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1. Preliminaries

This last week in class, we discussed the computation of triple integrals in cylindrical and
spherical coordinates. In particular, we found that cylindrical coordinates are particularly
useful when the projection of our region of integration to the xy−plane can easily be described
in polar coordinates (spheres, cones, and cylinders are all good examples), and spherical
coordinates are nice when we have radial symmetry – symmetry about a point in 3–space
(think spheres and cones).

In class, I briefly tried to demonstrate that changing coordinates in integration is just
“jacked–up u–substitution.” In these notes I will attempt to elaborate further on these simi-
larities.

2. A Review of U–Substitution

Our discussion of cylindrical and spherical coordinates will be very abstract, so let us first
consider the following example of u–substitution from single variable calculus to build some
intuition.

Example 2.1. Consider the problem of evaluating the integral∫ 1

0
xe2x2

dx.

From single–variable calculus, we know to let u = 2x2, and we compute du = 4x dx. Thus
the integration problem becomes ∫ 2

0
eu du

4
,

and evaluating the integral, we find that∫ 1

0
xe2x2

dx =
∫ 2

0
eudu

4

= eu

4

∣∣∣∣∣
2

0

= e2

4
− 1

4
.
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MATH 2110Q Change of Coordinates

We will see that there is quite a bit of machinery which is obscured in this above process.
In fact what we have done here is make the following coordinate transformation in order to
make this integration easier to calculate:

Ψ : [0, 1] ⊆ R → [0, 2] ⊆ R,
Ψ : x 7→ 2x2 = u.

That is, the function Ψ takes in x−coordinates and spits out u−coordinates.
One other note: the function Ψ here is differentiable. Thus when we make this coordinate

transformation, we are also inducing a transformation on the level of derivatives: this is
precisely the reason we need to compute du = 4x dx. If we differentiate Ψ with respect to
x, we compute

Ψ′(x) = 4x,
and we see that this matches exactly the 4x term in the u−substitution “du = 4x dx.”
As we will see in later sections, this factor 4x is called the Jacobian determinant of the
transformation (sometimes this factor is also confusingly just called the Jacobian out of
laziness, and as we will see, the Jacobian is a matrix of all the partial derivatives of a
function – it is not a number).

Let us now move on to a discussion of cylindrical and spherical coordinates in R3, and
try to compare triple integration in these coordinate systems with standard u−substitution
from single variable calculus.

3. Cylindrical Coordinates

Let us fix a point P (r, θ, z) ∈ R3 in cylindrical coordinates in our minds. We recall the
following equations from our discussion of cylindrical coordinates:

x = r cos θ,
y = r sin θ, (3.1)
z = z.

We may write these equations (3.1) conveniently as the following parameterization from

Figure 1. Cylindrical Coordinates.
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cylindrical coordinates to rectangular coordinates:

Ψ : R3
r,θ,z → R3

x,y,z,

Ψ : (r, θ, z) 7→ (r cos θ, r sin θ, z) = (x, y, z). (3.2)

To reiterate: Ψ here is a vector–valued function which takes in cylindrical coordinates and
spits out rectangular coordinates by the formula

Ψ(r, θ, z) = (r cos θ, r sin θ, z).

Now let us consider the problem of integrating a function f(x, y, z) over some cylindrical
region E described by

E =


α ≤ θ ≤ β,

a ≤ r ≤ b,

c ≤ z ≤ d.

Using the equations (3.1) and our description of the region E, what we find is that∫∫∫
Ψ(E)

f(x, y, z) dVx,y,z =
∫∫∫

E
f(r cos θ, r sin θ, z) dVr,θ,z.

The only matter left to discuss is how we convert dVx,y,z to dVr,θ,z, that is, how to con-
vert something like dxdydz to dzdrdθ (think about how we have to convert dx to du in
u−substitution.) If our change in coordinates in 3−space is to have any relation whatsoever
with u−substitution in single–variable calculus, we should expect to get a “scaling factor”
in this conversion, and we should expect this scaling factor to be given by “differentiating”
dxdydz, similarly to how we “differentiated” du to get 4x dx in our Example (2.1).

The question we should ask ourselves here is how do we differentiate dxdydz? If we
compare with Example (2.1), our coordinate transformation in our example was Ψ(x) = 2x2,
and, upon differentiating, we found that Ψ′(x) = 4x, which is exactly the scaling factor
we wanted in our integration. Note by (3.2) that our coordinate transformation here is
Ψ(r, θ, z) = (r cos θ, r sin θ, z). But the question that still remains is how can we differentiate
Ψ(r, θ, z) here? Well, Ψ is a function of three variables r, θ, and z, and each component
function (r cos θ, r sin θ, z) of Ψ(r, θ, z) is itself differentiable with respect to each of these
variables. So, a reasonable way to think of differentiating Ψ would be to differentiate each
component function with respect to each variable r, θ, and z. This is in fact how we will go
about differentiating Ψ, but first let us define the following functions to make our notation
(and thus, our future calculations) simpler:

ψ1(r, θ, z) = r cos θ,
ψ2(r, θ, z) = r sin θ,
ψ3(r, θ, z) = z.

Observe here that we may write

Ψ(r, θ, z) = (r cos θ, r sin θ, z)
= (ψ1(r, θ, z), ψ2(r, θ, z), ψ3(r, θ, z)).

Thus how we are going to differentiate Ψ(r, θ, z) is by differentiating each of ψ1(r, θ, z), ψ2(r, θ, z),
and ψ3(r, θ, z) with respect to r, θ, and z. In fact, we will form the following matrix of partial
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derivatives:

DΨ =



∂ψ1

∂r

∂ψ1

∂θ

∂ψ1

∂z

∂ψ2

∂r

∂ψ2

∂θ

∂ψ2

∂z

∂ψ3

∂r

∂ψ3

∂θ

∂ψ3

∂z


.

Upon computing each of the partial derivatives in the above matrix DΨ, what we should
find is

DΨ =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 .
This is called the Jacobian matrix of the transformation Ψ(r, θ, z).

Let us take a step back and recall what we are trying to accomplish in this process. We
want to set up the integral ∫∫∫

E
f(r cos θ, r sin θ, z) dVr,θ,z

in cylindrical coordinates. To do this, we need to convert dxdydz to dzdrdθ. Further, to
do this, we need to include a scaling factor that tells us how our coordinate transformation
Ψ(r, θ, z) affects volumes of cylindrical regions like E.

The problem we have right now is that our Jacobian matrix DΨ is just that – a matrix,
not a number we can take as our scaling factor. So the question becomes: can we get a
number out of DΨ that we can take as our scaling factor (one that tells us how the volume
of regions like E change under our coordinate transformation Ψ)? The answer is yes.

Let us recall from linear algebra that the determinant of a 3 × 3 matrix tells us how the
volume of a box changes under our transformation (if you haven’t taken linear algebra yet,
it is okay to take this as a black box for now). Specifically, since the partial derivatives
with respect to r, θ, and z tell us how much a given function changes in infinitesimal in-
tervals around r, θ, and z, respectively, we can view our Jacobian matrix DΨ as telling us
how much the volume of an infinitesimal box around (r, θ, z) changes under our transfor-
mation Ψ(r, θ, z). Thus, if we want our triple integral

∫∫∫
E f(r cos θ, r sin θ, z) dVr,θ,z to tell

us anything about the volume of our region E, the determinant of the Jacobian matrix DΨ
is exactly the scaling factor we want to include in our integration – again, this is because
the determinant tells us how our coordinate transformation affects volumes. Thus, what our
integral will become is:∫∫∫

E
f(r cos θ, r sin θ, z) dVr,θ,z =

∫ β

α

∫ b

a

∫ d

c
f(r cos θ, r sin θ, z) · | det(DΨ)| dzdrdθ. (3.3)

We compute the following determinant by cofactor expansion (again, if you haven’t taken
linear algebra yet, think about how we computed cross products early on in the semester):

det(DΨ) = det


cos θ −r sin θ 0

sin θ r cos θ 0
0 0 1




= cos θ det
([
r cos θ 0

0 1

])
− (−r sin θ) det

([
sin θ 0

0 1

])
+ 0 det

([
sin θ r cos θ

0 0

])
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= (cos θ)(r cos θ) + (r sin θ)(sin θ)
= r(cos2 θ + sin2 θ)
= r.

Inserting this calculation in for det(DΨ) in (3.3), we obtain∫∫∫
E
f(r cos θ, r sin θ, z) dVr,θ,z =

∫ β

α

∫ b

a

∫ d

c
f(r cos θ, r sin θ, z) rdzdrdθ,

which is exactly the formula we learned in class.

4. A Computation Using Differential Forms

A more advanced computation of this scaling factor r is as follows. The objects “dx,”
“dy,” and “dz” that appear in triple integration have a name: they are called 1–forms,
or covectors. You can think of a 1–form as a function that takes in vectors and spits out
numbers. For example, let us fix the vector u = ⟨1, 2, 3⟩ in our minds. The 1–form dx tells
us the x−coordinate of the vector u, dy tells us the y−coordinate of u, and dz tells us the
z−coordinate of u. That is,

dx(u) = dx(⟨1, 2, 3⟩) = 1,
dy(u) = dy(⟨1, 2, 3⟩) = 2,
dz(u) = dz(⟨1, 2, 3⟩) = 3.

Now recall from Equations (3.1) that
x = r cos θ,
y = r sin θ,
z = z.

Since our integral in cylindrical coordinates involves dr, dθ, and dz, and not dx, dy, and dz,
we want to compute what dr, dθ, and dz are using the above equations. If we differentiate
both sides of the above equations, we obtain

dx = d(r cos θ),
dy = d(r sin θ), (4.1)
dz = d(z).

Now we may treat “d” like the derivative, so it respects all the rules the usual derivative
does which you have learned from single variable and multivariable calculus. We compute
the right–hand sides of Equations (4.1):

dx = d(r cos θ) = (dr) cos θ + r · d(cos θ) = cos θ dr − r sin θ dθ,
dy = d(r sin θ) = (dr) sin θ + r · d(sin θ) = sin θ dr + r cos θ dθ, (4.2)

dz = dz,

where the second equality in lines 1 and 2 follow from product rule, and the third equality
in lines 1 and 2 follows from chain rule on cos θ and sin θ, respectively. Compare these
Equations (4.2) with the Jacobian DΨ found in the previous section.

Note that we have written the 1–forms dx, dy, and dz in terms of the 1–forms dr, dθ, and
dz. We may define a multiplication rule between two 1–forms to get a 2-form, and between
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three 1–forms to get a 3-form. The rule we need to know is that whenever we swap the order
of two 1–forms, we need to negate the result. For instance:

dxdy = −dydx.

Note that this means that drdr, dθdθ, and dzdz are all zero, because:
drdr = −drdr =⇒ 2drdr = 0 =⇒ drdr = 0,

and similarly for dθdθ and dzdz. This multiplication rule is made to coincide with taking the
determinant of a matrix (if we swap two rows of a matrix, we need to negate its determinant).

Since our cylindrical integral uses the order dzdrdθ, we will express our 3–form in this
order as well. Let us first compute dxdy. We find, using Equations (4.2):

dxdy = (cos θ dr − r sin θ dθ)(sin θ dr + r cos θ dθ)
= cos θ sin θ drdr + r cos2 θ drdθ − r sin2 θ dθdr − r2 sin θ cos θ dθdθ
= r cos2 θ drdθ − r sin2 θ dθdr

= r cos2 θ drdθ + r sin2 θ drdθ

= r(cos2 θ + sin2 θ) drdθ
= r drdθ,

where the third line follows from the fact that drdr = 0 and dθdθ = 0, and the fourth line
follows from swapping the order of dθdr with drdθ. That is,

dxdy = r drdθ,

which should be familiar from polar coordinates. If we multiply on the right by dz, we find
that

dxdydz = r drdθdz = −r drdzdθ = r dzdrdθ,

and we see again that this scaling factor r falls out naturally.
As a last side note to close this section, we call dxdydz the volume form of R3 in rectangular

coordinates, and r dzdrdθ is called the volume form of R3 in cylindrical coordinates.

5. Spherical Coordinates

We now turn to a discussion of spherical coordinates, so let us fix a new point P (ρ, θ, ϕ) ∈
R3 in our minds. Recall the following equations from class:

x = ρ sinϕ cos θ,
y = ρ sinϕ sin θ, (5.1)
z = ρ cosϕ.

We may write these Equations (5.1) as the following coordinate transformation:
Ψ : R3

ρ,θ,ϕ → R3
x,y,z,

Ψ : (ρ, θ, ϕ) 7→ (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) = (x, y, z). (5.2)
Here Ψ is a vector–valued function that takes in spherical coordinates and spits out rectan-
gular coordinates by the rule

Ψ(ρ, θ, ϕ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ).
6
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Figure 2. Spherical Coordinates.

We again want to consider integrating some function f(x, y, z) over a new spherical region
E :

E =


α ≤ θ ≤ β,

γ ≤ ϕ ≤ δ,

a ≤ ρ ≤ b.

Combining Equations (5.1) and the bounds given by our region E, we see that we want to
compute the following integral:

∫∫∫
Ψ(E)

f(x, y, z) dVx,y,z =
∫∫∫

E
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) dVρ,θ,ϕ.

We see again that we have to convert dVx,y,z to dVρ,θ,ϕ. We will again compute the Jacobian
determinant of the transformation. Let us write

ψ1(ρ, θ, ϕ) = ρ sinϕ cos θ,
ψ2(ρ, θ, ϕ) = ρ sinϕ sin θ,
ψ3(ρ, θ, ϕ) = ρ cosϕ,

so that we have

Ψ(ρ, θ, ϕ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)
= (ψ1(ρ, θ, ϕ), ψ2(ρ, θ, ϕ), ψ3(ρ, θ, ϕ)).

7



MATH 2110Q Change of Coordinates

Thus our Jacobian matrix DΨ can be written as

DΨ =



∂ψ1

∂ρ

∂ψ1

∂θ

∂ψ1

∂ϕ

∂ψ2

∂ρ

∂ψ2

∂θ

∂ψ2

∂ϕ

∂ψ3

∂ρ

∂ψ3

∂θ

∂ψ3

∂ϕ


,

and, after computing each of the partial derivatives in DΨ, we should have

DΨ =

sinϕ cos θ −ρ sinϕ sin θ ρ cosϕ cos θ
sinϕ sin θ ρ sinϕ cos θ ρ cosϕ sin θ

cosϕ 0 −ρ sinϕ

 .
Since the determinant of this matrix tells us how volume changes under the transformation
Ψ, we must again include this information in our spherical integral. Hence, the integral we
want is:∫∫∫

E
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) dVρ,θ,ϕ

=
∫ β

α

∫ δ

γ

∫ b

a
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) · | det(DΨ)| dρdϕdθ. (5.3)

Computing this determinant det(DΨ) by cofactor expansion, we obtain

det(DΨ) = det


sinϕ cos θ −ρ sinϕ sin θ ρ cosϕ cos θ

sinϕ sin θ ρ sinϕ cos θ ρ cosϕ sin θ
cosϕ 0 −ρ sinϕ




= sinϕ cos θ · det
([
ρ sinϕ cos θ ρ cosϕ sin θ

0 −ρ sinϕ

])
−

(−ρ sinϕ sin θ) · det
([

sinϕ sin θ ρ cosϕ sin θ
cosϕ −ρ sinϕ

])
+

ρ cosϕ cos θ · det
([

sinϕ sin θ ρ sinϕ cos θ
cosϕ 0

])
= (sinϕ cos θ) · (−ρ2 sin2 ϕ cos θ) + (ρ sinϕ sin θ) · (−ρ sin2 ϕ sin θ − ρ cos2 ϕ sin θ) +

(ρ cosϕ cos θ) · (−ρ sinϕ cos θ cosϕ)
= −ρ2 sin3 ϕ cos2 θ − ρ2 sin3 ϕ sin2 θ − ρ2 sinϕ sin2 θ cos2 ϕ− ρ2 sinϕ cos2 ϕ cos2 θ

= (−ρ2 sin3 ϕ) · (cos2 θ + sin2 θ) − (ρ2 sinϕ cos2 ϕ) · (sin2 θ + cos2 θ)
= −ρ2 sin3 ϕ− ρ2 sinϕ cos2 ϕ

= (−ρ2 sinϕ) · (sin2 ϕ+ cos2 ϕ)
= −ρ2 sinϕ.

Noting that we restrict ϕ to lie in the interval 0 ≤ ϕ ≤ π, where sinϕ ≥ 0, taking the
absolute value | det(DΨ)| gives

| det(DΨ)| = ρ2 sinϕ,
8
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as we know we wanted from class. Inserting this factor into the integral in (5.3), we obtain∫ β

α

∫ δ

γ

∫ b

a
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) · | det(DΨ)| dρdϕdθ

=
∫ β

α

∫ δ

γ

∫ b

a
f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) · ρ2 sinϕ dρdϕdθ,

which is the spherical integral we found in class.
The analogous computation using differential forms gets very messy. Recalling from Equa-

tions (5.1) that
x = ρ sinϕ cos θ,
y = ρ sinϕ sin θ,
z = ρ cosϕ.

We compute, using the product rule,
dx = sinϕ cos θ dρ+ ρ cosϕ cos θ dϕ− ρ sinϕ sin θ dθ,
dy = sinϕ sin θ dρ+ ρ cosϕ sin θ dϕ+ ρ sinϕ cos θ dθ, (5.4)

dz = cosϕ dρ− ρ sinϕ dϕ

(compare again these equations with the Jacobian DΨ). We first multiply dx and dy, to find
dxdy = (sinϕ cos θ dρ+ ρ cosϕ cos θ dϕ− ρ sinϕ sin θ dθ) ×

(sinϕ sin θ dρ+ ρ cosϕ sin θ dϕ+ ρ sinϕ cos θ dθ)
= sin2 ϕ cos θ sin θ dρdρ+ ρ sinϕ cos θ cosϕ sin θ dρdθ +

ρ sin2 ϕ cos2 θ dρdθ + ρ cosϕ cos θ sinϕ sin θ dϕdρ +
ρ2 cos2 ϕ cos θ sin θ dϕdϕ+ ρ2 cosϕ cos2 θ sinϕ dϕdθ −
ρ sin2 ϕ sin2 θ dθdρ− ρ2 sinϕ sin2 θ cosϕ dθdϕ −
ρ2 sin2 ϕ sin θ cos θ dθdθ

= ρ sinϕ cos θ cosϕ sin θ + ρ sin2 ϕ cos2 θ dρdθ +
ρ cosϕ cos θ sinϕ sin θ dϕdρ+ ρ2 cosϕ cos2 θ sinϕ dϕdθ −
ρ sin2 ϕ sin2 θ dθdρ− ρ2 sinϕ sin2 θ cosϕ dθdϕ

= ρ sinϕ cos θ cosϕ sin θ dρdϕ− ρ cosϕ cos θ sinϕ sin θ dρdϕ +
ρ sin2 ϕ cos2 θ dρdθ + ρ sin2 ϕ sin2 θ dρdθ +
ρ2 cosϕ cos2 θ sinϕ dϕdθ + ρ2 sinϕ sin2 θ cosϕ dϕdθ

= ρ sin2 ϕ(cos2 θ + sin2 θ) dρdθ + ρ2 sinϕ cosϕ(cos2 θ + sin2 θ) dϕdθ
= ρ sin2 ϕ dρdθ + ρ2 sinϕ cosϕ dϕdθ,

where the third equality follows from applying dρdρ = dϕdϕ = dθdθ = 0, the fourth equality
follows from swapping differential forms where necessary, and the fifth equality follows from
canceling the top two terms in the line above. Finally, multiplying on the right by dz and
applying Equations (5.4) gives

dxdydz = (dxdy)(dz) = (ρ sin2 ϕ dρdθ + ρ2 sinϕ cosϕ dϕdθ)(cosϕ dρ− ρ sinϕ dϕ)
9
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= ρ sin2 ϕ cosϕ dρdθdρ− ρ2 sin3 ϕ dρdθdϕ+ ρ2 sinϕ cos2 ϕ dϕdθdρ −
ρ3 sin2 ϕ cosϕ dϕdθdϕ

= −ρ2 sin3 ϕ dρdθdϕ+ ρ2 sinϕ cos2 ϕ dϕdθdρ

= ρ2 sin3 ϕ dρdϕdθ − ρ2 sinϕ cos2 ϕ dϕdρdθ

= ρ2 sin3 ϕ dρdϕdθ + ρ2 sinϕ cos2 ϕ dρdϕdθ

= (ρ2 sinϕ)(sin2 ϕ+ cos2 ϕ) dρdϕdθ
= ρ2 sinϕ dρdϕdθ,

where the third equality follows from the fact that dρdθdρ = dϕdθdϕ = 0, and the remainder
follows from swapping differential forms where necessary. Again note that the term ρ2 sinϕ
pops out at the end of the computation. We call ρ2 sinϕ dρdϕdθ the volume form of R3 in
spherical coordinates.
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