j→+∞

j2j∑
k=1

k

2j
1g−1[ k

2j
, k+1

2j
)(x) dH

n(y)

=

∫
Rm

 ∑
x∈f−1(y)

g(x)

 dHn(y).

(ii). Now in the case that g is any Ln−integrable function, write g = g+ − g− and apply
the above case (i). The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.4. Applications.

Example 3.3.1 (Length of a Curve (n = 1,m ≥ 1)). Assume that f : R → Rm is Lipschitz and
one–to–one. Write

f = (f 1, . . . , fm), Df = (ḟ 1, . . . , ḟn),

so that
Jf = |Df | = |ḟ |.

For any −∞ < a < b < +∞, define the curve

C := f([a, b]) ⊂ Rm.

Then by the Area Formula∫ b

a

|ḟ(t)| dt =
∫
[a,b]

Jf(x) dL1(x)

=

∫
Rm

H0([a, b] ∩ f−1(y)) dL1(y)

= H1(C).

Example 3.3.2 (Surface Area of a Graph (n ≥ 1,m = n + 1)). Assume that g : Rn → R is
Lipschitz and define f : Rn → Rn+1 by

f(x) := (x, g(x)).
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FIGURE 3.3.2. Length of a Curve.

Note that f = Γ(g). Then

Df(x) =


1 · · · 0

... . . . ...
0 · · · 1

∂

∂x1

g(x) · · · ∂

∂xn

g(x)

 .

By the Binet–Cauchy formula,

(Jf)2 = sum of squares of n× n subdeterminants = 1 + |Dg|2,

so that Jf = (1 + |Dg|2)1/2. Now for each open set Ω ⊂ Rn, recall the graph of g over Ω :

Γ(g,Ω) = {(x, f(x)) : x ∈ Ω} ⊂ Rn+1.

Then by the Area Formula∫
Ω

(1 + |Dg(x)|2)1/2 dLn(x) =

∫
Ω

Jf(x) dLn(x)

=

∫
Rn+1

H0(Ω ∩ f−1(y)) dHn(y)

= Hn(Γ(g,Ω)).

Example 3.3.3 (Surface Area of a Parametric Hypersurface (n ≥ 1, m = n + 1)). Suppose
that f : Rn → Rn+1 is one–to–one and Lipschitz. Write

f = (f 1, . . . , fn+1)

and

Df(x) =


∂

∂x1

f 1(x) · · · ∂

∂xn

f 1(x)

... . . . ...
∂

∂x1

fn+1(x) · · · ∂

∂xn

fn+1(x)

 .
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FIGURE 3.3.3. Surface Area of a Graph.

Then by the Binet–Cauchy formula,

(Jf)2 = sum of squares of n× nsubdeterminants

=
n+1∑
k=1

[
∂(f 1, . . . , fk−1, fk+1, . . . , fn+1)

∂x1, . . . , xn

]2
,

where
∂(f 1, . . . , fk−1, fk+1, . . . , fn+1)

∂x1, . . . , xn

denotes the Jacobian of the function with gradient matrix

∂

∂x1

f 1(x) · · · ∂

∂xn

f 1(x)

...
...

∂

∂x1

fk−1(x) · · · ∂

∂xn

fk−1(x)

∂

∂x1

fk+1(x) · · · ∂

∂xn

fk+1(x)

...
...

∂

∂x1

fn+1(x) · · · ∂

∂xn

fn+1(x)


.

For each open set Ω ⊂ Rn, write

S := f(Ω) ⊂ Rn+1.
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Then by the Area Formula∫
Ω

(
n+1∑
k=1

[
∂(f 1, . . . , fk−1, fk+1, . . . , fn+1)

∂x1, . . . , xn

]2) 1
2

dLn(x) =

∫
Ω

Jf(x) dLn(x)

=

∫
Rn+1

H0(Ω ∩ f−1(y)) dHn(y)

= Hn(S).

FIGURE 3.3.4. Surface Area of a Parametric Hypersurface.

Example 3.3.4 (Submanifolds). Let M ⊂ Rm be a Lipschitz n−dimensional embedded sub-
manifold. Suppose that Ω ⊂ Rn and let f : Ω → M be coordinates for M. Let A ⊂ f(Ω). Let
A ⊂ f(Ω) ⊂ M, A Borel, and let B := f−1(A) ⊂ Ω. Define the metric g : M → R on M by

gij = g

(
∂f

∂xi

,
∂f

∂xj

)
:=

∂f

∂xi

· ∂f

∂xj

, i, j = 1, . . . , n,

and
g := det((gij)n×n).

Then
Df ◦ (Df)∗ = (gij)n×n,

and so
Jf = (det(Df ◦ (Df)∗))

1
2 = g

1
2 .

Thus by the Area Formula,∫
B

g
1
2 dLn(x) =

∫
B

Jf(x) dLn(x)

=

∫
Rm

H0(B ∩ f−1(y)) dHn(y)

48



Area and Coarea Formulas 3.4 — The Coarea Formula

= Hn(A).

Here Hn(A) represents the “volume" of A in M.

FIGURE 3.3.5. Volume of a Submanifold.

3.4. The Coarea Formula. Throughout this section we assume that

n ≥ m.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.1. Preliminaries.

l3.4-1 Lemma 3.4.1. Suppose that L : Rn → Rm is linear, n ≥ m, and A ⊆ Rn is Ln−measurable.
Then

(i) The mapping y 7→ Hn−m(A ∩ L−1(y)) is Lm−measurable;
(ii)

∫
Rm Hn−m(A ∩ L−1(y)) dLm(y) = [[L]]Ln(A).

Proof.
(i). First suppose that dimL(Rn) < m. In this case A ∩ L−1(y) = ∅ and consequently

Hn−m(A ∩ L−1(y)) = 0 for Lm−a.e. y ∈ Rn. Also if we write L = S ◦ O∗ as in the Polar
Decomposition Theorem (cf. (

t3.2-2
3.2.2)) we have L(Rn) = S(Rm). Thus dimS(Rm) < m, and

hence [[L]] = | detS| = 0.
(ii). Now suppose that L = P, where P is an orthogonal projection of Rn onto Rm.

In this case, for each y ∈ Rm, P−1(y) is an (n − m)–dimensional affine subspace of Rn, a
translation of P−1(0). By Fubini’s Theorem,

y 7→ Hn−m(A ∩ P−1(y)) is Lm − measurable
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and ∫
Rm

Hn−m(A ∩ P−1(y)) dLm(y) = Ln(A), (3.4.1) {eq:3.4-1}

as required.
(iii). Now consider the general case that L : Rn → Rm, dimL(Rn) = m. Again applying

the Polar Decomposition Theorem (cf. (
t3.2-2
3.2.2)) we can write

L := S ◦O∗,

where S : Rm → Rm is symmetric and O : Rm → Rn is orthogonal. Recall that, since S
evidently is not singular,

[[L]] = | detS| > 0.

(iv). We claim that O∗ = P ◦Q, where P is the orthogonal projection of Rn onto Rm and
Q : Rn → Rn is orthogonal. To see this, let Q be any orthogonal map of Rn onto Rn such
that

Q∗(x1, . . . , xm, 0, . . . , 0) = O(x1, . . . , xm)

for all x ∈ Rm. Note that

P ∗(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0) ∈ Rn

for all x ∈ Rm. Thus

(Q∗ ◦ P ∗)(x1, . . . , xm) = Q ∗ (x1, . . . , xm, 0, . . . , 0) = O(x1, . . . , xm),

so that O = Q ∗ ◦P ∗, and hence O∗ = P ◦Q.
(v). Now L−1(0) is an (n −m)–dimensional subspace of Rn and L−1(y) is a translation

of L−1(0) for each y ∈ Rm. Thus by Fubini’s Theorem,

y 7→ Hn−m(A ∩ L−1(y)) is Lm − measurable

and by (
eq:3.4-1
3.4.1) we may calculate

Ln(A) = Ln(Q(A))

=

∫
Rm

Hn−m(Q(A) ∩ P−1(y)) dLm(y)

=

∫
Rm

Hn−m(A ∩Q−1 ◦ P−1(y)) dLm(y).

Now set z := Sy to calculate using the change of variables formula (cf. (
t3.3-2
3.3.2))

| detS|Ln(A) =

∫
A

JS(x) dLn(x) = | detS|Ln(A) =

∫
Rm

Hn−m(A∩Q−1◦P−1◦S−1(z)) dHm(z).

but L = S ◦O∗ = S ◦ P ◦Q, and so, since [[L]] = | detS|,

[[L]]Ln(A) =

∫
Rm

Hn−m(A ∩ L−1(z)) dLm(z),

as required. The proof is complete. □

l3.4-2 Lemma 3.4.2. Assume that f : Rn → Rm is Lipschitz. Let A ⊆ Rn be Ln−measurable, n ≥ m.
Then

(i) f(A) is Lm−measurable;
(ii) A ∩ f−1(y) is Hn−m−measurable for Lm−a.e. y ∈ Rm;

(iii) The mapping y 7→ Hn−m(A ∩ f−1(y)) is Lm−measurable;
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(iv)
∫
Rm Hn−m(A ∩ f−1(y)) dLm(y) ≤ (α(n−m)α(m))

α(n)
(Lip f)mLn(A).

Proof.
(i). Assertion (i) is proved exactly in the same way as the corresponding statement of

Lemma (
l3.3-2
3.3.2) (cf. §3.3).

(ii). Next, for each j = 1, 2, . . . , there exist closed balls {Bj
i }+∞

i=1 such that

A ⊂
+∞⋃
i=1

Bj
i , diamBj

i ≤
1

j
,

and
+∞∑
i=1

Ln(Bj
i ) ≤ Ln(A) +

1

j
.

Define now gji : Rm → R by

gji (x) := α(n−m)

(
diamBj

i

2

)n−m

1f(Bj
i )
(x).

By assertion (i) of Lemma (
l3.3-2
3.3.2), gji is Lm−measurable. Note also that for all y ∈ Rm,

Hn−m
1/j (A ∩ f−1(y)) ≤

+∞∑
i=1

gji (y).

Indeed, recall that

Hn−m
1/j (A ∩ f−1(y)) = inf

{
+∞∑
i=1

α(n−m)

2n−m
(diamCi)

n−m : A ∩ f−1(y) ⊆
+∞⋃
i=1

Ci, diamCi ≤
1

j

}
.

On the other hand,

gji (y) =


α(n−m)

2n−m
(diamBi

j)
n−m, y ∈ f−1(Bi

j),

0, otherwise.

Now since diamBj
i ≤ 1

j
and A ⊂ ∪+∞

j=1B
j
i ,
∑+∞

j=1 g
j
i (y) is contained in the set of series the

infimum is taken over. Thus using Fatou’s Lemma and the Isodiametric Inequality (cf.
Theorem (

t2.2-1
2.2.1)), we calculate∫
Rm

Hn−m(A ∩ f−1(y)) dLn(y)

=

∫
Rm

lim
j→+∞

Hn−m
1/j (A ∩ f−1(y)) dLm(y)

≤
∫
Rm

lim inf
j→+∞

+∞∑
i=1

gji (y) dLm(y)

F.L.

≤ lim inf
j→+∞

+∞∑
i=1

∫
Rm

gji (y) dLm(y)
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= lim inf
j→+∞

+∞∑
i=1

α(n−m)

(
diamBj

i

2

)n−m

Lm(f(Bj
i ))

≤ lim inf
j→+∞

+∞∑
i=1

α(n−m)

(
diamBj

i

2

)n−m

α(m)

(
diam f(Bj

i )

2

)m

=
α(n−m)α(m)

α(n)
lim inf
j→+∞

+∞∑
i=1

(
diam f(Bj

i )

diamBj
i

)m

α(n)

(
diamBj

i

2

)n

≤ α(n−m)α(m)

α(n)
(Lip f)m lim inf

j→+∞

+∞∑
i=1

Ln(Bj
i )

≤ α(n−m)α(m)

α(n)
(Lip f)mLn(A).

Thus ∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y) ≤ α(n−m)α(m)

α(n)
(Lip f)mLn(A). (3.4.2) {eq:3.4-2}

This will prove assertion (iv) once we establish (ii) and (iii).
(iii). Case #1: A is compact.
Fix t ≥ 0, and for each positive integer i, let Ui be the set of all points y ∈ Rm for which

there exist finitely many open sets S1, . . . , Sl such that
A ∩ f−1(y) ⊂

⋃l
j=1 Sj,

diamSj ≤
1

i
, j = 1, 2, . . . , l,

l∑
j=1

α(n−m)

(
diamSj

2

)n−m

≤ t+
1

i
.

(iv). We claim that Ui is open. To see this, assume that y ∈ Ui. Then A∩f−1(y) ⊂ ∪l
j=1Sj,

as above. Then since f is continuous and A is compact,

A ∩ f−1(z) ⊂
l⋃

j=1

Sj

for all z sufficiently close to y.
(v). We next claim that

{y ∈ Rm : Hn−m(A ∩ f−1(y)) ≤ t} =
+∞⋂
i=1

Ui,

and hence the LHS is a Borel set.
Let Hn−m(A ∩ f−1(y)) ≤ t. Then for each δ > 0,

Hn−m
δ (A ∩ f−1(y)) ≤ t.
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Given i, choose δ ∈ (0, 1
i
). Then there exist sets {Sj}+∞

j=1 such that
A ∩ f−1(y) ⊂

⋃+∞
j=1 Sj,

diamSj ≤ δ <
1

i
,

+∞∑
j=1

α(n−m)

(
diamSj

2

)n−m

< t+
1

i
.

We may assume that the sets Sj, j = 1, 2, . . . , are open. Since A ∩ f−1(y) is compact, a
finite subcollection {S1, . . . , Sl} covers A ∩ f−1(y), and hence y ∈ Ui. We may apply the
same argument for each i = 1, 2, . . . , and thus

{y ∈ Rm : Hn−m(A ∩ f−1(y)) ≤ t} ⊂
+∞⋂
i=1

Ui.

Now let y ∈ ∩+∞
i=1Ui. Then for each i,

Hn−m(A ∩ f−1(y)) ≤ Hn−m
1/i

(
l⋃

j=1

Sj

)

≤ t+
1

i
,

and so
Hn−m(A ∩ f−1(y)) ≤ t.

Therefore

{y ∈ Rm : Hn−m(A ∩ f−1(y)) ≤ t} =
+∞⋂
i=1

Ui,

as required.
(vi). In view of (v), for compact sets A, the mapping

y 7→ Hn−m(A ∩ f−1(y))

is Borel measurable, and thus Hn−m−measurable.
(vii). Case #2: A is open.
If A is open, there exist compact sets K1 ⊂ K2 ⊂ · · · ⊂ A such that

A =
+∞⋃
i=1

Ki.

This is an increasing sequence, and so for each y ∈ Rm,

Hn−m(A ∩ f−1(y)) = lim
i→+∞

Hn−m(Ki ∩ f−1(y)).

Thus the mapping
y 7→ Hn−m(A ∩ f−1(y))

is Borel measurable, as needed.
(viii). Case #3: Ln(A) < +∞.
In this case there exist open sets V1 ⊃ V2 ⊃ · · · ⊃ A such that

lim
i→+∞

Ln(Vi \ A) = 0, Ln(V1) < +∞.
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Now

Hn−m(Vi ∩ f−1(y)) = Hn−m((A ∪ (Vi \ A)) ∩ f−1(y))

≤ Hn−m(A ∩ f−1(y)) +Hn−m((Vi \ A) ∩ f−1(y)),

and thus by (
eq:3.4-2
3.4.2),

lim sup
i→+∞

∫
Rm

|Hn−m(Vi ∩ f−1(y))−Hn−m(A ∩ f−1(y))| dLm(y)

≤ lim sup
i→+∞

∫
Rm

Hn−m((Vi \ A) ∩ f−1(y)) dLm(y)

≤ lim sup
i→+∞

α(n−m)α(m)

α(n)
(Lip f)mLn(Vi \ A)

= 0.

Consequently
Hn−m(Vi ∩ f−1(y)) → Hn−m(A ∩ f−1(y))

for Lm−a.e. y ∈ Rm, and so according to (vii), the mapping

y 7→ Hn−m(A ∩ f−1(y))

is Lm−measurable, being the pointwise a.e. limit of the mappings

y 7→ Hn−m(Vi ∩ f−1(y)).

In addition, we see that Hn−m((Vi\A)∩f−1(y)) → 0 for Lm−a.e. y ∈ Rm, and so A∩f−1(y)
is Hn−m measurable for Lm−a.e. y ∈ Rm.

(ix). Case #4: Ln(A) = +∞.
In this case we may write A as a union of an increasing sequence of bounded Ln−measurable

sets and apply (viii) to prove that

A ∩ f−1(y) is Hn−m − measurable for Lm − a.e.y ∈ Rm,

and
y 7→ Hn−m(A ∩ f−1(y))

is Lm−measurable.
(x). Parts (iii) through (ix) prove assertions (ii) and (iii) of the theorem. In view of

(
eq:3.4-2
3.4.2), this proves assertion (iv) as well. The proof is complete. □

Remark. A proof similar to that of assertion (iv) of Lemma (
l3.4-2
3.4.2) shows that∫

Rm

Hk(A ∩ f−1(y)) dHl(y) ≤ α(k)α(l)

α(k + l)
(Lip f)lHk+l(A)

for each A ⊆ Rm.

l3.4-3 Lemma 3.4.3. Let t > 1, assume that g : Rn → Rn is Lipschitz, and set

B := {x ∈ Rn : Dg(x) exists, Jg(x) > 0}.
Then there exists a countable collection {Dk}+∞

k=1 of Borel subsets of Rn such that
(i) Ln(B \ ∪+∞

k=1Dk) = 0;
(ii) g|Dk

is one–to–one for k = 1, 2, . . . ;
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(iii) For each k = 1, 2, . . . , there exists a symmetric automorphism Sk : Rn → Rn such that

Lip(S−1
k ◦ (g|Dk

)) ≤ t, Lip((g|Dk
)−1 ◦ Sk) ≤ t,

t−n| detSk| ≤ Jg|Dk
≤ tn| detSk|.

Proof.
(i). We may apply Lemma (

l3.3-3
3.3.3) (cf. §3.3) to find Borel sets {Ek}+∞

k=1 and symmetric
automorphisms Tk : Rn → Rn such that

(i) B = ∪+∞
k=1Ek,

(ii) g|Ek
is one–to–one,

(iii) {
Lip((g|Ek

) ◦ T−1
k ) ≤ t, Lip(Tk ◦ (g|Ek

)−1) ≤ t,

t−n| detTk| ≤ Jg|Ek
≤ tn| detTk|, k = 1, 2, . . . .

By (iii), (g|Ek
)−1 is Lipschitz and thus by Theorem (

t3.1-1
3.1.1) (cf. §3.1.1, extension of Lipschitz

functions) there exists a Lipschitz mapping gk : Rn → Rn such that gk = (h|Ek
)−1 on g(Ek).

(ii). We claim that Jgk > 0 Ln−a.e. on g(Ek). To see this, first note that since gk◦g(x) = x
for x ∈ Ek, Corollary (

c3.1-1
3.1.1) (cf. §3.1.2) implies

Dgk(g(x)) ◦Dg(x) = I, Ln − a.e. on Ek,

and so
Jgk(g(x))Jg(x) = 1 Ln − a.e. on Ek.

In view of (iii), this implies Jgk(g(x)) > 0 for Ln−a.e. x ∈ Ek, and (ii) follows because g is
Lipschitz.

(iii). Now applying Lemma (
l3.3-3
3.3.3) (cf. §3.3) to gk, there exist Borel sets {F k

j }+∞
j=1 and

symmetric automorphisms {Rk
j}+∞

j=1 such that

(i) Ln
(
g(Ek)− ∪+∞

j=1F
k
j

)
= 0,

(ii) gk|Fk
j

is one–to–one,
(iii) Lip

(
(gk|Fk

j
) ◦ (Rk

j )
−1
)
≤ t, Lip

(
Rk

j ◦ (gk|Fk
j
)−1
)
≤ t,

t−n
∣∣detRk

j

∣∣ ≤ Jgk|Fk
j
≤ tn

∣∣detRk
j

∣∣ , k = 1, 2, . . . .

Put
Dk

j := Ek ∩ g−1(F k
j ), Sk

j := (Rk
j )

−1, k = 1, 2, . . . .

(iv). We next claim that Ln
(
B \ ∪+∞

k,j=1D
k
j

)
= 0. Note that

gk

(
g(Ek) \

+∞⋃
j=1

F k
j

)
= g−1

(
g(Ek) \

+∞⋃
j=1

F k
j

)

= Ek \
+∞⋃
j=1

Dk
j .

Thus, by (i) and the fact that the image of a set of Lebesgue measure zero has Lebesgue
measure zero,

Ln

(
Ek \

+∞⋃
j=1

Dk
j

)
= 0, k = 1, 2, . . . .
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By (i) in part (i), this proves (iv).
(v). Clearly (ii) in part (i) implies that g|Dk

j
is one–to–one, for Dk

j ⊆ Ek, k = 1, 2, . . . .

(vi). We lastly claim that for k, j = 1, 2, . . . , we have

Lip((Sk
j )

−1 ◦ (g|Dk
j
)) ≤ t, Lip((g|Dk

j
)−1 ◦ Sk

j ) ≤ t,

t−n
∣∣detSk

j

∣∣ ≤ Jg|Dk
j
≤ tn

∣∣detSk
j

∣∣ .
Observe that

Lip((Sk
j )

−1 ◦ (g|Dk
j
)) = Lip(Rk

j ◦ (g|Dk
j
))

≤ Lip(Rk
j ◦ (gk|Fk

j
)−1)

≤ t,

because Dk
j ⊆ g−1(F k

j ). Similarly

Lip((g|Dk
j
)−1 ◦ Sk

j ) = Lip((g|Dk
j
)−1 ◦ (Rk

j )
−1)

≤ Lip((gk|Fk
j
) ◦ (Rk

j )
−1)

≤ t.

Moreover, as noted above,

Jgk(g(x))Jg(x) = 1 Ln − a.e. onDk
j .

Thus (iii) in part (iii) of the proof implies

t−n| detSk
j | = t−n| detRk

j |−1 ≤ Jg|Dk
j
≤ tn| detRk

j |−1 = tn| detSk
j |,

as required. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.2. Proof of the Coarea Formula.

t3.4-1 Theorem 3.4.1 (Coarea Formula). Let f : Rn → Rm be Lipschitz, n ≥ m. Then for each
Ln−measurable set A ⊆ Rn,∫

A

Jf(x) dLn(x) =

∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y).

Remark.
(i) The Coarea Formula allows us to integrate Jf(x) over A by integrating the (n−m)−dimensional

Hausdorff measure of the fibers of f.
(ii) Observe that the Coarea Formula is a kind of “curvilinear" generalization of Fubini’s The-

orem.
(iii) Applying the Coarea Formula to A := {x ∈ Rn : Jf(x) = 0}, we find

Hn−m({x ∈ Rn : Jf(x) = 0} ∩ f−1(y)) = 0 (3.4.3) {eq:3.4-3}

for Lm−a.e. y ∈ Rm. This is a weak variant of the Morse–Sard Theorem, which asserts

{x ∈ Rn : Jf(x) = 0} ∩ f−1(y) = ∅

56



Area and Coarea Formulas 3.4 — The Coarea Formula

FIGURE 3.4.1. The Coarea Formula.

for Lm−a.e. y ∈ Rm, provided that f ∈ Ck(Rn;Rm), for

k = 1 + n−m.

On the other hand, (
eq:3.4-3
3.4.3) required only that f is Lipschitz.

Proof.
(i). By Rademacher’s Theorem (cf. Theorem (

t3.1-2
3.1.2)) and Lemma (

l3.4-2
3.4.2), we may assume

that Df(x), and thus Jf(x), exist for all x ∈ A and that Ln(A) < +∞.
(ii). Case #1: A ⊂ {x ∈ Rn : Jf(x) > 0}.
For each λ ∈ Λ(n, n−m), write

f := q ◦ hλ,

where
hλ : Rn → Rm × Rn−m, hλ(x) := (f(x), Pλ(x)), x ∈ Rn,

and
q : Rm × Rn−m → Rm, q(y, z) := y, y ∈ Rm, z ∈ Rn−m,

and Pλ is the projection

Pλ(x1, . . . , xn) := (xλ(1), . . . , xλ(n−m))

(cf. §3.2.1). Set

Aλ := {x ∈ A : detDhλ ̸= 0}
= {x ∈ A : Pλ|[Df(x)]−1(0) is injective}.

Now
A =

⋃
λ∈Λ(n,n−m)

Aλ,

and therefore we may as well for simplicity assume that A = Aλ for some λ ∈ Λ(n, n−m).
(iii). Fix t > 1. Applying Lemma (

l3.4-3
3.4.3) to h := hλ, we obtain disjoint Borel sets {Dk}+∞

k=1

and symmetric automorphisms {Sk}+∞
k=1 such that

(i) Ln(A \ ∪+∞
k=1Dk) = 0;

57



Area and Coarea Formulas 3.4 — The Coarea Formula

(ii) h|Dk
is one–to–one for k = 1, 2, . . . ;

(iii) For each k = 1, 2, . . . ,

Lip(S−1
k ◦ (h|Dk

)) ≤ t, Lip((h|Dk
)−1 ◦ Sk) ≤ t,

t−n| detSk| ≤ JhDk
≤ tn| detSk|.

Set Gk := A ∩Dk.
(iv). We claim that

t−n[[q ◦ Sk]] ≤ Jf |Gk
≤ tn[[q ◦ Sk]].

To see this, first note that since f = q ◦ h, we have Ln−a.e. that

Df = Dq(h) ·Dh = q ◦Dh

= q ◦ Sk ◦ S−1
k ◦Dh

= q ◦ Sk ◦D(S−1
k ◦ h)

= q ◦ Sk ◦ C,

where C := D(S−1
k ◦ h).

Thus by Lemma (
l3.4-3
3.4.3),

t−1 ≤ Lip(S−1
k ◦ h) = Lip(C) ≤ t on Gk. (3.4.4) {eq:3.4-4}

Now write

Df := S ◦O∗,

q ◦ Sk := T ◦ P ∗

for symmetric maps S, T : Rm → Rn and orthogonal maps O,P : Rm → Rn (cf. Theorem
(
t3.2-2
3.2.2)).

We have then
S ◦O∗ = T ◦ P ∗ ◦ C. (3.4.5) {eq:3.4-5}

Consequently
S = T ◦ P ∗ ◦ C ◦O.

Since Gk ⊂ A ⊂ {x ∈ Rn : Jf(x) > 0}, detS ̸= 0 and thus detT ̸= 0.
Thus if v ∈ Rm, we have by (

eq:3.4-4
3.4.4)

|T−1 ◦ Sv| = |T−1 ◦ T ◦ P ∗ ◦ C ◦Ov|
= |P ∗ ◦ C ◦Ov|
≤ |C ◦Ov|
≤ t|Ov|
= t|v|.

Therefore
(T−1 ◦ S)(B(0, 1)) ⊂ B(0, t),

and so
Jf = | detS| ≤ tn| detT | = tn[[q ◦ Sk]].

Similarly, if v ∈ Rm, we have by (
eq:3.4-5
3.4.5) and (

eq:3.4-4
3.4.4)

|S−1 ◦ Tv| = |O∗ ◦ C−1 ◦ P ◦ T−1 ◦ Tv|
= |O∗ ◦ C−1 ◦ Pv|
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≤ |C−1 ◦ Pv|
≤ t|Pv|
= t|v|.

Thus
(S−1 ◦ T )(B(0, 1)) ⊂ B(0, t),

so evidently
[[q ◦ Sk]] = | detT | ≤ tn| detS| = tnJf.

This establishes the claim.
(v). We now calculate by Lemmas (

l3.4-1
3.4.1) and (

l3.4-3
3.4.3) and Theorem (

t2.4-1
2.4.1)

t−3n+m

∫
Rm

Hn−m(Gk ∩ f−1(y)) dLm(y)

= t−3n+m

∫
Rm

Hn−m(h−1(h(Gk) ∩ q−1(y))) dLm(y)

≤ t−2n

∫
Rm

Hn−m(S−1
k (h(Gk) ∩ q−1(y))) dLm(y)

= t−2n

∫
Rm

Hn−m(S−1
k ◦ h(Gk) ∩ (q ◦ Sk)

−1(y)) dLm(y)

= t−2n[[q ◦ Sk]]Ln(S−1
k ◦ h(Gk))

≤ t−n[[q ◦ Sk]]Ln(Gk)

=

∫
Gk

t−n[[q ◦ Sk]] dLn(x)

≤
∫
Gk

Jf(x) dLn(x)

≤
∫
Gk

tn[[q ◦ Sk]] dLn(x)

= tn[[q ◦ Sk]]Ln(Gk)

≤ t2n[[q ◦ Sk]]Ln(S−1
k ◦ h(Gk))

= t2n
∫
Rm

Hn−m(S−1
k ◦ h(Gk) ∩ (q ◦ Sk)

−1) dLm(y)

≤ t3n−m

∫
Rm

Hn−m(h−1(h(Gk) ∩ q−1(y))) dLm(y)

= t3n−m

∫
Rm

Hn−m(Gk ∩ f−1(y)) dLm(y).

Since

Ln

(
A \

+∞⋃
k=1

Gk

)
= 0,

we may sum on k to obtain

t−3n+m

∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y) ≤
∫
A

Jf(x) dLn(x)
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≤ t3n−m

∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y).

Letting t → 1+, we conclude that∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y) =

∫
A

Jf(x) dLn(x),

which completes the proof for this case.
(vi). Case #2: A ⊂ {x ∈ Rn : Jf(x) = 0}.
In this case fix ϵ > 0 and define

g : Rn × Rm → Rm, g(x, y) := f(x) + ϵy,

p : Rn × Rm → Rm, p(x, y) := y, x ∈ Rn, y ∈ Rm.

We claim that there exists a constant C > 0 such that

0 < Jg(x) ≤ Cϵ

for all x ∈ A. Notice that
Dg(x) = (Df(x), ϵI).

By the Binet–Cauchy Formula (cf. (
t3.2-4
3.2.4)), Jg(x)2 equals the sum of squares of all (m×m)

subdeterminants of Dg(x), so
Jg(x)2 ≥ ϵ2m > 0.

Moreover, since |Df | ≤ Lip(f) < +∞, the Binet–Cauchy formula also gives

Jg(x) = Jf(x)2 + {sum of squares of terms involving at least one ϵ} ≤ Cϵ2

for each x ∈ A. Thus
ϵm ≤ Jg = [[Dg]] ≤ Cϵ.

(vii). Observe that∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y)

=

∫
Rm

Hn−m(A ∩ f−1(y − ϵw)) dLm(y) for all w ∈ Rm

=
1

α(m)

∫
B(0,1)

∫
Rm

Hn−1(A ∩ f−1(y − ϵw)) dLm(y) dLm(w).

(viii). Fix y, w ∈ Rm, and set B := A×B(0, 1) ⊂ Rn+m. We claim that

B ∩ g−1(y) ∩ p−1(w) =

{
∅, w /∈ B(0, 1),

(A ∩ f−1(y − ϵw))× {w}, w ∈ B(0, 1).

To see this, note that we have (x, z) ∈ B ∩ g−1(y) ∩ p−1(w) if and only if

x ∈ A, z ∈ B(0, 1), f(x) + ϵz = y, z = w.

Moreover, this holds if and only if

x ∈ A, z = w ∈ B(0, 1), f(x) = y − ϵw.

Finally, the above holds if and only if

w ∈ B(0, 1), (x, z) ∈ (A ∩ f−1(y − ϵw))× {w}.
This proves (viii).

60



Area and Coarea Formulas 3.4 — The Coarea Formula

(ix). We use (viii) to continue the calculation from (vii), and obtain by Lemma (
l3.4-2
3.4.2)

and Case #1 ∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y)

=
1

α(m)

∫
Rm

∫
Rm

Hn−m(B ∩ g−1(y) ∩ p−1(w)) dLm(w) dLm(y)

≤ 1

α(m)

α(m)α(n−m)

α(n)
(Lip p)m

∫
Rm

Hn(B ∩ g−1(y)) dLm(y)

=
α(n−m)

α(n)

∫
Rm

Hn(B ∩ g−1(y)) dLm(y)

=
α(n−m)

α(n)

∫
B

Jg(x, z) dLn(x) dLm(z)

≤ α(n−m)α(m)

α(n)
Ln(A) sup

B
Jg(x, z)

≤ CLn(A)ϵ.

Letting ϵ → 0, we obtain∫
Rm

Hn−m(A ∩ f−1(y)) dLm(y) = 0 =

∫
A

Jf(x) dLn(x),

as required.
(x). In the general case we write A := A1 ∪ A2, where A1 ⊂ {x ∈ Rn : Jf(x) > 0} and

A2 ⊂ {x ∈ Rn : Jf(x) = 0}, and apply Cases #1 and #2 above. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.3. Change of Variables Formula.

t3.4-2 Theorem 3.4.2. Let f : Rn → Rm be Lipschitz, n ≥ m. Then for each Ln−integrable function
g : Rn → R,

g|f−1(y) is Hn−m − integrable for Lm − a.e. y ∈ Rm,

and ∫
Rn

g(x)Jf(x) dLn(x) =

∫
Rm

[∫
f−1(y)

g dHn−m

]
dLm(y).

Proof.
(i). Case #1: g ≥ 0.
Define the sequence {sj}+∞

j=1 by

sj(x) :=

j2j∑
k=0

k

2j
1g−1[ k

2j
, k+1

2j
)(x) + j1g−1[j,+∞](x).

Recall that sj → g as j → +∞ and

0 ≤ s1 ≤ s2 ≤ · · · .
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Hence, by the Monotone Convergence Theorem,∫
Rn

g(x)Jf(x) dLn(x) =

∫
Rn

lim
j→+∞

sj(x)Jf(x) dLn(x)

MCT
= lim

j→+∞

∫
Rn

sn(x)Jf(x) dLn(x)

= lim
j→+∞

∫
Rn

 j2j∑
k=0

k

2j
1g−1[ k

2j
, k+1

2j
)(x) + j1g−1[j,+∞](x)

 Jf(x) dLn(x)

B.L.
= lim

j→+∞

j2j∑
k=0

k

2j

∫
g−1[ k

2j
, k+1

2j
)

Jf(x) dLn(x)

= lim
j→+∞

j2j∑
k=0

k

2j

∫
Rm

Hn−m

(
g−1

[
k

2j
,
k + 1

2j

)
∩ f−1(y)

)
dLm(y)

B.L.
= lim

j→+∞

∫
Rm

j2j∑
k=0

k

2j
Hn−m

(
g−1

[
k

2j
,
k + 1

2j

)
∩ f−1(y)

)
dLm(y)

MCT
=

∫
Rm

lim
j→+∞

j2j∑
k=0

k

2j
Hn−m

(
g−1

[
k

2j
,
k + 1

2j

)
∩ f−1(y)

)
dLm(y)

=

∫
Rm

∫
f−1(y)

lim
j→+∞

j2j∑
k=0

k

2j
1g−1[ k

2j
, k+1

2j
)(x) dH

n−m(x)

 dLm(y)

=

∫
Rm

[∫
f−1(y)

g(x) dHn−m(x)

]
dLm(y),

as required.
(ii). Case #2: g is any Ln−integrable function. In this case, write g := g+ − g− and apply

Case #1. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.4. Applications.

p3.4-1 Proposition 3.4.1 (Polar Coordinates). Let g : Rn → R be Ln−integrable. Then∫
Rn

g(x) dLn(x) =

∫ +∞

0

[∫
∂B(0,r)

g(x) dHn−1(x)

]
dr.

In particular, we see that

d

dr

[∫
B(0,r)

g(x) dLn(x)

]
=

∫
∂B(0,r)

g(x) dHn−1(x)

for L1−a.e. r > 0.
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Proof. Define f : Rn → R by f(x) := |x|. Then for all x ̸= 0, we have

Df(x) =
x

|x|
, Jf(x) = 1.

Thus the Change of Variables Formula (cf. (
t3.4-2
3.4.2)) gives∫

Rn

g(x) dLn(x) =

∫
R

[∫
f−1(r)

g(x) dHn−1(x)

]
dL1(r)

=

∫ +∞

0

[∫
∂B(0,r)

g(x) dHn−1(x)

]
dL1(r),

as required.
For the second assertion, observe first that∫

B(0,r)

g(x) dLn(x) =

∫ r

0

[∫
∂B(0,s)

g(x) dHn−1(x)

]
dL1(s).

Hence, by the Fundamental Theorem of Calculus for Lebesgue Integrals,

d

dr

(∫
B(0,r)

g(x) dLn(x)

)
=

∫
∂B(0,r)

g(x) dHn−1(x).

The proof is complete. □

p3.4-2 Proposition 3.4.2 (Level Sets). Assume that f : Rn → R is Lipschitz. Then∫
Rn

|Df(x)| dLn(x) =

∫ +∞

−∞
Hn−1({f = t}) dL1(t).

Proof. Noting that Jf(x) = |Df(x)|, we have directly by the Coarea Formula∫
Rn

|Df(x)| dLn(x) =

∫
R
Hn−1(f−1(t)) dL1(t)

=

∫ +∞

−∞
Hn−1({f = t}) dL1(t).

The proof is complete. □

Remark. Compare Proposition (
p3.4-2
3.4.2) with the Coarea Formula for BV functions which will be

proved in §5.5.

p3.4-3 Proposition 3.4.3 (Level Sets). Let f : Rn → R be Lipschitz, with

essinfx∈Rn |Df(x)| > 0.

Suppose also that g : Rn → R is Ln−integrable. Then∫
{f>t}

g(x) dLn(x) =

∫ +∞

t

[∫
{f=s}

g(x)

|Df(x)|
dHn−1(x)

]
dL1(s).

In particular, we see that

d

dt

[∫
{f>t}

g(x) dLn(x)

]
= −

∫
{f=t}

g(x)

|Df(x)|
dHn−1(x).
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Proof. Again recall that Jf(x) = |Df(x)|. Write Et := {x ∈ Rn : f(x) > t}. By the Change
of Variables Formula (cf. (

t3.4-2
3.4.2)), we have∫

{f>t}
g(x) dLn(x) =

∫
Rn

g(x)

|Df(x)|
1Et(x)Jf(x) dLn(x)

=

∫
R

[∫
f−1(s)

g(x)

|Df(x)|
1Et(x) dHn−1(x)

]
dL1(s)

=

∫ +∞

−∞

[∫
{f=s}

g(x)

|Df(x)|
1Et(x) dHn−1(x)

]
dL1(s)

=

∫ +∞

t

[∫
{f=s}

g(x)

|Df(x)|
dHn−1(x)

]
dL1(s),

as required.
Applying the Fundamental Theorem for Lebesgue Integrals gives

d

dt

[∫
{f>t}

g(x) dLn(x)

]
= −

∫
{f>t}

g(x)

|Df(x)|
dHn−1(x).

The proof is complete. □
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4. BV FUNCTIONS AND SETS OF FINITE PERIMETER

Throughout this chapter, Ω will denote an open subset of Rn.

4.1. Definitions; Structure Theorem.

Definition (Bounded Variation). A function f ∈ L1(Ω) is said to have bounded variation in
Ω if

sup

{∫
Ω

f div ϕ dLn(x) : ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1

}
< +∞.

We will write
BV (Ω)

to denote the space of functions of bounded variation on Ω.

Definition (∥ · ∥BV (Ω)). If f ∈ BV (Ω), we define the norm

∥f∥BV (Ω) := ∥f∥L1(Ω) + sup

{∫
Ω

f div ϕ dLn : ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1

}
.

Definition (Finite Perimeter). An Ln−measurable subset E ⊂ Rn is said to have finite perime-
ter in Ω if

1E ∈ BV (Ω).

We also introduce the local versions of the above concepts.

Definition (Locally Bounded Variation). A function f ∈ L1
loc(Ω) is said to have locally

bounded variation in Ω if for each open set U ⊂⊂ Ω,

sup

{∫
U

f div ϕ dLn(x) : ϕ ∈ C1
c (U ;Rn), |ϕ| ≤ 1

}
< +∞.

We will write
BVloc(Ω)

to denote the space of functions of locally bounded variation on Ω.

Definition (Locally Finite Perimeter). An Ln− measurable subset E ⊂ Rn is said to have
locally finite perimeter in Ω if

1E ∈ BVloc(Ω).

We now present the BV Structure Theorem, which asserts that the weak first partial
derivatives of a function f ∈ BV (Ω) are Radon measures.

t5.1-1 Theorem 4.1.1 (Structure Theorem for BVloc Functions). Let f ∈ BVloc(Ω). Then there exists
a Radon measure µ on Ω and a µ−measurable function σ : Ω → Rn such that

(i) |σ(x)| = 1 for µ−a.e. x ∈ Ω;
(ii)

∫
Ω
f div ϕ dLn(x) = −

∫
Ω
ϕ · σ dµ

for all ϕ ∈ C1
c (Ω;Rn).

Proof. Define the linear functional

L : C1
c (Ω;Rn) → R
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by

L(ϕ) := −
∫
Ω

f div ϕ dLn(x)

for ϕ ∈ C1
c (Ω;Rn). Since f ∈ BVloc(Ω), we have for each open set U ⊂⊂ Ω

sup
{
L(ϕ) : ϕ ∈ C1

c (U ;Rn), |ϕ| ≤ 1
}
:= C(U) < +∞.

Thus
|L(ϕ)| ≤ C(U)∥ϕ∥L∞(U) (4.1.1) {eq:5.1-1}

for ϕ ∈ C1
c (U ;Rn).

Fix any compact set K ⊂ Ω, and then choose an open set U such that K ⊂ U ⊂⊂ Ω. For
each ϕ ∈ Cc(Ω;Rn) with suppϕ ⊂ K, choose ϕk ∈ C1

c (U ;Rn), k = 1, 2, . . . , so that ϕk → ϕ
uniformly on U. Define

L(ϕ) := lim
k→+∞

L(ϕk).

By (
eq:5.1-1
4.1.1), L is bounded, and thus the above limit exists and is independent of the choice

of sequence {ϕk}+∞
k=1 converging to ϕ. Since C1

c (U ;Rn) is dense in

{ϕ ∈ Cc(Ω;Rn) : suppϕ ⊂ K},
we have by the BLT Theorem that L uniquely extends to a bounded linear functional

L : Cc(Ω;Rn) → R
and

sup
{
L(ϕ) : ϕ ∈ Cc(Ω;Rn) : |ϕ| ≤ 1, suppϕ ⊂ K

}
< +∞

for each compact set K ⊂ Ω. By the Riesz Representation Theorem, there exists a Radon
measure µ on Ω and a µ−measurable function σ : Ω → Rn such that

(i) |σ(x)| = 1 for µ−a.e. x ∈ Ω;
(ii) L(ϕ) =

∫
Ω
ϕ · σ dµ

for all ϕ ∈ Cc(Ω;Rn). Since L is an extension of L from C1
c (Ω;Rn) to Cc(Ω;Rn), it follows

that L(ϕ) = L(ϕ) whenever ϕ ∈ C1
c (Ω;Rn). Hence,∫

Ω

f div ϕ dLn(x) = −L(ϕ) = −
∫
Ω

ϕ · σ dµ

for all ϕ ∈ C1
c (Ω;Rn). The proof is complete. □

Remark (Notation).
(i) If f ∈ BVloc(Ω), we will write

∥Df∥
for the measure µ, and

[Df ] := ∥Df∥ σ,

where [Df ] = ∥Df∥ σ denotes that [Df ] is the measure with density σ with respect to
∥Df∥, that is,

[Df ](K) =

∫
K

σd ∥Df∥

for all compact sets K ⊂ Ω. Thus assertion (ii) in the Structure Theorem (
t5.1-1
4.1.1) reads∫

Ω

f div ϕ dLn(x) = −
∫
Ω

ϕ · σ d∥Df∥ = −
∫
Ω

ϕ · d[Df ]
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for all ϕ ∈ C1
c (Ω;Rn).

(ii) Similarly if f = 1E, and E is a set of locally finite perimeter in Ω, we write

∥∂E∥
for the measure µ, and

νE := −σ.

Consequently the Structure Theorem gives∫
E

div ϕ dLn(x) =

∫
Ω

ϕ · νE d∥∂E∥

for all ϕ ∈ C1
c (Ω;Rn).

Remark (More Notation). If f ∈ BVloc(Ω), we write

µi := ∥Df∥ σi, i = 1, . . . , n

for σ = (σi, . . . , σn). By Lebesgue’s Decomposition Theorem, we may further set

µi = µi
ac + µi

s,

where
µi
ac << Ln, µi

s ⊥ Ln.

Then by the Radon–Nikodym Theorem,

µi
ac = Ln f i

for some function f i ∈ L1
loc(Ω), i = 1, . . . , n. Write

∂f

∂xi

:= f i, i = 1, . . . , n,

Df :=

(
∂f

∂x1

, . . . ,
∂f

∂xn

)
,

[Df ]ac := (µ1
ac, . . . , µ

n
ac) = Ln Df,

[Df ]s := (µ1
s, . . . , µ

n
s ).

Thus
[Df ] = [Df ]ac + [Df ]s = Ln Df + [Df ]s,

so that Df ∈ L1
loc(Ω;Rn) is the density of the absolutely continuous part of [Df ].

Remark.
(i) ∥Df∥ is the variation measure of f, ∥∂E∥ is the perimeter measure of E, and ∥∂E∥(Ω)

is the perimeter of E in Ω.
(ii) If f ∈ BVloc(Ω) ∩ L1(Ω), then f ∈ BV (Ω) if and only if ∥Df∥(Ω) < +∞. To see this,

first let f ∈ BV (Ω). Then by the Structure Theorem

∥Df∥(Ω) =
∫
Ω

σ d∥Df∥

= sup

{∫
Ω

ϕ · σ d∥Df∥ : ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1

}
= sup

{
−
∫
Ω

f div ϕ dLn : ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1

}
< +∞
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Now if ∥Df∥(Ω) < +∞, we have again by the Structure Theorem

−
∫
Ω

f div ϕ dLn =

∫
Ω

ϕ · σ d∥Df∥

≤
∫
Ω

d∥Df∥ < +∞,

for all ϕ ∈ C1
c (Ω;Rn) with |ϕ| ≤ 1, so that f ∈ BV (Ω).

In this case we define the BV norm of f by

∥f∥BV (Ω) := ∥f∥L1(Ω) + ∥Df∥(Ω).
(iii). From the proof of the Riesz Representation Theorem, we see that

∥Df∥(U) = sup

{∫
U

f div ϕ dLn : ϕ ∈ C1
c (U ;Rn), |ϕ| ≤ 1

}
,

∥∂E∥(U) = sup

{∫
E

div ϕ dLn : ϕ ∈ C1
c (U ;Rn), |ϕ| ≤ 1

}
for each U ⊂⊂ Ω. Here we have used the fact that the dual of the space of vector–valued
Radon measures on Ω is Cc(Ω;Rn) along the Hahn–Banach Theorem and Structure Theo-
rem.

Example 4.1.1. Let f ∈ W 1,1
loc (Ω). Then for each U ⊂⊂ Ω and ϕ ∈ C1

c (U ;Rn), with |ϕ| ≤ 1, we
have ∫

Ω

f div ϕ dLn = −
∫
Ω

Df · ϕ dLn ≤
∫
U

|Df | dLn < +∞.

Furthermore, if we put
∥Df∥ = Ln |Df |,

and

σ(x) =


Df(x)

|Df(x)|
, Df(x) ̸= 0,

0, Df(x) = 0
Ln − a.e.,

we see that ∥Df∥ is a Radon measure and |σ(x)| = 1 Ln−a.e. Moreover

−
∫
Ω

ϕ · σ d∥Df∥ = −
∫
U

ϕ · Df

|Df |
|Df | dLn

=

∫
Ω

f div ϕ dLn

=

∫
U

f div ϕ dLn.

Hence
W 1,1

loc (Ω) ⊂ BVloc(Ω),

and similarly
W 1,1(Ω) ⊂ BV (Ω).

In particular,
W 1,p

loc (Ω) ⊂ BVloc(Ω)

for 1 ≤ p ≤ +∞, for f ∈ W 1,p
loc (Ω) implies W 1,1

loc (Ω). That is, each Sobolev function has locally
bounded variation.
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Example 4.1.2. Let Ω = Rn, and let B = B(0, 1) be the open unit ball in Rn. Then the BV
Structure Theorem gives for each ϕ ∈ C1

c (Ω;Rn), |ϕ| ≤ 1,∫
B

div ϕ dLn =

∫
Ω

1B div ϕ dLn = −
∫
Ω

ϕ · νB d∥∂B∥.

On the other hand, by the Divergence Theorem, we obtain∫
B

div ϕ dLn =

∫
∂B

ϕ · ν dHn−1 ≤ Hn−1(∂B) < +∞,

where ν denotes the outward–pointing unit normal vector on ∂B. Hence B has finite perimeter in
Rn. Moreover we see that if we put

νB := ν,

then evidently
∥∂B∥ = Hn−1

1∂B.

Example 4.1.3. Let E be a smooth, open subset of Rn and assume that Hn−1(∂E ∩ K) < +∞
for each K ⊂ Ω. Then for each U ⊂⊂ Ω and each ϕ ∈ C1

c (U ;Rn) with |ϕ| ≤ 1, we have by the
Divergence Theorem ∫

E

div ϕ dLn(x) =

∫
∂E

ϕ · ν dHn−1

where ν denotes the outward–pointing unit normal along ∂E.
Thus ∫

E

div ϕ dLn =

∫
∂E∩U

ϕ · ν dHn−1 ≤ Hn−1(∂E ∩ U) < +∞.

That is, E has locally finite perimeter in Ω. Furthermore

∥∂E∥(Ω) = Hn−1(∂E ∩ Ω)

and
νE = ν Hn−1 − a.e. on ∂E ∩ Ω.

Thus ∥∂E∥(Ω) measures the “size" of ∂E in Ω. Since 1E /∈ W 1,1
loc (Ω), we see that

W 1,1
loc (Ω) ⊊ BVloc(Ω)

and similarly
W 1,1(Ω) ⊊ BV (Ω).

That is, not every function of (locally) bounded variation is a Sobolev function.

Remark. If f ∈ BVloc(Ω), we can write as above

[Df ] = [Df ]ac + [Df ]s = Ln Df + [Df ]s.

Consequently, f ∈ BVloc(Ω) belongs to W 1,p
loc (Ω) if and only if

f ∈ Lp
loc(Ω), [Df ]s = 0, Df ∈ Lp

loc(Ω).

We see by the above remark that the theory of BV functions is more subtle than the
theory of Sobolev functions, since we have to keep track of the singular part [Df ]s of the
vector–valued measure Df.

4.2. Approximation and Compactness.
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4.2.1. Lower Semicontinuity.

t5.2-1 Theorem 4.2.1 (Lower Semicontinuity of Variation Measure). Suppose that {fk}+∞
k=1 ⊂ L1

loc(Ω)
and fk → f in L1

loc(Ω). Then

∥Df∥(Ω) ≤ lim inf
k→+∞

∥Dfk∥(Ω).

Proof. Let ϕ ∈ C1
c (Ω;Rn) be such that |ϕ| ≤ 1. Then by the Structure Theorem (cf. (

t5.1-1
4.1.1))

and the fact that |ϕ| ≤ 1,∫
Ω

f div ϕ dLn(x) = lim
k→+∞

∫
Ω

fk div ϕ dLn(x)

= − lim
k→+∞

∫
Ω

ϕ · σk d∥Dfk∥

≤ lim inf
k→+∞

∥Dfk∥(Ω).

Hence, taking the supremum over all ϕ ∈ C1
c (Ω;Rn) with |ϕ| ≤ 1, we obtain

∥Df(Ω)∥ ≤ lim inf
k→+∞

∥Dfk∥(Ω),

as required. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.2. Approximation by Smooth Functions.

t5.2-2 Theorem 4.2.2 (Local Approximation by Smooth Functions). Let f ∈ BV (Ω). Then there
exist functions {fk}+∞

k=1 ⊂ BV (Ω) ∩ C∞(Ω) such that
(i) fk → f in L1(Ω);

(ii) ∥Dfk∥(Ω) → ∥Df∥(Ω) as k → +∞.

Remark. Note that in Theorem (
t5.2-2
4.2.2), we do not assume that ∥D(fk − f)∥(Ω) → 0.

Proof.
(i). Fix ϵ > 0. Given a positive integer m, define for each k ∈ N the open sets

Uk :=

{
x ∈ Ω : dist(x, ∂Ω) >

1

m+ k

}
∩B(0, k +m).

Then choose m ∈ N so large so that

∥Df∥(Ω \ U1) < ϵ. (4.2.1) {eq:5.2-1}

Set U0 := ∅ and define
Vk := Uk+1 \ Uk−1.

Let {ζk}+∞
k=1 be a sequence of smooth functions such that

ζk ∈ C∞
c (Vk), 0 ≤ ζk ≤ 1,

+∞∑
k=1

ζk ≡ 1, on Ω.
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We recall the standard mollifier η : Rn → R defined by

η(x) :=

{
C exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

where C > 0 is chosen such that
∫
Rn η dLn = 1. We define then the sequence {ηϵ}ϵ>0 by

ηϵ(x) :=
1

ϵn
η
(x
ϵ

)
.

Now for each k ∈ N, choose ϵk > 0 so small that
supp(ηϵk ∗ (fζk)) ⊂ Vk,∫
Ω

|ηϵk ∗ (fζk)− fζk| dLn <
ϵ

2k
,∫

Ω

|ηϵk ∗ (fDζk)− fDζk| dLn <
ϵ

2k
.

(4.2.2) {eq:5.2-2}

Define then

fϵ :=
+∞∑
k=1

ηϵk ∗ (fζk).

For each point x ∈ Ω, there exists a neighborhood Ux such that there are only finitely
many terms in this sum. Thus

fϵ ∈ C∞(Ω).

(ii). Since also

f =
+∞∑
k=1

fζk,

(
eq:5.2-2
4.2.2) implies that

∥fϵ − f∥L1(Ω) ≤
+∞∑
k=1

∫
Ω

|ηϵk ∗ (fζk)− fζk| dLn < ϵ.

Consequently
fϵ → f in L1(Ω) as ϵ → 0.

(iii). According to Theorem (
t5.2-1
4.2.1),

∥Df∥(Ω) ≤ lim inf
ϵ→0

∥Dfϵ∥(Ω). (4.2.3) {eq:5.2-3}

(iv). Now let ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1. Then∫

Ω

fϵ div ϕ dLn =
+∞∑
k=1

∫
Ω

ηϵk ∗ (fζk) div ϕ dLn

=
+∞∑
k=1

∫
Ω

fζk div(ηϵk ∗ ϕ) dLn

=
+∞∑
k=1

∫
Ω

f div(ζk(ηϵk ∗ ϕ)) dLn −
+∞∑
k=1

∫
Ω

fDζk · (ηϵk ∗ ϕ) dLn
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=
+∞∑
k=1

∫
Ω

f div(ζk(ηϵk ∗ ϕ)) dLn −
+∞∑
k=1

∫
Ω

ϕ · (ηϵk ∗ (fDζk)− fDζk) dLn

=: Iϵ1 + Iϵ2.

Here we have used the facts that div(ηϵk ∗ϕ) = ηϵk ∗div ϕ and
∑+∞

k=1Dζk = 0. Now |ζk(ηϵk ∗
ϕ)| ≤ 1 for each k ∈ N and each point x ∈ Ω belongs to at most three of the sets {Vk}+∞

k=1

by definition of Vk. Hence

|Iϵ1| =

∣∣∣∣∣
∫
Ω

f div(ζ1(ηϵ1 ∗ ϕ)) dLn +
+∞∑
k=2

∫
Ω

f div(ζkηϵk ∗ ϕ) dLn

∣∣∣∣∣
≤ ∥Df∥(Ω) +

+∞∑
k=2

∥Df∥(Vk)

≤ ∥Df∥(Ω) + 3∥Df∥(Ω \ U1)

≤ ∥Df∥(Ω) + 3ϵ,

by (
eq:5.2-1
4.2.1). On the other hand, (

eq:5.2-2
4.2.2) implies that

|Iϵ2| < ϵ.

Therefore ∫
Ω

fϵ div ϕ dLn ≤ ∥Df∥(Ω) + 4ϵ,

so evidently
∥Dfϵ∥(Ω) ≤ ∥Df∥(Ω) + 4ϵ.

Finally, we have by (
eq:5.2-3
4.2.3)

∥Df∥(Ω) ≤ lim inf
ϵ→0

∥Dfϵ∥(Ω) ≤ lim inf
ϵ→0

(∥Df∥(Ω) + 4ϵ) = ∥Df(Ω)∥.

The proof is complete. □

t5.2-3 Theorem 4.2.3 (Weak Approximation of Derivatives). Let f ∈ BV (Ω), and let {fk}+∞
k=1 ⊂

BV (Ω) ∩ C∞(Ω) be such that
(i) fk → f in L1(Ω);

(ii) ∥Dfk∥(Ω) → ∥Df∥(Ω) as k → +∞.

Define the vector–valued Radon measure

µk(B) :=

∫
B∩Ω

Dfk dLn

for each Borel set B ⊆ Rn. Set also

µ(B) :=

∫
B∩Ω

d[Df ].

Then
µk ⇀ µ

weakly in the sense of vector–valued Radon measures on Rn.
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Remark. Note that the existence of the sequence {fk}+∞
k=1 ⊂ BV (Ω)∩ C∞(Ω) satisfying assump-

tions (i) and (ii) is guaranteed by Theorem (
t5.2-2
4.2.2). Also recall that weak convergence here means

lim
k→+∞

∫
Rn

ϕ dµk =

∫
Rn

ϕ dµ

for all ϕ ∈ C∞
c (Rn;Rn).

Proof. Fix ϕ ∈ C1
c (Rn;Rn) and ϵ > 0. Choose m ∈ N so large that

U :=

{
x ∈ Ω : dist(x, ∂Ω) >

1

m

}
∩B(0,m)

satisfies
∥Df∥(Ω \ U) < ϵ.

Note also that U ⊂⊂ Ω. Choose then a smooth cutoff function ζ : Rn → R satisfying{
ζ ≡ 1 on U, supp ζ ⊂ Ω,

0 ≤ ζ ≤ 1.

Observe that ∫ n

R
ϕ dµk =

∫
Ω

ϕ ·Dfk dLn

=

∫
Ω

ζϕ ·Dfk dLn +

∫
Ω

(1− ζ)ϕ ·Dfk dLn

= −
∫
Ω

div(ζϕ)fk dLn +

∫
Ω

(1− ζ)ϕ ·Dfk dLn, (4.2.4) {eq:5.2-4}

where we have used integration by parts on the first term in (
eq:5.2-4
4.2.4). Since fk → f in L1(Ω),

we have by the Structure Theorem that the first term in (
eq:5.2-4
4.2.4) converges to

−
∫
Ω

div(ζϕ)f dLn =

∫
Ω

ζϕ · d[Df ]

=

∫
Ω

ϕ · d[Df ] +

∫
Ω

(ζ − 1)ϕ · d[Df ]. (4.2.5) {eq:5.2-5}

The second term in (
eq:5.2-5
4.2.5) is estimated by

∥ϕ∥L∞(Ω)∥Df∥(Ω \ U) ≤ Cϵ.

Using the fact that ∥Dfk∥(Ω) → ∥Df∥(Ω) as k → +∞, we see that for k large enough, the
second term in (

eq:5.2-4
4.2.4) may be estimated by

∥ϕ∥L∞(Ω)∥Dfk∥(Ω \ U) ≤ Cϵ.

Hence ∣∣∣∣∫
Rn

ϕ dµk −
∫
Rn

ϕ dµ

∣∣∣∣ ≤ Cϵ

for all k ∈ N large enough. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4.2.3. Compactness.

t5.2-4 Theorem 4.2.4. Let Ω ⊂ Rn be open and bounded, with ∂Ω Lipschitz. Assume that {fk}+∞
k=1 ⊂

BV (Ω) satisfies
sup
k∈N

∥fk∥BV (Ω) < +∞.

Then there exists a subsequence {fkj}+∞
j=1 and a function f ∈ BV (Ω) such that

fkj → f in L1(Ω)

as j → +∞.

Proof. For k ∈ N, choose by Theorem (
t5.2-2
4.2.2) functions gk ∈ C∞(Ω) so that

∫
Ω

|fk − gk| dLn <
1

k
,

supk∈N

∫
Ω

|Dgk| dLn < +∞.
(4.2.6) {eq:5.2-6}

By the Rellich–Kondrachov embedding theorem and the fact that Ω is bounded, there
exists f ∈ L1(Ω) and a subsequence {gkj}+∞

j=1 such that gkj → f in L1(Ω) as j → +∞. But
then (

eq:5.2-6
4.2.6) implies also that fkj → f in L1(Ω). Thus by Theorem (

t5.2-1
4.2.1),

∥Df∥(Ω) ≤ lim inf
ϵ→0

∥Dfk∥(Ω) < +∞,

so that f ∈ BV (Ω). The proof is complete. □

4.3. Traces. We assume in this section that Ω ⊂ Rn is open and bounded, with ∂Ω Lips-
chitz. Recall that since ∂Ω is Lipschitz, the outer unit normal ν exists Hn−1−a.e. on ∂Ω by
Rademacher’s Theorem.

In this section we extend the notion of the trace operator to BV functions.

t5.3-1 Theorem 4.3.1. Assume that Ω ⊂ Rn is open and bounded, with ∂Ω Lipschitz. Then there exists
a bounded linear operator

T : BV (Ω) → L1(∂Ω;Hn−1)

such that ∫
Ω

f div ϕ dLn = −
∫
Ω

ϕ · d[Df ] +

∫
∂Ω

(ϕ · ν)Tf dHn−1 (4.3.1) {eq:5.3-1}

for all f ∈ BV (Ω) and ϕ ∈ C1(Rn;Rn).

The point is that we now do not require ϕ to vanish near ∂Ω.

Definition (Trace). The function Tf, which is uniquely defined up to sets of Hn−1 ∂Ω measure
zero, is called the trace of f on ∂Ω.

We interpret Tf as the “boundary values" of f on ∂Ω.

Remark. If f ∈ W 1,1(Ω) ⊂ BV (Ω), then the definition of trace above and the definition of trace
for Sobolev functions coincide.

Proof.
i. We first introduce some notation:

74



BV Functions and Sets of Finite Perimeter 4.3 — Traces

(i) For any x = (x1, . . . , xn) ∈ Rn, we write x = (x′, xn) for x′ := (x1, . . . , xn−1) ∈ Rn−1,
xn ∈ R. Similarly we write y = (y′, yn).

(ii) For any x ∈ Rn and r, h > 0, define the open cylinder

C(x, r, h) := {y ∈ Rn : |y′ − x′| < r, |yn − xn| < h}.
Now since ∂Ω is Lipschitz, for each point x ∈ ∂Ω there exist r, h > 0 and a Lipschitz

function γ : Rn−1 → R such that

max
|x′−y′|≤r

|γ(y′)− xn| ≤
h

4

and, upon rotating and relabeling the coordinate axes if necessary,

Ω ∩ C(x, r, h) = {y ∈ Rn : |x′ − y′| < r, γ(y′) < yn < xn + h}.
ii. Assume now temporarily that f ∈ BV (Ω)∩C∞(Ω). Choose x ∈ ∂Ω and r, h, γ, C(x, r, h)

as above. Write
C := C(x, r, h).

Choose also 0 < ϵ < h
2

and y ∈ ∂Ω ∩ C, and define

fϵ(y) := f(y′, γ(y′) + ϵ).

Set also
Cδ,ϵ := {y ∈ C : γ(y′) + δ < yn < γ(y′) + ϵ}

for 0 ≤ δ < ϵ < h
2
, and define Cϵ := C0,ϵ. Write Cϵ := (C ∩ Ω) \ Cϵ. Then

|fδ(y)− fϵ(y)| ≤
∫ ϵ

δ

∣∣∣∣ ∂f∂xn

(y′, γ(y′) + t)

∣∣∣∣ dt
≤
∫ ϵ

δ

|Df(y′, γ(y′) + t)| dt,

and consequently, since γ is Lipschitz, the area formula (cf. (
t3.3-1
3.3.1)) implies∫

∂Ω∩C
|fδ − fϵ| dHn−1 ≤ C

∫
Cδ,ϵ

|Df | dLn(y) = C∥Df∥(Cδ,ϵ).

Therefore {fϵ}ϵ>0 is Cauchy in L1(∂Ω ∩ C;Hn−1), and thus the limit

Tf := lim
ϵ→0

fϵ

exists in L1(∂Ω ∩ C;Hn−1). Furthermore, passing to the limit as δ → 0 in the previous
inequality gives by Lebesgue’s Dominated Convergence Theorem∫

∂Ω∩C
|Tf − fϵ| dHn−1 ≤ C∥Df∥(Cϵ). (4.3.2) {eq:5.3-2}

Next fix ϕ ∈ C1
c (C;Rn). Then by the divergence theorem∫
Cϵ

f div ϕ dLn = −
∫
Cϵ

ϕ ·Df dLn +

∫
∂Ω∩C

fϵϕϵ · ν dHn−1.

Now sending ϵ → 0, we obtain∫
Ω∩C

f div ϕ dLn = −
∫
Ω∩C

ϕ · σ d∥Df∥+
∫
∂Ω∩C

Tfϕ · ν dHn−1 (4.3.3) {eq:5.3-3}

by the above and the structure theorem (cf. (
t5.1-1
4.1.1)).

75



BV Functions and Sets of Finite Perimeter 4.3 — Traces

iii. Since ∂Ω is compact, we can cover ∂Ω with finitely many cylinders Ci = C(xi, ri, hi),
i = 1, . . . , N, for which assertions (

eq:5.3-2
4.3.2) and (

eq:5.3-3
4.3.3) hold. An argument using a partition

of unity subordinate to each of the terms in {Ci}Ni=1 establishes (
eq:5.3-1
4.3.1). Observe also that

(
eq:5.3-3
4.3.3) shows the definition of Tf to be the same up to sets of Hn−1 ∂Ω on any part of ∂Ω

that lies in two or more of the cylinders Ci.
iv. Assume now only that f ∈ BV (Ω). In this case, choose fk ∈ BV (Ω) ∩ C∞(Ω),

k = 1, 2, . . . , such that

fk → f in L1(Ω), ∥Dfk∥(Ω) → ∥Df∥(Ω),

and
µk → µ weakly,

where the measures {µk}+∞
k=1 and µ are defined as in Theorem (

t5.2-3
4.2.3). Recall that Theorem

(
t5.2-3
4.2.3) also implies the existence of the approximating sequence {fk}+∞

k=1 as well as the
measures {∥Dfk∥}+∞

k=1.
v. We claim that {Tfk}+∞

k=1 is a Cauchy sequence in L1(∂Ω;Hn−1).
To establish this, choose a cylinder C = C(x, r, h). Fix ϵ > 0, y ∈ ∂Ω∩C, and then define

f ϵ
k(y) :=

1

ϵ

∫ ϵ

0

fk(y
′, γ(y′) + t) dt =

1

ϵ

∫ ϵ

0

(fk)t(y) dt.

Then (
eq:5.3-2
4.3.2) implies that∫

∂Ω∩C
|Tfk − f ϵ

k| dHn−1 ≤ 1

ϵ

∫ ϵ

0

∫
∂Ω∩C

|Tfk − (fk)t| dHn−1 dt

≤ C∥Dfk∥(Cϵ).

Hence,∫
∂Ω∩C

|Tfk − Tfl| dHn−1

≤
∫
∂Ω∩C

|Tfk − f ϵ
k| dHn−1 +

∫
∂Ω∩C

|Tfl − f ϵ
l | dHn−1 +

∫
∂Ω∩C

|f ϵ
k − f ϵ

l | dHn−1

≤ C(∥Dfk∥+ ∥Dfl∥)(Cϵ) +
C

ϵ

∫
Cϵ

|fk − fl| dLn,

and thus

lim sup
k,l→+∞

∫
∂Ω∩C

|Tfk − Tfl| dHn−1 ≤ C∥Df∥(Cϵ ∩ Ω).

Since the RHS tends to zero as ϵ → 0, the claim is proved.
vi. By the claim in (v) and the fact that L1(∂Ω;Hn−1) is a Banach space, we may define

Tf := lim
k→+∞

Tfk.

Note in particular that this definition does not depend on the choice of approximating
sequence {fk}+∞

k=1 ⊂ BV (Ω) ∩ C∞(Ω).
Finally, since (

eq:5.3-1
4.3.1) holds for each fk, k = 1, 2, . . . , (

eq:5.3-1
4.3.1) holds also for f in the limit.

The proof is complete. □
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t5.3-2 Theorem 4.3.2. Assume that Ω ⊂ Rn is open and bounded, with ∂Ω Lipschitz. Suppose also that
f ∈ BV (Ω). Then for Hn−1−a.e. x ∈ ∂Ω,

lim
r→0

–
∫

B(x,r)∩Ω
|f − Tf(x)| dLn = 0,

and so
Tf(x) = lim

r→0
–
∫

B(x,r)∩Ω
f(y) dLn(y).

Remark. In particular, if f ∈ BV (Ω) ∩ C(Ω), then

Tf = f |∂Ω Hn−1 − a.e.

This justifies our interpretation of the trace of f as the boundary values of f on ∂Ω.

Proof.
i. We first claim that for Hn−1−a.e. x ∈ ∂Ω,

lim
r→0

∥Df∥(B(x, r) ∩ Ω)

rn−1
= 0.

To see this, fix γ > 0, δ > ϵ > 0, and let

Aγ :=

{
x ∈ ∂Ω : lim sup

r→0

∥Df∥(B(x, r) ∩ Ω)

rn−1
> γ

}
.

Then for each x ∈ Aγ, there exists 0 < r < ϵ such that
∥Df∥(B(x, r) ∩ Ω)

rn−1
≥ γ. (4.3.4) {eq:5.3-4}

By the Vitali Covering Lemma, we obtain a countable collection of disjoint balls {B(xi, ri)}+∞
i=1

satisfying (
eq:5.3-4
4.3.4) such that

Aγ ⊂
+∞⋃
i=1

B(xi, 5ri).

Then

Hn−1
10δ (Aγ) ≤

+∞∑
i=1

α(n− 1)(5ri)
n−1

≤ C

γ

+∞∑
i=1

∥Df∥(B(xi, ri) ∩ Ω)

≤ C∥Df∥(Ωϵ),

where
Ωϵ := {x ∈ Ω : dist(x, ∂Ω) < ϵ}.

Sending ϵ → 0, we find that Hn−1
10δ (Aγ) = 0 for all δ > 0. This proves i.

ii. Now fix a point x ∈ ∂Ω such that

lim
r→0

∥Df∥(B(x, r) ∩ Ω)

rn−1
= 0

and
lim
r→0

–
∫

B(x,r)∩Ω
|Tf − Tf(x)| dHn−1 = 0.
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By (i) and the Lebesgue Differentiation Theorem, the above holds for Hn−1−a.e. x ∈ ∂Ω.
Let h = h(r) := 2max{1, 4 Lip(γ)}r, and consider the cylinders

C(r) := C(x, r, h).

Note that for r > 0 small enough, the cylinders C(r) work in place of the cylinder C in
the proof of Theorem (

t5.3-1
4.3.1). Thus estimates similar to those in the previous proof show

that ∫
∂Ω∩C(r)

|Tf − fϵ| dHn−1 ≤ C∥Df∥(C(r) ∩ Ω),

where

fϵ(y) := f(y′, γ(y′) + ϵ), y ∈ C(r) ∩ ∂Ω, 0 < ϵ <
h(r)

2
.

Thus, by the Coarea Formula (cf. (
t3.4-1
3.4.1)), we may estimate∫

B(x,r)∩Ω
|Tf(y′, γ(y′))− f(y)| dLn(y) ≤ Cr∥Df∥(C(r) ∩ Ω).

Hence, we find

–
∫

B(x,r)∩Ω
|f(y)− Tf(x)| dLn(y) ≤ C

rn−1

∫
C(r)∩∂Ω

|Tf − Tf(x)| dHn−1(x) +

C

rn

∫
B(x,r)∩Ω

|Tf(y′, γ(y′))− f(y)| dLn(y)

≤ o(1) +
C

rn−1
∥Df∥(C(r) ∩ Ω)

= o(1) as ϵ → 0,

where the RHS follows from (i). The proof is complete. □

4.4. Extensions. In this section we state and prove a theorem that gives conditions upon
which we may extend a BV function on a bounded open domain Ω ⊂ Rn to all of Rn.

t5.4-1 Theorem 4.4.1. Assume that Ω ⊂ Rn is open and bounded, with ∂Ω Lipschitz. Let f1 ∈ BV (Ω),
f2 ∈ BV (Rn \ Ω). Define

f(x) :=

{
f1(x), x ∈ Ω,

f2(x), x ∈ Rn \ Ω.
Then

f ∈ BV (Rn),

and
∥Df∥(Rn) = ∥Df1∥(Ω) + ∥Df2∥(Rn \ Ω) +

∫
∂Ω

|Tf1 − Tf2| dHn−1.

Remark. In particular, under the stated assumptions on Ω,

(i) Clearly the extension

Ef :=

{
f on Ω,

0 on Rn \ Ω
belongs to BV (Rn) if f ∈ BV (Ω),
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(ii) The set Ω has finite perimeter and ∥∂Ω∥(Rn) = Hn−1(∂Ω).

Proof.
i. Let ϕ ∈ C1

c (Rn;Rn), |ϕ| ≤ 1. Then∫
Rn

f div ϕ dLn =

∫
Ω

f1 div ϕ dLn +

∫
Rn\Ω

f2 div ϕ dLn

= −
∫
Ω

ϕ · d[Df1]−
∫
Rn\Ω

ϕ · d[Df2] +∫
∂Ω

(Tf1 − Tf2)ϕ · ν dHn−1

≤ ∥Df1∥(Ω) + ∥Df2∥(Rn \ Ω) +
∫
∂Ω

|Tf1 − Tf2| dHn−1.

Thus f ∈ BV (Ω), and

∥Df∥(Rn) ≤ ∥Df1∥(Ω) + ∥Df2∥(Rn \ Ω) +
∫
∂Ω

|Tf1 − Tf2| dHn−1.

ii. To show equality, observe that

−
∫
Rn

ϕ · d[Df ] = −
∫
Ω

ϕ · d[Df1]−
∫
Rn\Ω

ϕ · d[Df2] +

∫
∂Ω

(Tf1 − Tf2)ϕ · ν dHn−1 (4.4.1) {eq:5.4-1}

for all ϕ ∈ C1
c (Rn;Rn). Thus

[Df ] =

{
[Df1] on Ω,

[Df2] on Rn \ Ω.

Consequently, (
eq:5.4-1
4.4.1) implies that

−
∫
∂Ω

ϕ · d[Df ] =

∫
∂Ω

(Tf1 − Tf2)ϕ · ν dHn−1,

and hence

∥Df∥(∂Ω) =
∫
∂Ω

|Tf1 − Tf2| dHn−1,

as required. The proof is complete. □

4.5. Coarea Formula for BV Functions. We want to relate the variation measure of f and
the perimeters of its level sets.

Remark (Notation). For f : Ω → R and t ∈ R, we define

Et := {x ∈ Ω : f(x) > t}.

l5.5-1 Lemma 4.5.1. If f ∈ BV (Ω), the mapping

t 7→ ∥∂Et∥(Ω), t ∈ R,

in L1−measurable.
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Proof. The mapping
(x, t) 7→ 1Et(x)

is (Ln×L1)−measurable by the Fubini–Tonelli Theorem, and thus, for each ϕ ∈ C1
c (Ω;Rn),

the function

t 7→
∫
Et

div ϕ dLn =

∫
Ω

1Et div ϕ dLn

is L1−measurable. Let D denote any countable dense subset of C1
c (Ω;Rn). Then

t 7→ ∥∂Et∥(Ω) = sup
ϕ∈D
|ϕ|≤1

∫
Et

div ϕ dLn

is L1−measurable. The proof is complete. □

t5.5-1 Theorem 4.5.1 (Coarea Formula for BV Functions). Let f ∈ BV (Ω). Then
(i) Et has finite perimeter for L1−a.e. t ∈ R, and

∥Df∥(Ω) =
∫ +∞

−∞
∥∂Et∥(Ω) dL1(t).

(ii) Conversely, if f ∈ L1(Ω) and∫ +∞

−∞
∥∂Et∥(Ω) dL1(t) < +∞,

then f ∈ BV (Ω).

Remark. Compare Theorem (
t5.5-1
4.5.1) with Proposition (

p3.4-2
3.4.2).

Proof. Let ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1.

i. We first claim that
∫
Ω
f div ϕ dLn =

∫ +∞
−∞

(∫
Et

div ϕ dLn
)

dL1(t).

To see this, first suppose that f ≥ 0, so that the Rising Sun Lemma gives

f(x) =

∫ +∞

0

1Et(x) dL1(t)

for a.e. x ∈ Ω. Thus∫
Ω

f div ϕ dLn =

∫
Ω

(∫ +∞

0

1Et(x) dL1(t)

)
div ϕ(x) dLn(x)

=

∫ +∞

0

(∫
Ω

1Et(x) div ϕ(x) dLn(x)

)
dL1(t)

=

∫ +∞

0

(∫
Et

div ϕ dLn(x)

)
dL1(t).

Similarly, if f ≤ 0, then

f(x) =

∫ 0

−∞
(1Et(x)− 1) dL1(t),

so that ∫
Ω

f div ϕ dLn(x) =

∫
Ω

(∫ 0

−∞
(1Et(x)− 1) dL1(t)

)
div ϕ(x) dLn(x)
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=

∫ 0

−∞

(∫
Ω

(1Et(x)− 1) div ϕ(x) dLn(x)

)
dL1(t)

=

∫ 0

−∞

(∫
Et

div ϕ dLn(x)

)
dL1(t).

For the general case, write f = f+ − f−. This proves the claim i.
ii. From (i) we see that for all ϕ ∈ C1

c (Ω;Rn), |ϕ| ≤ 1,∫
Ω

f div ϕ dLn(x) ≤
∫ +∞

−∞
∥∂Et∥(Ω) dL1(t).

Hence, taking the supremum over all such ϕ on the LHS, we obtain

∥Df∥(Ω) ≤
∫ +∞

−∞
∥∂Et∥(Ω) dL1(t). (4.5.1) {eq:5.5-1}

iii. We next claim that

∥Df∥(Ω) =
∫ +∞

−∞
∥∂Et∥(Ω) dL1(t)

for all f ∈ BV (Ω) ∩ C∞(Ω).
Let

m(t) :=

∫
Ω\Et

|Df | dLn =

∫
{f≤t}

|Df | dLn.

Then the function m is nondecreasing, and thus m′ exists L1−a.e., with∫ +∞

−∞
m′(t) dL1(t) ≤

∫
Ω

|Df | dLn. (4.5.2) {eq:5.5-2}

Next fix any −∞ < t < +∞, r > 0, and define η : R → R as follows:

η(s) :=


0, s ≤ t,
s−t
r
, t ≤ s ≤ t+ r,

1, s ≥ t+ r.

Then

η′(s) =

{
1
r
, t < s < t+ r,

0, s < t or s > t+ r.

Thus, for all ϕ ∈ C1
c (Ω;Rn), we have

−
∫
Ω

η(f(x)) div ϕ(x) dLn(x) =

∫
Ω

η′(f(x))Df(x) · ϕ(x) dLn(x)

=
1

r

∫
Et\Et+r

Df · ϕ dLn. (4.5.3) {eq:5.5-3}

Now observe that
m(t+ r)−m(t)

r
=

1

r

[∫
Ω\Et+r

|Df | dLn −
∫
Ω\Et

|Df | dLn

]
=

1

r

∫
Et\Et+r

|Df | dLn
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≥ 1

r

∫
Et\Et+r

Df · ϕ dLn

= −
∫
Ω

η(f(x)) div ϕ dLn,

where the RHS follows from (
eq:5.5-3
4.5.3). For all t ∈ R such that m′(t) exists, we let r → 0 to

find that
m′(t) ≥ −

∫
Et

div ϕ dLn

for L1−a.e. t ∈ R. Taking the supremum over all ϕ ∈ C1
c (Ω;Rn), |ϕ| ≤ 1, we have

∥∂Et∥(Ω) ≤ m′(t).

Recalling (
eq:5.5-2
4.5.2), we then find∫ +∞

−∞
∥∂Et∥(Ω) dL1(t) ≤

∫
Ω

|Df | dLn = ∥Df∥(Ω).

In view of (
eq:5.5-1
4.5.1), this proves the claim in (iii).

iv. We now show that part (iii) holds for all f ∈ BV (Ω).
Fix f ∈ BV (Ω) and choose a sequence {fk}+∞

k=1 ⊂ BV (Ω) ∩ C∞(Ω) as in Theorem (
t5.2-2
4.2.2).

Recall that
fk → f in L1(Ω) as k → +∞.

Define
Ek

t := {x ∈ Ω : fk(x) > t}.
Now ∫ +∞

−∞
|1Ek

t
(x)− 1Et(x)| dL1(t) =

∫ max{f(x),fk(x)}

min{f(x),fk(x)}
dL1(t) = |fk(x)− f(x)|.

Consequently,∫
Ω

|fk(x)− f(x)| dLn(x) =

∫ +∞

−∞

(∫
Ω

|1Ek
t
(x)− 1Et(x)| dLn(x)

)
dL1(t).

Since fk → f in L1(Ω), there exists a subsequence which, reindexing by k if necessary,
satisfies

1Ek
t
→ 1Et in L1(Ω), for L1 − a.e. t ∈ R.

Then, by the Lower Semicontinuity Theorem (cf. (
t5.2-1
4.2.1)),

∥∂Et∥(Ω) ≤ lim inf
k→+∞

∥∂Ek
t ∥(Ω).

Thus, Fatou’s Lemma gives∫ +∞

−∞
∥∂Et∥(Ω) dL1(t)

F.L.

≤ lim inf
k→+∞

∫ +∞

−∞
∥∂Ek

t ∥(Ω) dL1(t)

= lim
k→+∞

∥Dfk∥(Ω)

= ∥Df∥(Ω),
where the RHS follows from the conclusion of Theorem (

t5.2-2
4.2.2) In view of (

eq:5.5-1
4.5.1), this

proves (i).
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v. Assertion (ii) of the theorem follows immediately from (
eq:5.5-1
4.5.1), noting that

∥f∥BV (Ω) ≤ ∥f∥L1(Ω) + ∥Df∥(Ω) ≤ ∥f∥L1(Ω) +

∫ +∞

−∞
∥∂Et∥(Ω) dL1(t) < +∞.

The proof is complete. □

4.6. Isoperimetric Inequalities. In this section we develop certain inequalities relating
the Ln−measure of a set to its perimeter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6.1. Sobolev and Poincaré’s Inequalities for BV Functions. We begin by stating a version
of Sobolev– and Poincaré –type inequalities for BV functions. We first recall the GNS
inequality from PDE:

Remark. Assume that 1 ≤ p < n. Then there exists a constant C > 0, depending on only p and
n, such that for all u ∈ C1

c (Rn),

∥u∥Lp∗ (Rn) ≤ C∥Du∥Lp(Rn),

where p∗ denotes the Sobolev conjugate of p,

p∗ =
np

n− p
, 1 ≤ p < n.

t5.6-1 Theorem 4.6.1.
(i) There exists a constant C1 > 0 such that

∥f∥
L

n
n−1 (Rn)

≤ C1∥Df∥(Rn)

for all f ∈ BV (Rn);
(ii) There exists a constant C2 > 0 such that

∥f − (f)x,r∥L n
n−1 (B(x,r))

≤ C2∥Df∥(U(x, r))

for all B(x, r) ⊂ Rn, f ∈ BVloc(Rn), where

(f)x,r := –
∫

B(x,r)

f(y) dLn(y)

denotes the average of f over B(x, r);
(iii) For each 0 < α ≤ 1, there exists a constant C3 = C3(α) > 0 such that

∥f∥
L

n
n−1 (B(x,r))

≤ C3∥Df∥(U(x, r))

for all B(x, r) ⊂ Rn and all f ∈ BVloc(Rn), satisfying

Ln(B(x, r) ∩ {f = 0})
Ln(B(x, r))

≥ α.

Remark. Notice that (i) is a GNS-type inequality for BV functions, with p = 1. Assertions (ii)
and (iii) are Poincaré–type inequalities.
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Proof.
i. Choose a sequence {fk}+∞

k=1 ⊂ C∞
c (Rn) so that{

fk → f in L1(Rn), fk → f L1 − a.e.,
∥Dfk∥(Rn) → ∥Df∥(Rn).

Then by Fatou’s Lemma and the Gagliardo–Nirenberg–Sobolev inequality with p = 1,

∥f∥
L

n
n−1 (Rn)

F.L.

≤ lim inf
k→+∞

∥fk∥L n
n−1 (Rn)

G.N.S.

≤ lim
k→+∞

C1∥Dfk∥L1(Rn)

= C1∥Df∥(Rn).

This proves assertion (i).
ii. Statement (ii) follows similarly from the usual Poincaré inequality for Sobolev func-

tions.
iii. Suppose that

Ln(B(x, r) ∩ {f = 0})
Ln(B(x, r))

≥ α > 0. (4.6.1) {eq:5.6-1}

Then by assertion (ii),

∥f∥
L

n
n−1 (B(x,r))

≤ ∥f − (f)x,r∥L n
n−1 (Rn)

+ ∥(f)x,r∥L n
n−1 (B(x,r))

≤ C2∥Df∥(U(x, r)) + |(f)x,r|(Ln(B(x, r)))1−
1
n . (4.6.2) {eq:5.6-2}

But, by applying Hölder’s inequality,

|(f)x,r|(Ln(B(x, r)))1−
1
n ≤ 1

Ln(B(x, r))
1
n

∫
B(x,r)∩{f ̸=0}

|f | dLn(y)

≤
(∫

B(x,r)

|f |
n

n−1 dLn(y)

)1− 1
n
(
Ln(B(x, r) ∩ {f ̸= 0})

Ln(B(x, r))

) 1
n

≤ ∥f∥
L

n
n−1 (B(x,r))

(1− α)
1
n ,

where the RHS follows from (
eq:5.6-1
4.6.1). Employing this estimate in (

eq:5.6-2
4.6.2), we calculate

(1− (1− α)
1
n )∥f∥

L
n

n−1 (B(x,r))
≤ C2∥Df∥(U(x, r)),

so that

∥f∥
L

n
n−1 (B(x,r))

≤ C2

(1− (1− α)
1
n )

∥Df∥(U(x, r)).

The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4.6.2. Isoperimetric Inequalities.

t5.6-2 Theorem 4.6.2. Let E be a bounded set of finite perimeter in Rn. Then there exist constants
C1, C2 > 0 such that

(i) Ln(E)1−
1
n ≤ C1∥∂E∥(Rn);

(ii) For each ball B(x, r) ⊂ Rn,

min{Ln(B(x, r) ∩ E),Ln(B(x, r) \ E)}1−
1
n ≤ 2C2∥∂E∥(U(x, r)).

Remark. Assertion (i) of Theorem (
t5.6-2
4.6.2) is the isoperimetric inequality, and assertion (ii) is

the relative isoperimetric inequality. Note that (i) states that the Ln−measure of such a set E
is bounded above by its perimeter measure.

Proof.
i. Putting f = 1E in Theorem (

t5.6-1
4.6.1)(i) proves assertion (i).

ii. Next, let f = 1B(x,r)∩E in Theorem (
t5.6-1
4.6.1)(ii) to obtain

(f)x,r =
Ln(B(x, r) ∩ E)

Ln(B(x, r))
.

Thus∫
B(x,r)

|f − (f)x,r|
n

n−1 dLn(y) =

∫
B(x,r)\E

|(f)x,r|
n

n−1 dLn(y) +

∫
B(x,r)∩E

|1− (f)x,r|
n

n−1 dLn(y)

=

(
Ln(B(x, r) ∩ E)

Ln(B(x, r))

) n
n−1

Ln(B(x, r) \ E) +

(
Ln(B(x, r) \ E)

Ln(B(x, r))

) n
n−1

Ln(B(x, r) ∩ E).

Now if Ln(B(x, r) ∩ E) ≤ Ln(B(x, r) \ E), then by the above,(∫
B(x,r)

|f − (f)x,r|
n

n−1 dLn(y)
)1− 1

n ≥

([
Ln(B(x, r) \ E)

Ln(B(x, r))

] n
n−1

Ln(B(x, r) ∩ E)

)1− 1
n

=

[
Ln(B(x, r) \ E)

Ln(B(x, r))

]
Ln(B(x, r) ∩ E)1−

1
n

≥ 1

2
Ln(B(x, r) ∩ E)1−

1
n

=
1

2
min{Ln(B(x, r) ∩ E),Ln(B(x, r) \ E)}1−

1
n ,

where the RHS follows from the fact that Ln(B(x, r) ∩E) + Ln(B(x, r) \E) = Ln(B(x, r))
and Ln(B(x, r) ∩ E) ≤ Ln(B(x, r) \ E), so that

Ln(B(x, r) \ E)

Ln(B(x, r))
≥ 1

2
.

The proof is complete. □

Remark. We have shown that the GNS inequality implies the isoperimetric inequality, as shown
in the proof of Theorem (

t5.6-2
4.6.2)(i). In fact, the converse is true as well.

To see this, assume that f ∈ C1
c (Rn), f ≥ 0. We calculate by Theorem (

t5.5-1
4.5.1)∫

Rn

|Df | dLn(x) = ∥Df∥(Rn) =

∫ +∞

−∞
∥∂Et∥(Rn) dL1(t)
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=

∫ +∞

0

∥∂Et∥(Rn) dL1(t)

≥ 1

C1

∫ +∞

0

Ln(Et)
1− 1

n dL1(t),

where the RHS follows from Theorem (
t5.6-2
4.6.2)(i). Now let

ft := min{t, f}, χ(t) :=

(∫
Rn

f
n

n−1

t dLn(x)

)1− 1
n

, t ∈ R.

Then χ is nondecreasing on (0,+∞), and

lim
t→+∞

χ(t) =

(∫
Rn

|f |
n

n−1 dLn(x)

)1− 1
n

.

Also, for h > 0,

0 ≤ χ(t+ h)− χ(t)

≤
(∫

Rn

|ft+h − ft|
n

n−1 dLn(x)

)1− 1
n

≤ hLn(Et)
1− 1

n .

Thus χ is locally Lipschitz, and
χ′(t) ≤ Ln(Et)

1− 1
n

for L1−a.e. t ∈ (0,+∞). Integrating χ′ from 0 to +∞ gives(∫
Rn

|f |
n

n−1 dLn(x)

)1− 1
n

=

∫ +∞

0

χ′(t) dL1(t)

≤
∫ +∞

0

Ln(Et)
n

n−1 dL1(t)

≤ C1

∫ +∞

0

∥∂Et∥(Rn) dL1(t)

= C1∥Df∥(Rn)

= C1

∫
Rn

|Df | dLn(x),

where the RHS follows from the coarea formula (cf. Theorem (
t5.5-1
4.5.1)(i).)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6.3. Hn−1 and Cap1. We first define the p−capacity of a set A ⊆ Rn. Fix 1 ≤ p < n.

Definition (Kp). We define

Kp := {f : Rn → R : f ≥ 0, f ∈ Lp∗(Rn), Df ∈ Lp(Rn;Rn)}.

Definition (p−Capacity). For any A ⊆ Rn, we define the p−capacity of A by

Capp(A) := inf

{∫
Rn

|Df |p dLn : f ∈ Kp, A ⊂ {x ∈ Rn : f(x) ≥ 1}◦
}
.
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The following theorem is a first application of the isoperimetric inequalities.

t5.6-3 Theorem 4.6.3. Assume that A ⊂ Rn is compact. Then Cap1(A) = 0 if and only if Hn−1(A) =
0.

4.7. The Reduced Boundary. We now more closely examine the structure of sets of lo-
cally finite perimeter. Recall from §4.1 that given an open set Ω ⊂ Rn, a Lebesgue–
measurable set E ⊂ Rn is said to have locally finite perimeter in Ω if

1E ∈ BVloc(Ω).

We verify that such a set has a C1 boundary in a measure theoretical sense.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.7.1. Estimates. We assume that

E is a set of locally finite perimeter in Rn.

Recall that for a set of locally finite perimeter, the Structure Theorem (cf. (
t5.1-1
4.1.1)) states

that for all ϕ ∈ C1
c (Ω;Rn), ∫

E

div ϕ dLn(x) = −
∫
Ω

ϕ · σ dµ

for some Radon measure µ on Ω and a µ−measurable function σ : Ω → Rn such that
|σ(x)| = 1 µ−a.e. on Ω. Recall also that we write ∥∂E∥ for the perimeter measure µ and
νE := −σ.

Definition (Reduced Boundary). Let x ∈ Rn. We say that x ∈ ∂∗E, the reduced boundary
of E, if the following three conditions hold:

(i) ∥∂E∥(B(x, r)) > 0 for all r > 0;
(ii) limr→0 –

∫
B(x,r)

νE d∥∂E∥ = νE(x);

(iii) |νE(x)| = 1.

FIGURE 4.7.1. Normals to E and to B(x, r).
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We interpret ν as the outer unit normal to B(x, r) (or Ω) and νE as the outer unit normal
to E. We may also interpret the reduced boundary as a measure–theoretic smooth bound-
ary – note that, given that E is a set of locally finite perimeter, then Hn−1−a.e. point
x ∈ ∂E belongs to ∂∗E and an outer unit normal to E exists at such points x.

Remark. Notice that
∥∂E∥(Rn \ ∂∗E) = 0.

l5.7-1 Lemma 4.7.1. Let ϕ ∈ C1
c (Rn;Rn). Then for each x ∈ Rn,∫

E∩B(x,r)

div ϕ dLn =

∫
B(x,r)

ϕ · νE d∥∂E∥+
∫
E∩∂B(x,r)

ϕ · ν dHn−1

for L1−a.e. r > 0, where ν denotes the outward unit normal to ∂B(x, r).

Proof. Assume that h : Rn → R is smooth. Then by the product rule,∫
E

div(hϕ) dLn =

∫
E

h div ϕ dLn +

∫
E

Dh · ϕ dLn.

Thus ∫
Rn

hϕ · νE d∥∂E∥ =

∫
E

h div ϕ dLn +

∫
E

Dh · ϕ dLn. (4.7.1) {eq:5.7-1}

By approximation, (
eq:5.7-1
4.7.1) holds also for

hϵ(y) := gϵ(|y − x|),
where

gϵ(s) :=


1, 0 ≤ s ≤ r,
r−s+ϵ

ϵ
, r ≤ s ≤ r + ϵ,

0, s ≥ r + ϵ.

Notice that

g′ϵ(s) =

{
0, 0 ≤ s < r or s > r + ϵ,

−1
ϵ
, r < s < r + ϵ,

and therefore

Dhϵ(y) =

{
0, |y − x| < r or |y − x| > r + ϵ,

−1
ϵ

y−x
|y−x| , r < |y − x| < r + ϵ.

Setting h = hϵ in (
eq:5.7-1
4.7.1), we obtain∫

Rn

hϵϕ · νE d∥∂E∥ =

∫
E

hϵ div ϕ dLn − 1

ϵ

∫
E∩{y:r<|y−x|<r+ϵ}

ϕ · y − x

|y − x|
dLn.

Letting ϵ → 0 and using polar coordinates (cf. Proposition (
p3.4-1
3.4.1)), we see that∫

B(x,r)

ϕ · νE d∥∂E∥ =

∫
E∩B(x,r)

div ϕ dLn −
∫
E∩∂B(x,r)

ϕ · ν dHn−1

for L1−a.e. r > 0. □

l5.7-2 Lemma 4.7.2. There exist positive constants A1, . . . , A5, depending only on n, such that for each
x ∈ ∂∗E,

(i) lim infr→0
Ln(B(x,r)∩E)

rn
> A1 > 0,

(ii) lim infr→0
Ln(B(x,r)\E)

rn
> A2 > 0,
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(iii) lim infr→0
∥∂E∥(B(x,r))

rn−1 > A3 > 0,

(iv) lim supr→0
∥∂E∥(B(x,r))

rn−1 ≤ A4,

(v) lim supr→0
∥∂(E∩B(x,r))(Rn)

rn−1 ≤ A5.

Proof.
i. Fix x ∈ ∂∗E. By Lemma (

l5.7-1
4.7.1), for L1−a.e. r > 0,

∥∂(E ∩B(x, r))∥(Rn) ≤ ∥∂E∥(B(x, r)) +Hn−1(E ∩ ∂B(x, r)). (4.7.2) {eq:5.7-2}

On the other hand, choose ϕ ∈ C1
c (Rn;Rn) such that

ϕ ≡ νE on B(x, r).

Then by Lemma (
l5.7-1
4.7.1),∫

B(x,r)

νE(x) · νE d∥∂E∥ = −
∫
E∩B(x,r)

νE(x) · ν dHn−1. (4.7.3) {eq:5.7-3}

Since x ∈ ∂∗E, we have

lim
r→0

νE(x) · –
∫

B(x,r)

νE d∥∂E∥ = |νE(x)|2 = 1.

Thus, for L1−a.e. sufficiently small r > 0, say, 0 < r < r0 = r0(x), (
eq:5.7-3
4.7.3) implies that

1

2
∥∂E∥(B(x, r)) ≤ Hn−1(E ∩ ∂B(x, r)). (4.7.4) {eq:5.7-4}

This and (
eq:5.7-2
4.7.2) give

∥∂(E ∩B(x, r))∥(Rn) ≤ 3Hn−1(E ∩ ∂B(x, r)) (4.7.5) {eq:5.7-5}

for L1−a.e. 0 < r < r0.
ii. Write g(r) := Ln(B(x, r) ∩ E). Then by switching to polar coordinates,

g(r) =

∫ r

0

Hn−1(∂B(x, s) ∩ E) ds,

so that g is absolutely continuous, and

g′(r) = Hn−1(∂B(x, r) ∩ E)

for L1−a.e. r > 0. Applying now the isoperimetric inequality and (
eq:5.7-5
4.7.5), we calculate

g(r)1−
1
n = Ln(B(x, r) ∩ E)1−

1
n ≤ C∥∂(B(x, r) ∩ E)∥(Rn)

≤ CHn−1(E ∩ ∂B(x, r))

= C1g
′(r)

for L1−a.e. r ∈ (0, r0). Thus
1

C1

≤ g(r)
1
n
−1g′(r) = n

(
g(r)

1
n

)′
,

and so
g(r)

1
n ≥ r

C1n
,

and
g(r) ≥ rn

(C1n)n
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for 0 < r < r0. This proves (i).
iii. Since for all ϕ ∈ C1

c (Rn;Rn), we have∫
E

div ϕ dLn +

∫
Rn\E

div ϕ dLn =

∫
Rn

div ϕ dLn = 0,

it is easy to verify that

∥∂E∥ = ∥∂(Rn \ E)∥, νE = −νRn\E.

Consequently, (ii) follows from (i).
iv. According to the relative isoperimetric inequality,

∥∂E∥(B(x, r))

rn−1
≥ Cmin

{
Ln(B(x, r) ∩ E)

rn
,
Ln(B(x, r) \ E)

rn

}n−1
n

,

and thus (iii) follows from (i) and (ii).
v. By (

eq:5.7-4
4.7.4),

∥∂E∥(B(x, r)) ≤ 2Hn−1(E ∩ ∂B(x, r)) ≤ Crn−1, 0 < r < r0,

and this proves (iv).
vi. Assertion (v) follows from (

eq:5.7-2
4.7.2) and (iv). The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.7.2. Blowup.

Definition (Hyperplane). For each x ∈ ∂∗E, we define the hyperplane

H(x) := {y ∈ Rn : νE(x) · (y − x) = 0}.

Definition (Half–Space). For each x ∈ ∂∗E, we define also the half–spaces

H+(x) := {y ∈ Rn : νE(x) · (y − x) ≥ 0, }
H−(x) := {y ∈ Rn : νE(x) · (y − x) ≤ 0}.

FIGURE 4.7.2. Half–Spaces.

We interpret H(x) as an “approximate tangent plane" to x ∈ ∂∗E, in the sense that H(x)
is the set of all points y in Rn such that y − x is orthogonal to the outer unit normal to E
at x. Note that clearly x ∈ H(x).
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Remark. Observe that y ∈ E∩B(x, r) if and only if gr(y) ∈ Er∩B(x, 1), where gr(y) := y−x
r
+x

and Er := {y ∈ Ω : |gr(y)| > r}.

t5.7-1 Theorem 4.7.1 (Blowup of Reduced Boundary). Assume that x ∈ ∂∗E. Then

1Er → 1H−(x) in L1
loc(Rn)

as r → 0.

FIGURE 4.7.3. Blowup of Reduced Boundary.

Thus for small enough r > 0, E ∩ B(x, r) approximately equals the half ball H−(x) ∩
B(x, r).

Proof.
i. Upon reorienting the boundary and axes if necessary, we may as well assume that

x = 0, νE(0) = en = (0, . . . , 0, 1),

H(0) = {y ∈ Rn : yn = 0},
H+(0) = {y ∈ Rn : yn ≥ 0},
H−(0) = {y ∈ Rn : yn ≤ 0}.

ii. Choose any sequence rk → 0. It suffices to show that there exists a subsequence
{sj}+∞

j=1 ⊂ {rk}+∞
k=1 such that

1Esj
→ 1H−(0) in L1

loc(Rn).

iii. Fix L > 0 and put
Dr := Er ∩B(0, L), gr(y) =

y

r
.

Then for any ϕ ∈ C1
c (Rn;Rn), |ϕ| ≤ 1, we have∫

Dr

div ϕ(z) dLn(z) =
1

rn−1

∫
E∩B(0,rL)

div(ϕ ◦ gr)(y) dLn(y)

=
1

rn−1

∫
Rn

(ϕ · gr) · νE∩B(0,rL) d∥∂(E ∩B(0, rL))

≤ ∥∂(E ∩B(0, rL))∥(Rn)

rn−1

≤ C < +∞
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for all r > 0 such that 0 < r < r0, for some r0 > 0, according to Lemma (
l5.7-2
4.7.2). Conse-

quently
∥∂Dr∥(Rn) ≤ C < +∞, 0 < r < r0,

and furthermore,

∥1Dr∥L1(Rn) = Ln(Dr) ≤ Ln(B(0, L)) < +∞, r > 0.

Hence
∥1Dr∥BV (Rn) ≤ C < +∞

for all 0 < r < r0.
In view of this estimate and Theorem (

t5.2-4
4.2.4), there exists a subsequence {sj}+∞

j=1 of
{rk}+∞

k=1 and a function f ∈ BVloc(Rn) such that, writing Ej = Esj , we have

1Ej
→ f in L1

loc(Rn).

Passing to a further subsequence if necessary, we may also assume that 1Ej
→ f Ln−a.e.

Hence, being the pointwise a.e. limit of indicator functions, f(x) ∈ {0, 1} for Ln−a.e. x
and so

f = 1F Ln − a.e.,
where F ⊂ Rn has locally finite perimeter. Hence if ϕ ∈ C1

c (Rn;Rn),∫
F

div ϕ dLn =

∫
Rn

ϕ · νF d∥∂F∥, (4.7.6) {eq:5.7-6}

for some ∥∂F∥−measurable function νF , with |νF | = 1 ∥∂F∥−a.e.
To complete the proof, it remains to show that F = H−(0).
iv. We first claim that νF = en ∥∂F∥−a.e.
To show this, write νj := νEj

. Then if ϕ ∈ C1
c (Rn;Rn), it follows∫

Rn

ϕ · νj d∥∂Ej∥ =

∫
Ej

div ϕ dLn, j ∈ N.

Since
1Ej

→ 1F in L1
loc(Rn),

we see from the above and (
eq:5.7-6
4.7.6) that∫

Rn

ϕ · νj d∥∂Ej∥ →
∫
Rn

ϕ · νF d∥∂F∥ as j → +∞.

Thus
νj∥∂Ej∥ ⇀ νF∥∂F∥

weakly in the sense of Radon measures. Consequently, for every L > 0 such that ∥∂F∥(∂B(0, L)) =
0, and hence for all but at most countably many L > 0,∫

B(0,L)

νj d∥∂Ej∥ →
∫
B(0,L)

νF d∥∂F∥. (4.7.7) {eq:5.7-7}

On the other hand, for all ϕ ∈ C1
c (Rn;Rn) as above,∫

Rn

ϕ · νj d∥∂Ej∥ =
1

sn−1
j

∫
Rn

(ϕ ◦ gsj) · νE d∥∂E∥,
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so that 
∥∂Ej∥(U(0, L)) = 1

sn−1
j

∥∂E∥(B(0, sjL)),∫
B(0,L)

νj d∥∂Ej∥ =
1

sn−1
j

∫
B(0,sjL)

νE d∥∂E∥.
(4.7.8) {eq:5.7-8}

Therefore

lim
j→+∞

–
∫

B(0,L)

νj d∥∂Ej∥ = lim
j→+∞

–
∫

B(0,sjL)

νE d∥∂E∥ = νE(0) = en,

since 0 ∈ ∂∗E. If ∥∂F∥(∂B(0, L)) = 0, the Lower Semicontinuity Theorem (cf. Theorem
(
t5.2-1
4.2.1)) implies that

∥∂F∥(B(0, L)) ≤ lim inf
j→+∞

∥∂Ej∥(B(0, L))

= lim
j→+∞

∫
B(0,L)

en · νj d∥∂Ej∥

=

∫
B(0,L)

en · νF d∥∂F∥,

where the RHS follows from (
eq:5.7-7
4.7.7). Since |νF | = 1 ∥∂F∥−a.e., the above inequality forces

νF = en ∥∂F∥ − a.e.

It also follows from the above inequality that

∥∂F∥(B(0, L)) = lim
j→+∞

∥∂Ej∥(B(0, L))

whenever ∥∂F∥(∂B(0, L)) = 0. This shows (iv).
v. We next show that F is a half–space.
To see this, by (iv), for all ϕ ∈ C1

c (Rn;Rn),∫
F

div ϕ dLn(z) =

∫
Rn

ϕ · en d∥∂F∥.

Fix ϵ > 0 and let fϵ := ηϵ ∗ 1F , where ηϵ is the usual mollifier. Then fϵ ∈ C∞(Rn), and thus∫
Rn

fϵ div ϕ dLn(z) =

∫
F

div(ηϵ ∗ ϕ) dLn(z) =

∫
Rn

ηϵ ∗ (ϕ · en) d∥∂F∥.

On the other hand, integration by parts gives∫
Rn

fϵ div ϕ dLn(z) = −
∫
Rn

Dfϵ · ϕ dLn(z).

Hence
∂fϵ
∂zi

= 0, i = 1, . . . , n− 1,
∂fϵ
∂zn

≤ 0.

Since fϵ → 1F Ln−a.e. as ϵ → 0, we conclude that, up to a set of Ln−measure zero, for
some γ ∈ R,

F = {y ∈ Rn : yn ≤ γ}
vi. We lastly show that F = H−(0).
We must show that γ = 0 above. By contradiction, suppose instead that γ > 0. Since

1Ej
→ 1F in L1

loc(Rn),

α(n)γn = Ln(B(0, γ) ∩ F ) = lim
j→+∞

Ln(B(0, γ) ∩ Ej)
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= lim
j→+∞

Ln(B(0, γsj) ∩ E)

snj
,

a contradiction to Lemma (
l5.7-2
4.7.2)(ii).

Similarly, the case γ < 0 leads to a contradiction to Lemma (
l5.7-2
4.7.2)(i). □

We provide more detailed information regarding the blowup of E around a point x ∈
∂∗E.

c5.7-1 Corollary 4.7.1. Assume that x ∈ ∂∗E. Then

(i) limr→0
Ln(B(x,r)∩E∩H+(x))

rn
= 0 and limr→0

Ln((B(x,r)\E)∩H−(x))
rn

= 0, and
(ii) limr→0

∥∂E∥(B(x,r))
α(n−1)rn−1 = 1.

Definition (Measure Theoretic Unit Outer Normal). A unit vector νE(x) for which (i) holds
with H± as defined above is called the measure theoretic unit outer normal to E at x.

Proof.
i. We have

Ln(B(x, r) ∩ E ∩H+(x))

rn
= Ln(B(x, 1) ∩ Er ∩H+(x))

→ Ln(B(x, 1) ∩H−(x) ∩H+(x))

= 0

as r → 0. The other limit in (i) is similar.
ii. Assume that x = 0. By (

eq:5.7-8
4.7.8),

∥∂E∥(B(0, r))

rn−1
= ∥∂Er∥(B(0, 1)).

Since ∥∂H−(0)∥(∂B(0, 1)) = Hn−1(∂B(0, 1) ∩H(0)) = 0, part (ii) of the proof of Theorem
(
t5.7-1
4.7.1) implies that

lim
r→0

∥∂E∥(B(0, r))

rn−1
= ∥∂H−(0)∥(B(0, 1))

= Hn−1(B(0, 1) ∩H(0))

= α(n− 1),

as required. The proof is complete. □

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.7.3. Structure Theorem for Sets of Finite Perimeter.

l5.7-3 Lemma 4.7.3. There exists a constant C > 0, depending only on n, such that

Hn−1(B) ≤ C∥∂E∥(B)

for all B ⊂ ∂∗(E).
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Proof. Let ϵ, δ > 0, and B ⊂ ∂∗E. Since ∥∂E∥ is a Radon measure, there exists an open set
U containing B such that

∥∂E∥(U) ≤ ∥∂E∥(B) + ϵ.

Now according to Lemma (
l5.7-2
4.7.2), if x ∈ ∂∗E, then

lim inf
r→0

∥∂E∥(B(x, r))

rn−1
> A3 > 0.

Put

F :=

{
B(x, r) : x ∈ B,B(x, r) ⊂ U, r <

δ

10
, ∥∂E∥(B(x, r)) > A3r

n−1

}
.

By the Vitali 5r−Covering Lemma, there exist disjoint balls {B(xi, ri)}+∞
i=1 ⊂ F such that

B ⊂
+∞⋃
i=1

B(xi, 5ri).

Since ri <
δ
10

, so that diam(B(xi, 5ri)) ≤ δ for each i ∈ N, we have

Hn−1
δ (B) ≤

+∞∑
i=1

α(n− 1)(5ri)
n−1 ≤ C

+∞∑
i=1

∥∂E∥(B(xi, ri))

≤ C∥∂E∥(U)

≤ C(∥∂E∥(B) + ϵ).

Letting ϵ → 0 and then δ → 0, we find

Hn−1(B) ≤ C∥∂E∥(B),

as required. The proof is complete. □

Finally, we show that a set of locally finite perimeter has a “measure theoretically C1

boundary."

t5.7-2 Theorem 4.7.2 (Structure Theorem for Sets of Finite Perimeter). Assume that E has locally
finite perimeter in Rn. Then

(i)

∂∗E =

(
+∞⋃
k=1

Kk

)
∪N,

where
∥∂E∥(N) = 0

and Kk is a compact subset of a C1 hypersurface Sk, k ∈ N;
(ii) Furthermore, νE|Sk

is normal to Sk, k ∈ N;
(iii) ∥∂E∥ = Hn−1 ∂∗E.

Remark. Theorem (
t5.7-2
4.7.2) states that the reduced boundary ∂∗E is a countable union of compact

subsets of C1−smooth hypersurfaces with a set of ∥∂E∥−measure zero, on which an outward
unit normal is defined and given by νE, and lastly that the perimeter measure ∥∂E∥ of E is just
(n− 1)−dimensional Hausdorff measure restricted to the reduced boundary ∂∗E.
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Proof.
i. For each x ∈ ∂∗E, we have according to Corollary (

c5.7-1
4.7.1) that

lim
r→0

Ln(B(x, r) ∩ E ∩H+(x))

rn
= 0,

lim
r→0

Ln((B(x, r) \ E) ∩H−(x))

rn
= 0.

(4.7.9) {eq:5.7-9}

Using Egorov’s Theorem, we obtain disjoint ∥∂E∥−measurable sets {Fi}+∞
i=1 ⊂ ∂∗E such

that {
∥∂E∥

(
∂∗E \

⋃+∞
i=1 Fi

)
= 0, ∥∂E∥(Fi) < +∞,

the convergence in (
eq:5.7-9
4.7.9) is uniform for x ∈ Fi, i ∈ N.

Then by Lusin’s Theorem, for each i ∈ N there exist disjoint compact sets {Ej
i }+∞

j=1 ⊂ Fi

such that {
∥∂E∥

(
Fi \

⋃+∞
j=1 E

j
i

)
= 0,

νE|Ej
i

is continuous.

Reindex the sets {Ej
i }+∞

j=1 and call the collection {Kk}+∞
k=1. Then

∂∗E =
(⋃+∞

k=1Kk

)
∪N, ∥∂E∥(N) = 0,

the convergence in (
eq:5.7-9
4.7.9) {eq:5.7-10}is uniform on Kk,

νE|Kk
is continuous, k ∈ N.

(4.7.10) {eq:5.7-10}

ii. Define for any δ > 0

ρk(δ) := sup

{
|νE(x) · (y − x)|

|y − x|
: 0 < |x− y| ≤ δ, x, y ∈ Kk

}
.

Note that ρk(δ) may be interpreted as a sort of upper Lipschitz constant of the inner prod-
uct of νE(x) · (y − x) over all x, y ∈ Kk such that dist(x, y) is small enough.

iii. We next claim that for each k ∈ N, ρk(δ) → 0 as δ → 0.
To see this, we first may as well assume that k = 1. Fix 0 < ϵ < 1. By (

eq:5.7-9
4.7.9) and (

eq:5.7-10
4.7.10)

there exists 0 < δ < 1 such that if z ∈ K1 and r < 2δ, then
Ln(E ∩B(z, r) ∩H+(z)) <

ϵn

2n+2
α(n)rn,

Ln(E ∩B(z, r) ∩H−(z)) > α(n)

(
1

2
− ϵn

2n+2

)
rn.

(4.7.11) {eq:5.7-11}

Assume now that x, y ∈ K1 with 0 < |x− y| ≤ δ.
Case 1: νE(x) · (y − x) > ϵ|x− y|.
In this case, since ϵ < 1, we have

B(y, ϵ|x− y|) ⊂ H+(x) ∩B(x, 2|x− y|). (4.7.12) {eq:5.7-12}

To see this, observe that if z ∈ B(y, ϵ|x− y|), then z = y + w, where |w| ≤ ϵ|x− y|, so that

νE(x) · (z − x) = νE(x) · (y − x) + νE(x) · w > ϵ|x− y| − |w| ≥ 0.

On the other hand, (
eq:5.7-11
4.7.11) with z = x implies that

Ln(E ∩B(x, 2|x− y|) ∩H+(x)) <
ϵn

2n+2
α(n)(2|x− y|)n
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=
ϵnα(n)

4
|x− y|n,

and (
eq:5.7-11
4.7.11) with z = y implies that

Ln(E ∩B(y, ϵ|x− y|)) ≥ Ln(E ∩B(y, ϵ|x− y|) ∩H−(y))

≥ ϵnα(n)|x− y|n

2

(
1− ϵn

2n+1

)
>

ϵnα(n)

4
|x− y|n.

However, applying Ln E to both sides of (
eq:5.7-12
4.7.12) yields the estimate

Ln(E ∩B(y, ϵ|x− y|)) ≤ Ln(E ∩B(x, 2|x− y|) ∩H+(x)),

which is impossible according to the above inequalities.
Case 2: νE(x) · (y − x) < −ϵ|x− y|.
This case similarly leads to a contradiction.
Thus it must be the case that |νE(x)·(y−x)| ≤ ϵ|y−x| for all x, y ∈ K1 with 0 < |x−y| < δ.

Hence ρk(δ) → 0 as δ → 0 for each k ∈ N, as required. This proves the claim in (iii).
iv. We now apply the Whitney Extension theorem with

f = 0, d = νE on Kk.

We conclude that there exist C1−functions fk : Rn → R such that

fk = 0 on Kk, Dfk = νE on Kk.

Put

Sk :=

{
x ∈ Rn : fk = 0, |Dfk| >

1

2

}
, k ∈ N.

By the implicit function theorem, Sk is a C1, (n − 1)−dimensional submanifold of Rn.
Clearly Kk ⊂ Sk. This proves assertions (i) and (ii) of the theorem.

v. Choose a Borel set B ⊂ ∂∗E. According to Lemma (
l5.7-3
4.7.3),

Hn−1(B ∩N) ≤ C∥∂E∥(B ∩N) = 0.

Thus we may as well assume that B ⊂ ∪+∞
k=1Kk, and in fact B ⊂ K1. By assertion (ii), there

exists a C1−hypersurface S1 ⊃ K1. Let

ν := Hn−1 S1.

Since S1 is C1,

lim
r→0

ν(B(x, r))

α(n− 1)rn−1
= 1, x ∈ B.

Thus Corollary (
c5.7-1
4.7.1)(ii) implies that

lim
r→0

ν(B(x, r))

∥∂E∥(B(x, r))
=

limr→0
ν(B(x,r))

α(n−1)rn−1

limr→0
∥∂E∥(B(x,r))
α(n−1)rn−1

= 1, x ∈ B.

Since ν and ∥∂E∥ are Radon measures, we obtain

∥∂E∥(B) = ν(B) = Hn−1(B),

as required. Note that this is for any B ⊂ ∂∗E. The proof is complete. □
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