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1. Normed Linear Spaces 1.1. Definitions and Examples

1. Normed Linear Spaces

This section gives an introduction to normed linear spaces. By a linear space we mean
that any linear combination of functions in the family will be another member of the family.
By a normed linear space we mean any linear space endowed with a norm.

1.1. Definitions and Examples.

Definition 1.1.1 (Real Vector Space (Real Linear Space)). A real vector space (or real
linear space) is a triple (X,+, ·) in which X is a set, and + and · are binary operations
satisfying the following ten axioms. Here we assume that x, y, z ∈ X and λ, µ ∈ R.

(1) x+ y ∈ X (closure)
(2) x+ y = y + x (commutativity)
(3) x+ (y + z) = (x+ y) + z (associativity)
(4) There exists a unique element 0 ∈ X such that x + 0 = x for all x ∈ X (additive

identity)
(5) For each x ∈ X there is a unique element (−x) ∈ X such that x+(−x) = 0 (additive

inverse)
(6) λ · x ∈ X (closure)
(7) λ · (x+ y) = λ · x+ λ · y (distributivity)
(8) (λ+ µ) · x = λ · x+ µ · x (distributivity)
(9) λ · (µ · x) = (λ · µ) · x (associativity)

(10) 1 · x = x (multiplicative identity/unity).

Note that the first five axioms define an additive abelian group. In axiom (4), note that
the uniqueness of 0 need not be mentioned, as it may be proved from axiom (2). To see this,
suppose that there are two additive identities, say 0∗ and 0∗∗. Then

0∗ = 0∗ + 0∗∗ = 0∗∗ + 0∗ = 0∗∗.

Also note that a consequence of axiom (7) is

λ
n∑
i=1

xi =
n∑
i=1

λxi.

We can also define a complex vector space X. In such a space λx is defined and is an
element of X whenever λ ∈ C and x ∈ X. We call the field elements λ the scalars and the
elements x of X the vectors.

Definition 1.1.2 (Norm). Let X be a linear space. A norm on X is a real–valued function,
denoted by ∥ · ∥, that satisfies the following three axioms:

(1) ∥x∥ > 0 for all x ∈ X such that x ̸= 0;
(2) ∥λx∥ = |λ|∥x∥ for all λ ∈ R and x ∈ X.
(3) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X (triangle inequality).

Definition 1.1.3 (Normed Linear Space). A linear space (X,+, ·) on which a norm has
been introduced is called a normed linear space.

Example 1.1.4. Let X = R, and define ∥x∥ = |x|.

Example 1.1.5. Let X = C, with scalar field also C. Define ∥x∥ = |x|, where |x| denotes
the modulus of x, that is, if x = a+ ib, |x| =

√
a2 + b2.
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1. Normed Linear Spaces 1.1. Definitions and Examples

Example 1.1.6. Let X = C and take the scalar field to be R. Note that this is now a real
vector space.

Example 1.1.7. Let X = Rn. Here the elements of X are n−tuples of real numbers
x = [x1, x2, . . . , xn]⊤.

One possible norm is defined by
∥x∥∞ = max

1≤i≤n
|xi|.

This is called the supremum/uniform/infinity norm.

Example 1.1.8. Let X = Rn, and define a norm by

∥x∥ =
n∑
i=1

|xi|.

Note that in this example and the previous example we have two distinct normed linear spaces,
but each involves the same linear space. Thus we may refer to a normed linear space as a
pair (X, ∥ · ∥), in which we specify the norm under consideration.

Example 1.1.9. Let X = C[a, b], the set of all real–valued continuous functions defined on a
fixed compact interval [a, b]. The supremum/infinity/uniform/maximum norm is defined by

∥x∥∞ = max
a≤t≤b

|x(t)|.

Example 1.1.10. Let X be the set of all Lebesgue–integrable functions defined on a fixed
compact interval [a, b]. The usual norm for this space is

∥x∥ =
∫ b

a
|x(t)| dt.

Note that in this space, the vectors are actually equivalence classes of functions, with two
functions being regarded as equivalent if they differ only on a set of measure zero.

Example 1.1.11. Let X = ℓ, the space of all sequences
{xn}∞

n=1 = {x1, x2, . . . , }

in which only a finite number of terms are nonzero. Define
∥x∥ = max

n
|xn|.

Example 1.1.12. Let X = ℓ∞, the space of all real sequences x for which supn |xn| < ∞.
Define

∥x∥ = sup
n

|xn|.

Example 1.1.13. Let X = Π, the space of all polynomials having real coefficients. A typical
element of Π is a function x having the form

x(t) = a0 + a1t+ a2t
2 + · · · + ant

n.

One possible norm on Π is ∥x∥ = maxi |ai|. Others are ∥x∥ = max0≤t≤1 |x(t)| or ∥x∥ =∫ 1
0 |x(t)| dt or ∥x∥p =

(
n∑
i=0

|x|p
)1/p

.
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1. Normed Linear Spaces 1.2. Convexity, Convergence, Compactness, and Completeness

Example 1.1.14. Let X = Rn and use the Euclidean norm, defined by

∥x∥2 =
(

n∑
i=1

|xi|2
)1/2

.

We recall the concept of linear independence.

Definition 1.1.15 (Linearly Independent). A subset S in a linear space is linearly inde-
pendent if it is not possible to find a finite, nonempty set of distinct vectors x1, x2, . . . , xm ∈
S and nonzero scalars c1, c2, . . . , cm such that

c1x1 + c2x2 + · · · + cmxm = 0.

Definition 1.1.16 (Linearly Dependent). A subset S in a linear space is linearly depen-
dent if it is not linearly independent.

We recall the following from linear algebra.

Definition 1.1.17 (Span). The span of a set S in a (real) linear space X is the set of all
vectors in X that are expressible as linear combinations of vectors in S. More precisely,

span(S) :=
{

m∑
i=1

λixi : xi ∈ S, λi ∈ R, i = 1, 2, . . . ,m
}
.

Recall that linear combinations are always finite expressions of the form
n∑
i=1

λixi.

We say that S spans X when span(S) = X.

Definition 1.1.18 (Basis). A basis for a linear space X is any set that is linearly indepen-
dent and spans X.

Note that both properties here are needed. Any set that is linearly independent is con-
tained in a basis, and any set that spans the space contains a basis.

Definition 1.1.19 (Finite Dimensional). A linear space is said to be finite dimensional
if it has a finite basis.

If a linear space is finite dimensional, then every basis for that space has the same number
of elements.

Definition 1.1.20 (Dimension). The number of elements in any basis for a finite dimen-
sional linear space X is called the dimension of X, denoted by dim(X).

1.2. Convexity, Convergence, Compactness, and Completeness.

Definition 1.2.1 (Convex). A subset K in a linear space X is said to be convex if it
contains every straight line segment connecting any two of its elements. More precisely, K
is convex if for any x, y ∈ K and λ ∈ [0, 1], we have λx+ (1 − λ)y ∈ K.

The notion of convexity arises frequently in optimization problems. For instance, much of
linear programming is based on the fact that a linear function on a convex polyhedral set
must attain its extreme values at the vertices of the set.
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1. Normed Linear Spaces 1.2. Convexity, Convergence, Compactness, and Completeness

Example 1.2.2 (Examples of convex sets). Let X be a linear space. Then the following sets
are convex in X :

(1) The space X itself;
(2) Any single point set (trivially);
(3) the empty set ∅;
(4) Any linear subspace of X;
(5) Any straight line segment, that is, a set of the following form for a fixed a, b ∈ X :

{λa+ (1 − λ)b : 0 ≤ λ ≤ 1}.

Definition 1.2.3 (Unit Ball). Let (X, ∥ · ∥) be a normed linear space. Then the unit ball
is defined by

B[0, 1] := {x ∈ X : ∥x∥ ≤ 1}.

Proposition 1.2.4 (Unit Ball is Convex). In any normed linear space (X, ∥ · ∥), the unit
ball B[0, 1] is convex.

Proof. Let x, y ∈ B[0, 1] and note then that ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Let λ ∈ [0, 1]. Observe
∥λx+ (1 − λ)y∥ ≤ ∥λx∥ + ∥(1 − λ)y∥

= |λ|∥x∥ + |1 − λ|∥y∥
= λ∥x∥ + (1 − λ)∥y∥
≤ λ+ (1 − λ)
= 1.

□

Definition 1.2.5 (Metric). let X be a set. A metric d : X × X → R is a real–valued
function on X such that for all x, y, z ∈ X,

(1) d(x, y) ≥ 0;
(2) d(x, y) = 0 if and only if x = y;
(3) d(x, y) = d(y, x);
(4) d(x, y) ≤ d(x, z) + d(z, y).

Definition 1.2.6 (Metric Space). A metric space is a pair (X, d) in which X is a set and
d is a metric on X.

Proposition 1.2.7 (Metric Space Induced By Norm). Let (X, ∥·∥) be a normed linear space.
Then the function d : X ×X → R defined by

d(x, y) := ∥x− y∥
defines a metric on X. Moreover, (X, d) is a metric space.

Proof. Properties (1), (2), and (3) are immediate. To see (4), let x, y, z ∈ X. Then
d(x, y) = ∥x− y∥ = ∥(x− z) + (z − y)∥ ≤ ∥x− z∥ + ∥z − y∥ = d(x, z) + d(z, y).

□

Definition 1.2.8 (Convergent Sequence). Let {xn}n∈N be a sequence in a normed linear
space X. We say that {xn}n∈N converges to a point x ∈ X (and write xn → x) if

lim
n→∞

∥xn − x∥ = 0.
5



1. Normed Linear Spaces 1.2. Convexity, Convergence, Compactness, and Completeness

Example 1.2.9. Let X = (C[0, 1], ∥ · ∥∞) and consider the sequence of functions defined by
xn(t) := sin(t/n).

Then {xn}n∈N converges to zero, for observe that
∥xn − 0∥∞ = sup

0≤t≤1
| sin(t/n)| = sin(1/n) → 0

as n → ∞.

The concept of convergence is often needed in applied mathematics. For instance, the
solution to a particular problem may be difficult (or impossible) to obtain but may be
approached by a suitable sequence of functions that are easier to obtain and may possibly
be calculated explicitly.
Definition 1.2.10 (Subsequence). Let {xn}n∈N be a sequence in a space X. A subsequence
of {xn}n∈N is a sequence {xnk

}k∈N where the integers nk, k ∈ N are such that n1 < n2 <
n3 < . . . and

{xnk
: k ∈ N} ⊆ {xn : n ∈ N}.

Definition 1.2.11 (Compactness). A subset K in a normed linear space X is said to be
compact if every sequence xnn∈N in K has a convergent subsequence {xnk

}k∈N that converges
to a point in K.

Note that this definition coincides with the definition of sequential compactness from gen-
eral topology.

We recall the following definitions from real analysis.
Definition 1.2.12 (Bounded Below (Above)). Let T be a set of real numbers. We say that
T is bounded below (above) if there exists M ∈ R such that t ≥ M (t ≤ M) for all
t ∈ T.

Definition 1.2.13 (Infimum, Greatest Lower Bound). Let T be a set of real numbers. A
number b̃ is called the infimum or greatest lower bound of T if b̃ satisfies the following
two properties:

(1) b̃ is a lower bound for T ;
(2) If b is a lower bound for T, then b̃ ≥ b.

We write b̃ =: inf T.
Definition 1.2.14 (Supremum, Least Upper Bound). Let T be a set of real numbers. A
number b̃ is called the supremum or least upper bound of T if b̃ satisfies the following
two properties:

(1) b̃ is an upper bound for T ;
(2) If b is an upper bound for T, then b̃ ≤ b.

We write b̃ =: supT.
Recall that the completeness axiom of R states that if T is nonempty and bounded below

(above), then inf T (supT ) always exists.
Definition 1.2.15 (Distance From a Set). Let X and Y be normed linear spaces and let
x ∈ X. The distance from x to Y is defined to be the number

dist(x, Y ) := inf
y∈Y

∥x− y∥.
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1. Normed Linear Spaces 1.2. Convexity, Convergence, Compactness, and Completeness

Theorem 1.2.16. Let K be a compact subset of a normed linear space X. To each point
x ∈ X there corresponds at least one point z∗ ∈ K of minimum distance from x. More
precisely, for all x ∈ X, there exists z∗ ∈ K such that

∥z∗ − x∥ ≤ ∥z − x∥
for all z ∈ K.

Proof. Let x ∈ X be any member of X. By definition of an infimum, there exists a sequence
{xn}n∈N in K converging to dist(x,K). Since K is compact, there exists a convergent subse-
quence {xnk

}k∈N of {xn}n∈N converging to a point in K, say z ∈ K. By the triangle inequality,
we have

∥x− z∥ ≤ ∥x− xnk
∥ + ∥xnk

− z∥,
and, letting k → ∞, we have

dist(x,K) ≤ ∥x− z∥ ≤ dist(x,K).
That is,

∥x− z∥ = dist(x,K).
This completes the proof. □

Example 1.2.17. In R, the open interval (a, b) is not compact, for we can take a sequence
in the interval that converges to the endpoint b, say. Then every subsequence also converges
to b, but since b is not in the interval, the interval cannot be compact.

On the other hand, the closed and bounded interval [a, b] is compact by the Heine–Borel
Theorem.

Consider a sequence {xn}n∈N in a general metric space (X, d) and the associated sequence
{d(xn, xm)}n,m∈N. Note that for any x ∈ X, we may write

d(xn, xm) ≤ d(xn, x) + d(x, xm).
Thus if {d(xn, xm)}n,m∈N does not converge to zero, then {xn}n∈N cannot converge. On
the other hand, if {d(xn, xm)}n,m∈N does converge to zero, we can only guarantee that the
sequence {xn}n∈N converges if X is complete.

Definition 1.2.18 (Cauchy Sequence). Let {xn}n∈N be a sequence in a normed linear space
X. We say that {xn}n∈N is a Cauchy sequence if

lim
N→∞

sup
n≥N
m≥N

∥xn − xm∥ = 0.

Definition 1.2.19 (Complete Normed Linear Space). Let X be a normed linear space. If
every Cauchy sequence in X is convergent, then the space X is said to be complete.

Definition 1.2.20 (Banach Space). A complete normed linear space is called a Banach
space.

Note that completeness is important in constructing solutions to a problem by taking
the limit of successive approximations. We often want information about the limit of these
approximations, that is, the solution. For instance, if all the approximating functions are
continuous and bounded, we should expect the limit of these functions to also be continuous
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1. Normed Linear Spaces 1.2. Convexity, Convergence, Compactness, and Completeness

and bounded. These properties depend on the norm that has been chosen and the function
space that goes with it. Typically, we want a norm that leads to a Banach space.

Example 1.2.21. Define X = (ℓ, ∥·∥∞). Further, define a sequence {xn}n∈N in ℓ as follows:

xn =
{

1, 1
2 ,

1
3 , . . . ,

1
n
, 0, 0, . . .

}
.

If m > n, then

xm − xn =
{

0, 0, . . . , 0, 1
n+ 1 ,

1
n+ 2 , . . . ,

1
m
, 0, . . .

}
.

Since ∥xm − xn∥∞ = 1/(n+ 1), we find that the sequence {xn}n∈N is Cauchy.
To see that this space is not complete, suppose by contradiction that xn → y for some

y ∈ ℓ. The point y, being an element of ℓ, would be finitely nonzero, say yn = 0 for n ≥ N
for some positive integer N. Then for m > N, xm would have as its N−th term the value
1/N, which the N−th term of y is zero. Thus ∥xm − y∥∞ ≥ 1/N, and thus we cannot have
convergence.

Theorem 1.2.22 (Continuous Functions on Closed Intervals Form a Banach Space).
The normed linear space (C[a, b], ∥ · ∥∞) is a Banach space.

Proof. Recall that (C[a, b], ∥ · ∥∞) is a normed linear space. Thus, it suffices to show that
(C[a, b], ∥ · ∥∞) is complete.

Let {xn}n∈N be a Cauchy sequence in (C[a, b], ∥ · ∥∞). Then for any t ∈ [a, b], {xn(t)}n∈N is
a Cauchy sequence in R. By the completeness of R, evidently {xn(t)}n∈N converges to a real
number, say limn→∞ xn(t) =: x(t). We show that x is a continuous function on [a, b] such
that ∥xn − x∥∞ → 0.

We first show that {xn}n∈N converges to x uniformly on [a, b]. Fix ϵ > 0. Since {xn}n∈N is
Cauchy, there exists a positive integer N such that for all n,m ≥ N, we have

|xn(t) − xm(t)| < ϵ.

Fix n. Letting m → ∞, we get xm(t) → x(t), so that

lim
m→∞

|xn(t) − xm(t)| = |xn(t) − x(t)| < ϵ

for every n ≥ N and t ∈ [a, b]. Thus {xn}n∈N converges uniformly on [a, b].
To show convergence in norm, fix ϵ > 0. Since xn → x uniformly on [a, b], there exists a

positive integer N such that for all t ∈ [a, b] and n ≥ N, we have

|xn(t) − x(t)| < ϵ/2.

In particular, since this is for all t ∈ [a, b], it follows

∥xn − x∥∞ = sup
t∈[a,b]

|xn(t) − x(t)| ≤ ϵ/2 < ϵ.

This shows ∥xn − x∥∞ → 0.
Finally, we show that x is continuous. Fix ϵ > 0 and t ∈ [a, b]. By the uniform convergence

of {xn}n∈N, there exists a positive integer N such that for any z ∈ [a, b], we have

|xn(z) − x(z)| < ϵ/3
8



1. Normed Linear Spaces 1.3. Continuity, Open Sets, Closed Sets

for all n ≥ N. Moreover, since xN is continuous, there exists δ > 0 such that for all s ∈ [a, b]
satisfying |s− t| < δ, we have

|xN(s) − xN(t)| < ϵ/3.
Thus, for any s ∈ [a, b] such that |s− t| < δ, it follows

|x(s) − x(t)| ≤ |x(s) − xN(s)| + |xN(s) − xN(t)| + |xN(t) − x(t)|
< ϵ/3 + ϵ/3 + ϵ/3
= ϵ.

Since ϵ and t were arbitrary, it follows that x is continuous. This completes the proof. □

Note that the traditional formulation of the theorem (1.2.22) states that a uniformly
convergent sequence of continuous functions on a compact set must have a continuous limiting
function.

Definition 1.2.23 (Uniform Convergence). A sequence of functions {fn}n∈N on a set X is
said to converge uniformly to a function f if for all ϵ > 0 there exists a positive integer
N(ϵ) such that for all n ≥ N and x ∈ X, we have

|fn(x) − f(x)| < ϵ.

Formally,
∀ϵ ∃N ∀n ∀x [n ≥ N =⇒ |fn(x) − f(x)| < ϵ].

Note that we may also write
∀ϵ ∃N ∀n [n ≥ N =⇒ ∥fn − f∥∞ < ϵ].

Definition 1.2.24 (Pointwise Convergence). A sequence of functions {fn}n∈N on a set X
is said to converge pointwise to a function f if for all x ∈ X and any ϵ > 0, there exists
a positive integer N(x, ϵ) such that for all n ≥ N, we have

|fn(x) − f(x)| < ϵ.

Formally,
∀x ∀ϵ ∃N ∀n [n ≥ N =⇒ |fn(x) − f(x)| < ϵ].

Example 1.2.25. Consider the sequence of functions {fn}n∈N defined by

fn(x) :=
|nx− 1|, [0, 2/n]

1, otherwise.

Then {fn}n∈N converges pointwise but not uniformly.

1.3. Continuity, Open Sets, Closed Sets.

Definition 1.3.1 (Continuity at a Point). A function f : D ⊆ X → Y from a normed linear
space X into a normed linear space Y is said to be continuous at a point x ∈ D if for every
sequence {xn}n∈N in D converging to x, we have also that {f(xn)}n∈N converges to f(x).

Definition 1.3.2 (Continuity on a Set). A function f : D ⊆ X → Y is said to be contin-
uous throughout D if f is continuous at every point x ∈ D.

We see that a continuous function is one that preserves the convergence of sequences.
9



1. Normed Linear Spaces 1.3. Continuity, Open Sets, Closed Sets

Example 1.3.3. In any normed linear space, the norm ∥ · ∥ is continuous. To see this, let
{xn}n∈N converge to x in a normed linear space X. Fix ϵ > 0. There exists N ∈ N such that
for all n ≥ N, we have

∥xn − x∥ < ϵ.

By the reverse triangle inequality, it follows
|∥xn∥ − ∥x∥| ≤ ∥xn − x∥ < ϵ.

This completes the proof.

Theorem 1.3.4 (Continuous Functions Preserve Compactness). Let f : D ⊆ X → Y
be a continuous function from a normed linear space X into a normed linear space Y. If
D is compact, then f(D) is compact.

Proof. Let {yn}n∈N be any sequence in f(D). By definition of f(D), there exists a sequence
{xn}n∈N in D such that for all n ∈ N, we have f(xn) = yn. Since D is compact by the
assumption, there exists a subsequence {xnk

}k∈N of {xn}n∈N converging to a point x ∈ D.
Since f is continuous, it follows

f(x) = f
(

lim
k→∞

xnk

)
= lim

k→∞
f(xnk

) = lim
k→∞

ynk
.

Since f(x) ∈ f(D), evidently the sequence {ynk
}k∈N converges to a point in f(D). This

completes the proof. □

The following is a generalization of the extreme value theorem.

Theorem 1.3.5 (Generalized Extreme Value Theorem). Let f : D ⊆ X → R be a
continuous real–valued function from a normed linear space X into R with D a compact
subset of X. Then f attains its supremum and infimum, that is, there exist points x̂1, x̂2 ∈
D such that

f(x̂1) = sup
x∈D

f(x), f(x̂2) = inf
x∈D

f(x).

Proof. Let f : D ⊆ X → R be a continuous function with D a compact subset of a normed
linear space X. Put

M := sup
x∈D

f(x).

There exists a sequence {xn}n∈N in D such that {f(xn)}n∈N approaches M. Since D is
compact, it follows that f(D) is also compact (1.3.4), so that there exists a subsequence
{xnk

}k∈N converging to a point x̂1 ∈ D. Moreover, since f is continuous, it follows that

f(x̂1) = f
(

lim
k→∞

xnk

)
= lim

k→∞
f(xnk

).

By uniqueness of limits, f(x) = M, and thus M < ∞.
The proof of the infimum is similar. □

Definition 1.3.6 (Uniform Continuity). A function f : X → Y from a normed linear space
X into a normed linear space Y is said to be uniformly continuous if for every ϵ > 0 there
exists δ(ϵ) > 0 such that for all x, y ∈ X satisfying ∥x−y∥X < δ, we have ∥f(x)−f(y)∥Y < ϵ.
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1. Normed Linear Spaces 1.3. Continuity, Open Sets, Closed Sets

The important aspect of this definition is that δ depends only on ϵ, but not on x or y.

Theorem 1.3.7 (Continuous Functions on Compact Sets are Uniformly Continuous).
Let f : D ⊂ X → Y be a continuous function from a normed linear space X into normed
linear space Y with D compact. Then f is uniformly continuous throughout D.

Proof. Let f : D ⊂ X → Y be a continuous function from a normed linear space X into
a normed linear space Y with D compact and, by contradiction, suppose that f is not
uniformly continuous.

Since f is not uniformly continuous, there exists ϵ > 0 for which there exists no such δ > 0
such that ∥f(x) − f(y)∥Y < ϵ whenever ∥x − y∥X < δ. Thus, for each n ∈ N, there exists a
pair (xn, yn) of points of D satisfying the condition ∥xn−yn∥X < δ and ∥f(xn)−f(yn)∥Y ≥ ϵ.
Since D is compact, the sequence {xn}n∈N has a subsequence {xnk

}k∈N converging to a point
x ∈ D. Then ynk

→ x also, for observe that
∥ynk

− x∥X ≤ ∥ynk
− xnk

∥X + ∥xnk
− x∥X .

But then, by the continuity of f, we see that for any nk ∈ N,
ϵ ≤ ∥f(xnk

) − f(ynk
)∥Y

≤ ∥f(xnk
) − f(x)∥Y + ∥f(x) − f(ynk

)∥Y .
Thus, letting nk → ∞, we get that ϵ ≤ 0, a contradiction. □

Definition 1.3.8 (Closed Set). A subset F in a normed linear space is said to be closed if
the limit of every convergent sequence in F is also in F. Formally,

[xn ∈ F & xn → x] =⇒ x ∈ F.

Proposition 1.3.9. The intersection of any family of closed sets in a normed linear space
is closed.

Proof. Let {Fα}α∈A be a collection of closed subsets of a normed linear space X. Put F :=⋂
α∈A Fα and let {xn}n∈N be a convergent sequence in F, say xn → x as n → ∞. Since Fα

is closed for each α ∈ A, we have by definition that x ∈ Fα for all α. Hence, x ∈ F and we
conclude that F is closed. □

Definition 1.3.10 (Closure of a Set). Let A be a subset of a normed linear space X and let
{Fγ}γ∈Γ be the set of all closed subsets of X containing A as a subset. Then the closure of
A, denoted Ā, is defined by

Ā :=
⋂
γ∈Γ

Fγ.

We see immediately that for any set A in a normed linear space, Ā is a closed set containing
A and is the smallest such closed set containing A.

We recall the definition of a preimage.
Definition 1.3.11 (Preimage). Let f : X → Y be a map from a set X into a set Y and let
A ⊆ Y. Then the preimage of A under f is defined by the set

f−1(A) := {x ∈ X : f(x) ∈ A}.

11
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Theorem 1.3.12. Let f : X → Y be a continuous function from a normed linear space
X into a normed linear space Y. Then for any closed set F ∈ Y, the inverse image
f−1(F ) of F is closed in X.

Proof. Let F be a closed subset of Y and let {xn}n∈N be a convergent sequence in f−1(F ),
say, xn → x ∈ X as n → ∞. Since f is continuous, it follows that f(xn) → f(x) as n → ∞,
and, since F is closed, we have f(x) ∈ F. Hence x ∈ f−1(F ) and we see that f−1(F ) is
closed. □

Example 1.3.13. Let (X, ∥ · ∥) be a normed linear space and consider the unit ball
B[0, 1] := {x ∈ X : ∥x∥ ≤ 1}.

Noting that ∥ · ∥−1[0, 1] = B[0, 1] and ∥ · ∥ has been shown to be continuous, it follows that
the unit ball is closed in any normed linear space.

Likewise, the following sets are closed in any normed linear space:
(1) {x ∈ X : ∥x− a∥ ≤ r};
(2) {x ∈ X : ∥x− a∥ ≥ r};
(3) {x ∈ X : r ≤ ∥x− a∥ ≤ s}.

Definition 1.3.14 (Open Set). A subset A of a normed linear space X is said to be open
if its complement AC is closed in X.

Example 1.3.15. In any normed linear space (X, ∥ · ∥), the open unit ball

B(0, 1) := {x ∈ X : ∥x∥ < 1}
is open.

Likewise, the following sets are open in any normed linear space:
(1) {x ∈ X : ∥x− a∥ > r};
(2) {x ∈ X : ∥x− a∥ < r};
(3) {x ∈ X : r < ∥x− a∥ < s}.

Definition 1.3.16 (ϵ−Ball, ϵ−Neighborhood). The open ϵ−ball (ϵ−neighborhood) about
a point x0 in a normed linear space (X, ∥ · ∥) is the set defined by

B(x0, ϵ) := {x ∈ X : ∥x− x0∥ < ϵ}.

Proposition 1.3.17. A subset U of a normed linear space X is open if and only if for each
x ∈ U there exists ϵ > 0 such that B(x, ϵ) ⊆ U.

Proof. Assume that U is open and, by contradiction, suppose that there exists x ∈ U such
that no such ϵ > 0 exists with B(x, ϵ) ⊆ U. Then for all n ∈ N, there exists xn /∈ U such
that xn ∈ B(x, 1/n). Note that, since ∥xn − x∥ < 1/n for all n ∈ N, the sequence {xn}n∈N
converges to x. But {xn}n∈N is a sequence in UC , and, since U c is closed, we have x ∈ UC ,
a contradiction.

Conversely, suppose that for all x ∈ U, there exists ϵx > 0 such that B(x, ϵx) ⊆ U. By De
Morgan’s Laws, observe⋃

x∈X
B(x, ϵx) =

⋃
x∈X

(
B(x, ϵx)C

)C
=
( ⋂
x∈X

B(x, ϵx)C
)
,

12



1. Normed Linear Spaces 1.3. Continuity, Open Sets, Closed Sets

so that the union ⋃x∈X B(x, ϵx) is open. It follows
U ⊆

⋃
x∈X

B(x, ϵx) ⊆ U,

and we see that evidently U = ⋃
x∈X B(x, ϵx). Consequently U is open. □

Definition 1.3.18 (Topology). The collection of all open sets in a normed linear space X
is called the topology of X, denoted by T .

The topology T for a normed linear space X satisfies the usual axioms of a topology, that
is,

(1) ∅, X ∈ T ;
(2) If U1, U2, . . . , UN ∈ T , then ⋂Ni=1 Ui ∈ T ;
(3) If {Uα}α∈A ⊆ T , then ⋃α∈A Uα ∈ T .

Definition 1.3.19 (Convergent Series). Let X be a normed linear space and let {xn}n∈N be
a sequence in X. The series ∑∞

k=1 xk is said to converge if the sequence of partial sums

Sn :=
n∑
k=1

xk

converges.

Definition 1.3.20 (Absolute Convergence). A series ∑∞
k=1 xk in a normed linear space is

said to be absolutely convergent if the series of real numbers
∞∑
k=1

∥xk∥

is convergent.

An absolutely convergent series is convergent if the space is complete.

Theorem 1.3.21. If a series in a Banach space converges absolutely, then all rearrange-
ments of the series converge to a common value.

Proof. Let ∑∞
k=1 xk be an absolutely convergent series and ∑∞

j=1 xkj
a permutation of it. Put

x :=
∞∑
k=1

xk, Sn :=
n∑
k=1

xk, Tn :=
n∑
j=1

xkj
, M :=

∞∑
k=1

∥xk∥.

Clearly ∑n
k=1 ∥xkj

∥ ≤ M, and thus ∑∞
k=1 ∥xkj

∥ ≤ ∞. Therefore ∑∞
k=1 xkj

converges abso-
lutely and hence converges by the completeness of the Banach space.

Put y := ∑∞
k=1 xkj

and fix ϵ > 0. Choose N so large that ∑∞
k=N ∥xk∥ < ϵ and ∥Sm−x∥ < ϵ

whenever m ≥ N. Choose r so that ∥Tr − y∥ < ϵ and {1, . . . , N} ⊂ {k1, . . . , kr}. Choose m
so large that {k1, . . . , kr} ⊂ {1, . . . ,m}. Then m ≥ N and

∥Sm − Tr∥ = ∥(x1 + x2 + · · · + xm) − (xk1 + xk1 + · · · + xkr)∥ ≤
m∑

j=N+1
∥xj∥ < ϵ.

Hence
∥x− y∥ ≤ ∥x− Sm∥ + ∥Sm − Tr∥ + ∥Tr − y∥ < ϵ+ ϵ+ ϵ = 3ϵ.

This completes the proof. □
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1. Normed Linear Spaces 1.4. More About Compactness

Theorem 1.3.22 (Riemann’s Theorem). If a series of real numbers is convergent but
not absolutely, then for every real number, some rearrangement of the series converges
to that real number.

Proof. Let the series ∑xn converge but not absolutely. Then limn→∞ xn = 0 and∑
xn>0

xn −
∑
xn<0

xn =
∑

|xn| = ∞.

Since the series ∑xn converges, the two series on the LHS must diverge to +∞ and −∞,
respectively. Now let r ∈ R be any real number. Select positive terms (in order) from the
series until their sum exceeds r. Now add negative terms (in order) until the new partial sum
is less than r. Continue in this fashion. Since limn→∞ xn = 0, the partial sums created in
this process differ from r by quantities that tend to zero as n → ∞. □

1.4. More About Compactness. We first recall the Heine–Borel Theorem.

Theorem 1.4.1 (Heine–Borel Theorem). A subset E ⊆ R is compact if and only if E
is closed and bounded.
We show that the Heine–Borel theorem is true for any normed linear space if and only if

the space is finite–dimensional.
Lemma 1.4.2. In the space (Rn, ∥ · ∥∞) each closed ball {x ∈ Rn : ∥x∥∞ ≤ C} is compact.

Proof. Let {xn}n∈N be any sequence of points in Rn satisfying ∥xn∥∞ ≤ C for all n ∈ N.
Then the components obey the inequality

−C ≤ xn(k) ≤ C

for all n ∈ N and each k = 1, 2, . . . , n. By the compactness of the interval [−C,C], there
exists an increasing sequence I1 := {n1i

}i∈N ⊆ N such that limi∈I1 xi(1) exists. Similarly,
there exists another increasing sequence I2 := {n2i

}i∈N ⊆ I1 such that limi∈I2 xi(2) exists.
Moreover, since I2 ⊆ I2, limi∈I2 xi(1) exists also.

Continuing in this fashion, we obtain at the n−th step an increasing sequence In ⊆ In−1 ⊆
· · · ⊆ N such that limi∈In xi(k) exists for each k = 1, 2, . . . , n. Denote the limit by x∗. We
have thus defined a vector x∗ such that ∥xk − x∗∥∞ → 0 as k runs through the sequence of
integers In. □

Lemma 1.4.3. A closed subset of a compact set in a normed linear space is compact.

Proof. Let F be a closed subset of a compact set K in a normed linear space X and let
{xn}n∈N be a sequence of points in F. Since F ⊆ K with K compact, there exists a subse-
quence {xnk

}k∈N of {xn}n∈N that converges to a point x ∈ K. Since F is closed, we must
have x ∈ F also, which completes the proof. □

Definition 1.4.4 (Bounded Subset). A subset S of a normed linear space is said to be
bounded if there exists C ≥ 0 such that ∥x∥ ≤ C for all C ∈ S. Equivalently, supx∈S ∥x∥ <
∞.

14



1. Normed Linear Spaces 1.4. More About Compactness

Theorem 1.4.5. In any finite–dimensional normed linear space (X, ∥ · ∥), every closed
and bounded set is compact.

Proof. Let (X, ∥ · ∥) be a finite–dimensional normed linear space. There exists a basis for X,
say {x1, x2, . . . , xn}. Define a mapping T : Rn → X by the equation

T (a) :=
n∑
k=1

akxk, a = [a1, a2, . . . , an]⊤ ∈ Rn.

Assigning the norm ∥ · ∥∞ to Rn, we see that T is continuous, for observe that

∥T (a) − T (b)∥ =
∥∥∥∥∥
n∑
k=1

(ak − bk)xk
∥∥∥∥∥

≤
n∑
k=1

∥(ak − bk)xk∥

=
n∑
k=1

|ak − bk|∥xk∥

≤
{

max
k=1,2,...,n

|ak − bk|
}

·
n∑
k=1

∥xk∥

= ∥a− b∥∞

∞∑
k=1

∥xk∥.

Now let F ⊆ X be a closed and bounded subset of X. Put E := T−1(F ). Since E is the
continuous preimage of a closed set, it follows that E is closed in Rn (1.3.12). Moreover,
Since F = T (E), it suffices to show that E is compact by (1.3.4). By (1.4.2) and (1.4.3), we
need only show that E is bounded.

Define
β := inf{∥T (a)∥ : ∥a∥∞ = 1}.

Since the unit circle is compact, β is the infimum of a continuous map on a compact set.
Hence β is attained by T at some point b ∈ Rn. Thus ∥b∥∞ = 1 and

β = ∥T (b)∥ =
∥∥∥∥∥
n∑
k=1

bkxk

∥∥∥∥∥ .
Since the points xk, k = 1, 2, . . . , n, constitute a linearly independent set, and since b ̸= 0,
we must have T (b) ̸= 0 and that β > 0. Since F is bounded by the assumption, there exists
a constant C ≥ 0 such that ∥x∥ ≤ C for all x ∈ F.

Now let a ∈ E be arbitrary. First note that if a = 0, then clearly ∥a∥∞ ≤ C/β. Now if
a ̸= 0, then a/∥a∥∞ ∈ {x ∈ Rn : ∥x∥∞ = 1}, and we observe

β ≤ ∥T (a/∥a∥∞)∥ =
∥∥∥∥∥
n∑
k=1

ak
∥a∥∞

xk

∥∥∥∥∥
= 1

∥a∥∞

∥∥∥∥∥
n∑
k=1

akxk

∥∥∥∥∥
= 1

∥a∥∞
∥T (a)∥

15



1. Normed Linear Spaces 1.4. More About Compactness

≤ 1
∥a∥∞

C.

Thus for any a ∈ E,

∥a∥∞ ≤ C

β
.

It follows that E is bounded.
Finally, we see that E is a closed subset of the compact set

{x ∈ Rn : ∥x∥∞ ≤ C/β}.

Thus E is compact, and consequently, so is F = T (E). This completes the proof. □

Corollary 1.4.6. Every finite–dimensional normed linear space is complete.

Proof. Let {xn}n∈N be a Cauchy sequence in a finite–dimensional normed linear space (X, ∥ ·
∥). We first show that {xn}n∈N us bounded. Choose a positive integer M such that ∥xn −
xm∥ ≤ 1 for all n,m ≥ M. Then for all n ≥ M,

∥xn∥ ≤ ∥xn − xm∥ + ∥xm∥ ≤ 1 + ∥xm∥.

Hence for all n ∈ N,
∥xn∥ ≤ ∥x1∥ + ∥x2∥ + · · · + ∥xm∥ + 1.

Put C := ∥x1∥ + ∥x2∥ + · · · + ∥xm∥ + 1. Then {xn}n∈N is bounded by C.
Fix ϵ > 0. Since {x ∈ X : ∥x∥ ≤ C} is compact, {xn}n∈N has a subsequence {xnk

}k∈N
converging to a point x ∈ X. Choose a positive integer N1 so large that for all n ≥ N1, we
have ∥xnN1

− x∥ < ϵ/2. Likewise, since {xn}n∈N is Cauchy, there exists a positive integer N2
such that for all n,m ≥ N2, we have ∥xn − xm∥ < ϵ/2. But then since nm ≥ m, we have in
this situation ∥xn − xnm∥ < ϵ/2 as well.

Choose N := max{N1, N2}. Then for all n ≥ N, it follows

∥xn − x∥ ≤ ∥xn − xnN
∥ + ∥xnN

− x∥ < ϵ/2 + ϵ/2 = ϵ.

Thus {xn}n∈N converges, and it follows that X is complete. □

We recall the following definition from linear algebra.

Definition 1.4.7 (Subspace). A subset Y of a normed linear space (X, ∥ · ∥) is called a
subspace of X if (Y, ∥ · ∥) is a normed linear space.

Corollary 1.4.8. Every finite–dimensional subspace in a normed linear space is closed.

Proof. Let Y be a finite–dimensional subspace of a normed linear space X and let {yn}n∈N be
a sequence converging to a point y ∈ X. Since {yn}n∈N converges, clearly {yn}n∈N is Cauchy.
But since Y is finite–dimensional, Y is complete (1.4.6), and thus {yn}n∈N converges to a
point in Y, so that y ∈ Y. This completes the proof. □

Theorem 1.4.9 (Riesz’s Lemma). If U is a closed and proper subspace in a normed
linear space (X, ∥ · ∥), and λ ∈ R is such that 0 < λ < 1, then there exists a point x ∈ X
such that ∥x∥ = 1 and dist(x, U) > λ.
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Proof. Since U is proper, there exists a point z ∈ UC . Also, since U is closed, dist(z, U) > 0.
By definition of dist(z, U), there is an element u ∈ U such that

λ∥z − u∥ < dist(z, U),

for if not, then
dist(z, U) = inf

u∈U
∥z − u∥ ≤ λ∥z − u∥ < ∥z − u∥

for all u ∈ U, a contradiction. Put x := (z−u)/∥z−u∥. Clearly ∥x∥ = 1. Moreover, we have

d(x, U) = dist(z − u, U)
∥z − u∥

= dist(z, U)
∥z − u∥

> λ.

□

Theorem 1.4.10. If the unit ball in a normed linear space is compact, then the space has
finite dimension.

Proof. Let X be a normed linear space with a compact unit ball, and by contradiction,
suppose that X is not finite–dimensional. We construct a sequence inductively as follows.

Let x1 ∈ X be any point such that ∥x1∥ = 1. Given x1, . . . , xn−1, denote by Un−1 :=
span{x1, x2, . . . , xn−1}. Since every finite–dimensional subspace in a normed linear space is
closed (1.4.8), Un−1 is closed. By Riesz’s Lemma (1.4.9), we may select xn ∈ X such that
∥xn∥ = 1 and dist(xn, Un−1) > 1/2. Then ∥xn − xm∥ > 1/2 whenever n > m. This sequence
cannot have any convergent subsequence, a contradiction to the unit ball being compact. □

Theorem 1.4.11 (Characterization of Finite–Dimensional Compact Spaces). A normed
linear space is finite–dimensional if and only if its unit ball is compact.

Proof. The proof follows immediately from (1.4.5) and (1.4.10). □

In any normed linear space, any compact set is necessarily closed and bounded. In finite–
dimensional spaces, these two conditions are also sufficient for compactness. This may not
hold in infinite–dimensional spaces, however.

1.5. Linear Transformations.

Definition 1.5.1 (Linear Transformation, Linear Operator). Let X and Y be two linear
spaces over the same scalar field K. A mapping f : X → Y is called a linear transforma-
tion (linear operator) if

f(αu+ βv) = αf(u) + βf(v)

for all α, β ∈ K and u, v ∈ X.

Definition 1.5.2 (Linear Functional). Let X be a linear space over the scalar field K. A
linear functional is a linear operator f : X → K from X to K.

Note that by taking α = β = 0 in the definition, we see immediately that a linear
transformation T must have the property T (0) = 0.

17
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Example 1.5.3. If X = Rn and Y = Rm, then each linear map of X into Y is of the form
f(x) = y,

yi =
n∑
k=1

aikxk, 1 ≤ i ≤ m,

where the aik are certain real numbers that form an m× n matrix.

Example 1.5.4. Let X = C[0, 1] and Y = R. The mapping f(x) =
∫ 1

0 x(t) dt is a linear
functional.

Example 1.5.5. Let X = Cn[0, 1] and let a0, a1, . . . , an be fixed elements of R. Then a linear
operator D is defined by

Dx =
n∑
i=0

aix
(i).

We call the operator D a differential operator.

Example 1.5.6. Let X = C[0, 1] = Y. Let k be a continuous function on [0, 1]× [0, 1]. Define
K by

(Kx)(s) =
∫ 1

0
k(s, t)x(t) dt.

Then K is a linear operator, called a linear integral operator.

Example 1.5.7. Let X be the set of all bounded continuous functions on R+ := {t ∈ R :
t ≥ 0}. Put

(Lx)(s) =
∫ ∞

0
e−stx(t) dt.

Then L is a linear operator, called the Laplace transform.

Example 1.5.8. Let X be the set of all continuous functions on R with
∫∞

−∞ |x(t)| dt < ∞.
Define

(Fx)(s) =
∫ ∞

−∞
e−2πistx(t) dt.

Then F is a linear operator, the Fourier transform.

Theorem 1.5.9. Let X and Y be normed linear spaces. A linear operator T : X → Y
is continuous if and only if T is continuous at zero.

Proof. Let T : X → Y be a linear operator.
First, if T is continuous then clearly T is continuous at zero.
For the converse, suppose that T is continuous at zero. Then for every ϵ > 0 there exists

δ > 0 such that for all x ∈ X satisfying ∥x∥X < δ, we have ∥T (x)∥Y < ϵ. Now let x, y ∈ X
be such that ∥x− y∥X < δ. Observe

∥T (x) − T (y)∥Y = ∥T (x− y)∥Y < ϵ.

Hence T is uniformly continuous and thus is continuous. □

Definition 1.5.10 (Bounded Linear Operator). A linear operator T : X → Y is called a
bounded linear operator if T is bounded on the unit ball, that is,

sup{∥T (x)∥Y : ∥x∥X ≤ 1} < ∞.
18
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Example 1.5.11. Let X = C1[0, 1] and let X have the infinity norm ∥x∥∞ := supt∈[0,1] |x(t)|.
Let f be the linear functional defined by f(x) = x′(1). Then this functional f is unbounded.
To see this, consider the vectors xn(t) = tn for each n ∈ N.

Theorem 1.5.12 (Continuity and Boundedness). A linear operator T : X → Y between
two normed linear spaces is continuous if and only if it is bounded.

Proof. Let T : X → Y be a linear operator.
First, assume that T is continuous. Choosing ϵ = 1, there exists δ > 0 such that for all

x ∈ X satisfying ∥x∥X ≤ δ, we have ∥T (x)∥Y ≤ 1. Now let x ∈ X be such that ∥x∥X ≤ 1.
Since T (x) = 1

δ
T (δx) and δx is such that ∥δx∥x = |δ|∥x∥X ≤ |δ| = δ, it follows

∥T (x)∥Y = 1
δ

∥T (δx)∥ ≤ 1
δ
,

which shows that T is bounded.
Conversely, suppose that there exists M > 0 such that ∥T (x)∥Y ≤ M for all x ∈ X such

that ∥x∥X ≤ 1. It suffices to show that T is continuous at zero. Fix ϵ > 0. Then for all
x ∈ X such that ∥x∥X < ϵ

2M , it follows

∥T (x)∥Y =
∥∥∥∥ ϵ

2MT
(2Mx

ϵ

)∥∥∥∥
Y

=
∣∣∣∣ ϵ2M

∣∣∣∣ ∥∥∥∥T (2Mx

ϵ

)∥∥∥∥
Y

≤
(

ϵ

2M

)
M < ϵ,

which shows continuity at zero. This completes the proof. □

Proposition 1.5.13. Let L(X, Y ) be the family of all bounded linear operators from a
normed linear space X into a normed linear space Y. For any T ∈ L(X, Y ), introduce the
operator norm

∥T∥ := sup{∥T (x)∥Y := ∥x∥X ≤ 1}.
Then L(X, Y ) is a normed linear space with respect to ∥ · ∥.

Proof. It is clear from the linearity of the elements of L(X, Y ) that L(X, Y ) forms a linear
space. We show that ∥ · ∥ defines a norm on L(X, Y ).

First, if T ̸= 0, then there exists x0 ∈ X such that ∥x0∥X ≤ 1 and T (x0) ̸= 0. Hence,
∥T∥ = sup{∥T (x)∥Y : ∥x∥X ≤ 1} ≥ ∥T (x0)∥Y > 0,

by definition of ∥ · ∥Y .
Next, for any α ∈ R, we have

∥αT∥ = sup{∥αT (x)∥Y : ∥x∥X ≤ 1} = |α| sup{∥T (x)∥Y : ∥x∥X ≤ 1} = |α|∥T∥.
Finally, let T1, T2 ∈ L(X, Y ). Observe

∥T1 + T2∥ = sup{∥(T1 + T2)(x)∥Y : ∥x∥X ≤ 1}
≤ sup{∥T1(x)∥Y + ∥T2(x)∥Y : ∥x∥X ≤ 1}
≤ sup{∥T1(x)∥Y : ∥x∥X ≤ 1} + sup{∥T2(x)∥Y : ∥x∥X ≤ 1}
= ∥T1∥ + ∥T2∥.

This completes the proof. □

Lemma 1.5.14. For any T ∈ L(X, Y ),
(1) ∥T (x)∥Y ≤ ∥T∥∥x∥X ;
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(2) ∥T∥ = sup{∥T (x)∥Y : ∥x∥X = 1}.

Proof. Let T ∈ L(X, Y ).
To show (1), let x ∈ X be arbitrary. Then x/∥x∥X is a vector with norm precisely one,

and

∥T (x)∥Y =
∥∥∥∥∥∥x∥XT

(
x

∥x∥X

)∥∥∥∥∥
Y

= ∥x∥X
∥∥∥∥∥T

(
x

∥x∥X

)∥∥∥∥∥
Y

≤ ∥x∥X (sup{∥T (x)∥Y : ∥x∥ ≤ 1})
= ∥T∥∥x∥X ,

which shows (1).
We now show (2). Clearly ∥T∥ ≥ sup{∥T (x)∥Y : ∥x∥X = 1}. On the other hand, for all

x ∈ X such that ∥x∥X ≤ 1,

sup{∥T (x)∥Y : ∥x∥X = 1} ≥
∥∥∥∥∥T

(
x

∥x∥X

)∥∥∥∥∥
Y

= ∥T (x)∥Y
∥x∥X

≥ ∥T (x)∥Y .

This is for all ∥x∥X ≤ 1, so taking the supremum on the RHS gives
sup{∥T (x)∥Y : ∥x∥X = 1} ≥ sup{∥T (x)∥Y : ∥x∥X ≤ 1}.

This completes the proof. □

We recall the following definition from linear algebra.
Definition 1.5.15 (Kernel). Let T : X → Y be a linear transformation. The kernel of T,
denoted ker(T ), is defined by

ker(T ) := {x ∈ X : T (x) = 0}.
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Theorem 1.5.16. A linear functional f : X → R on a normed linear space X is
continuous if and only if its kernel is closed.

Proof. Let f : X → R be a linear functional.
Assume that f is continuous. Since {0} is closed in R, it follows by the continuity of f

that ker(f) = f−1(0) is closed in X.
Now suppose that ker(f) is closed. By contradiction, suppose further that f is discon-

tinuous. Then f is unbounded, so that there exists a sequence {xn}n∈N in ker(f) such that
∥xn∥ ≤ 1 but f(xn) → ∞ as n → ∞.

If (ker(f))C = ∅, then f ≡ 0 and thus continuous. Otherwise, choose x /∈ ker(f). Define a
sequence {yn}n∈N by

yn := x− f(x)
f(xn)xn

for each n ∈ N. Then each yn lies in the kernel of f, for

f(yn) = f

(
x− f(x)

f(xn)xn
)

= f(x) − f(x)
f(xn)f(xn) = 0

for every n ∈ N. Moreover, the sequence {yn}n∈N converges to x, for we see that

∥yn − x∥ =
∥∥∥∥∥
(
x− f(x)

f(xn)xn
)

− x

∥∥∥∥∥ =
∥∥∥∥∥ f(x)
f(xn)xn

∥∥∥∥∥ → 0 as n → ∞,

since f(xn) → ∞ as n → ∞. But since the kernel of f is closed, we have x ∈ ker(f), a
contradiction. □

Corollary 1.5.17. Every linear functional on a finite–dimensional normed linear space is
continuous.

Proof. Let f : X → R be a linear functional with X a finite–dimensional normed linear space.
Then ker(f) is a subspace of X. Since every subspace of a finite–dimensional normed linear
space is closed (1.4.8), ker(f) is closed. Then, since a linear functional on a normed space is
continuous if and only if its kernel is closed (1.5.16), we have that f is continuous. □

Corollary 1.5.18. Every linear transformation from a finite–dimensional normed linear
space to another normed linear space is continuous.

Proof. Let T : X → Y be a linear transformation with X finite–dimensional. There exists
a basis for X, say {b1, b2, . . . , bn}. Choose x ∈ X. We may express x as a unique linear
combination of the basis elements b1, b2, . . . , bn. That is, there exists λk(x), k = 1, 2, . . . , n,
such that

x =
n∑
k=1

λk(x)bk.

We show that the λk, k = 1, 2, . . . , n, are linear functionals.
Let u ∈ X be arbitrary. Note

αx+ βu =
n∑
k=1

λk(αx+ βu)bk.
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On the other hand,

αx+ βu = α
n∑
k=1

λk(x)bk + β
n∑
k=1

λk(u)bk =
n∑
k=1

(αλk(x))bk +
n∑
k=1

(βλk(u))bk

=
n∑
k=1

(αλk(x) + βλk(u))bk.

By uniqueness of the coefficients, we conclude that

λk(αx+ βu) = αλk(x) + βλk(x)

for all k = 1, 2, . . . , n, which shows that each λk, k = 1, 2, . . . , n, is a linear functional.
Since every linear functional on a finite–dimensional normed linear space is continuous

(1.5.17), it follows that each λk, k = 1, 2, . . . , n, is continuous. Finally,

T (x) = T

(
n∑
k=1

λk(x)bk
)

=
n∑
k=1

λk(x)T (bk)

is clearly continuous. □

Corollary 1.5.19 (Equivalence of Norms). All norms on a finite–dimensional normed linear
space X are equivalent, in the sense that for each pair of norms ∥ · ∥α and ∥ · ∥β on X, there
exist m,M > 0 such that

m∥x∥α ≤ ∥x∥β ≤ M∥x∥α
for all x ∈ X.

Proof. Let X be a finite–dimensional normed linear space and let ∥ · ∥α, ∥ · ∥β be two norms
on X. Since every linear transformation from a finite–dimensional normed space to another
normed space is continuous (1.5.18), the identity operator 1(α)

X : (X, ∥ · ∥α) → (X, ∥ · ∥β)
defined by 1

(α)
X (x) = x for all x ∈ X is continuous. Thus 1X is bounded, so that there exists

M > 0 such that
∥x∥β = ∥1(α)

X (x)∥β ≤ M∥x∥α.

On the other hand, 1(β)
X : (X, ∥ · ∥β) → (X, ∥ · ∥α) is continuous. Similarly, there exists

k > 0 such that
∥x∥α = ∥1(β)

X (x)∥α ≤ k∥x∥β.
Taking m := 1/k, we have

m∥x∥α ≤ ∥x∥β ≤ M∥x∥α
for all x ∈ X. This completes the proof. □

Recall that L(X, Y ) denotes the set of all linear bounded operators from X to Y. The
space L(X, Y ) has a natural structure. More specifically, we define

(αA+ βB)(x) = α(Ax) + β(Bx),

∥A∥ = sup{∥Ax∥Y : x ∈ X, ∥x∥X ≤ 1},
where A,B ∈ L(X, Y ) and α, β ∈ R.
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Theorem 1.5.20 (L(X, Y ) is a Banach Space). If X is a normed linear space and Y is
a Banach space, then L(X, Y ) is a Banach space.

Proof. We have already shown that L(X, Y ) is a normed linear space with respect to the
operator norm ∥ · ∥ (1.5.13). It remains to show that L(X, Y ) is complete.

Let {An}n∈N be a Cauchy sequence in L(X, Y ). Fix x ∈ X. We have
∥An(x) − Am(x)∥Y = ∥(An − Am)(x)∥Y ≤ ∥An − Am∥∥x∥X ,

which shows that {An(x)}n∈N is a Cauchy sequence in Y for any x ∈ X. Since Y is a Banach
space, we can define the pointwise limit Ax = limn→∞ Anx. We show that A ∈ L(X, Y ) and
∥An − A∥ → 0 as n → ∞.

We first show that A ∈ L(X, Y ). Since each An, n ∈ N is linear, we have
An(αx+ βy) = αAnx+ βAny

for all x, y ∈ X and α, β ∈ R. Letting n → ∞, we obtain
A(αx+ βy) = αAx+ βAy,

which establishes thatA is linear. To see thatA is bounded, first recall that Cauchy sequences
are bounded. Thus there exists M ≥ 0 such that ∥An∥ ≤ M for all n ∈ N. Thus

∥Anx∥Y ≤ ∥An∥∥x∥X ≤ M∥x∥X
for all x ∈ X. Letting n → ∞, we have ∥Ax∥ ≤ M∥x∥X for all x ∈ X, so that A is bounded.
This shows that A ∈ L(X, Y ).

Lastly, we show that {An}n∈N converges to A in norm. Fix ϵ > 0. Since {An}n∈N is Cauchy,
there exists a positive integer N such that for all m,n ≥ N, we have ∥Am − An∥ < ϵ. Then

∥Amx− Anx∥Y ≤ ∥Am − An∥∥x∥X ≤ ∥Am − An∥ < ϵ

for all x ∈ X such that ∥x∥X ≤ 1. Letting n → ∞, we have for all ∥x∥X ≤ 1 that
∥Amx− Ax∥Y ≤ ∥Am − A∥∥x∥X ≤ ∥Am − A∥ < ϵ.

This completes the proof. □

For any A,B ∈ L(X, Y ), the composition of A and B is generally written AB rather than
A ◦B. That is, (AB)x = A(Bx), and AB is linear. We denote the identity operator by I.

Theorem 1.5.21 (The Neumann Theorem). Let A : X → X be a bounded linear
operator on a Banach space X. If ∥A∥ < 1, then I − A is invertible, and

(I − A)−1 =
∞∑
k=0

Ak.

Proof. Put Bn :
n∑
k=0

Ak. Then each Bn is itself a bounded linear operator, and {Bn}n∈N is a
Cauchy sequence, for if n > m, we observe that

∥Bn −Bm∥ =
∥∥∥∥∥
n∑
k=0

Ak −
m∑
k=0

Ak
∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

k=m+1
Ak

∥∥∥∥∥∥
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=
n∑

k=m+1
∥Ak∥ ≤

∞∑
k=m

∥A∥k = ∥A∥m
∞∑
k=0

= ∥A∥m

1 − ∥A∥
.

Since ∥A∥ < 1 by the assumption, takingm sufficiently large guarantees the Cauchy criterion.
Since the space of all linear bounded operators on a Banach space is itself a Banach space

(1.5.20), the sequence {Bn}n∈N converges to a linear bounded operator B ∈ L(X,X). We
have

(I − A)Bn = Bn − ABn =
n∑
k=0

An −
n∑
k=0

Ak+1 =
n∑
k=0

Ak −
n+1∑
k=1

= A0 − An+1 = I − An+1.

Taking n → ∞, we obtain (I − A)B = I. Similarly, B(I − A) = I. Consequently I − A is
invertible with

(I − A)−1 = B =
∞∑
k=0

Ak.

□

1.6. Zorn’s Lemma, Hamel Bases, and the Hahn–Banach Theorem. The following
theorem is due to Gödel.

Theorem 1.6.1. If a contradiction can be derived from the Zermelo–Fraenkel axioms
of set theory (which include the axiom of choice), then a contradiction can be derived
within the restricted set theory based on the Zermelo–Fraenkel axioms without the axiom
of choice.

Theorem 1.6.2 (Axiom of Choice). If A is a set and f a function on A such that f(α)
is a nonempty set for each α ∈ A, then f has a choice function. That is, there exists a
function c on A such that c(α) ∈ f(α) for all α ∈ A.

Example 1.6.3. Let A be a finite set, A := {α1, . . . , αn}. For each i in {1, 2, . . . , n}, a
nonempty set f(αi) is given. In n steps, we can select elements x1 ∈ f(α1), x2 ∈ f(α2), . . . , xn ∈
f(αn). Define then c(αi) = xi for each i = 1, 2, . . . , n.

Attempting the same construction for infinite sets A = R, for instance, leads to difficulty.
The axiom of choice asserts that such a choice function exists, however.

Definition 1.6.4 (Partially Ordered Set). A partially ordered set is a pair (X,≺) in
which X is a set and ≺ is a relation on X such that

(1) For all x ∈ X, x ≺ x;
(2) If x ≺ y and y ≺ z, then x ≺ z.

Definition 1.6.5 (Totally Ordered Set). A totally ordered set is a partially ordered set
(X,≺) in which for any two elements x, y ∈ X, either x ≺ y or y ≺ x.

Definition 1.6.6 (Upper Bound). Let X be a partially ordered set and A a subset of X. An
upper bound for A is any point x ∈ X such that a ≺ x for all a ∈ A.

Example 1.6.7. Let S be any set and denote by P(S) the power set of S. Order P(S) by the
inclusion relation ⊆ . Then (P(S),⊆) is a partially ordered set, but is not totally ordered.
An upper bound for any subset of P(S) is S.
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Example 1.6.8. In R2 define x ≺ y to mean that xi ≤ yi for i = 1 and i = 2. This is
a partial ordering but not a total ordering. Note that only the third quadrant has an upper
bound.

Example 1.6.9. Let F be a family of functions. For f, g ∈ F we write f ≺ g if the following
two conditions are satisfied:

(1) dom(f) ⊆ dom(g);
(2) f(x) = g(x) for all x ∈ dom(f).

In this situation we call g an extension of f.

Definition 1.6.10 (Maximal Element). An element M in a partially ordered set X is said
to be a maximal element if every x ∈ X that satisfies the condition M ≺ x also satisfies
x ≺ M.

Theorem 1.6.11 (Zorn’s Lemma). Let X be a partially ordered set. If each totally
ordered subset of X has an upper bound, then X contains a maximal element.

Definition 1.6.12 (Hamel Basis). Let X be a linear space. A subset H of X is called a
Hamel basis if each point x ∈ X has a unique expression as a finite linear combination of
elements of H.

Example 1.6.13. Let X be the space of all polynomials defined on R. A Hamel basis for X
is given by the sequence {hn}∞

n∈N0 , where hn(t) := tn for each n ∈ N0.

Theorem 1.6.14 (Existence of Hamel Basis). Every nontrivial linear space has a Hamel
Basis.

Proof. Let X be a nontrivial linear space. To show that X has a Hamel basis, we first
prove that X has a maximal linearly independent set, and then we show that any such set
is necessarily a Hamel basis.

Consider the collection C of all linearly independent subsets of X, and partially order C
by the inclusion relation, ⊆ . In order to apply Zorn’s Lemma (1.6.11), we verify that every
totally ordered subset in C has an upper bound. Note C is nonempty, since, for any x ∈ X,
{x} is a linearly independent subset of X. Let T ∈ C be a totally ordered subset. Consider
S∗⋃

S∈T S. Clearly S ⊆ S∗ for all S ∈ T. We show that S∗ is linearly independent. Suppose
that ∑n

i=1 aisi = 0 for some scalars ai and for some distinct points si ∈ S∗. Each si belongs
to some Si ∈ T. Since T is a totally ordered subset and there are only finitely many si, one
of the sets Si, i = 1, 2, . . . , n, say, Sj, contains all the others. Since Sj is linearly independent
by the assumption, we conclude that ai = 0 for each i = 1, 2, . . . , n. This shows that S∗

is linearly independent, from which it follows that every totally ordered subset in C has an
upper bound. By Zorn’s Lemma, the collection C has a maximal element, say H.

We show that H is a Hamel basis for X. Let x ∈ X be arbitrary. By the maximality of H,
either H ∪ {x} is linearly dependent or H ∪ {x} ⊆ H, in which case x ∈ H. In either case,
x is a linear combination of elements of H. Since H itself is linearly independent, it follows
that this linear combination is unique. Hence, H is a Hamel basis for X.

This completes the proof. □
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Definition 1.6.15 (Dominated). Let f, p : X → R be real–valued functions. We say that f
is dominated by p if for all x ∈ X, we have

f(x) ≤ p(x).

Theorem 1.6.16 (Hahn–Banach Theorem). Let X be a real linear space, and let p :
X → R be a function such that p(x+y) ≤ p(x)+p(y) and p(λx) = λp(x) if λ ≥ 0. Then
any linear functional defined on a subspace of X and dominated by p has an extension
that is linear, defined on X, and dominated by p.

Proof. Let X0 be a linear subspace of X and let f : X0 → R be a linear functional. If
X0 = X we’re done. Otherwise, let Y ∈ X \ X0. To extend f to X0 ∪ span(y) it suffices to
specify a value for f(y), for the linearity of f implies that

f(x+ λy) = f(x) + λf(y)
for all x ∈ X0 and all λ ∈ R. In order for this extension to be dominated by p, the value of
f(y) must be assigned in such a way that

f(x+ λy) = f(x) + λf(y) ≤ p(x+ λy)
for all x ∈ X0 and all λ ∈ R. If λ = 0, the inequality is trivial. If λ > 0, we may divide by λ
to see that we must have

f
(
x

λ

)
+ f(y) = 1

λ
f(x) + f(y) ≤ 1

λ
p(x+ λy) = p

(
x

λ
+ y

)
for all x ∈ X0, or

f(x1) + f(y) ≤ p(x1 + y)
for all x1 ∈ X0. If λ < 0, dividing by λ and exchanging inequalities gives

f
(
x

λ

)
+ f(y) ≥ p

(
x

λ
+ y

)
= −p

(
−x

λ
− y

)
for all x ∈ X0, or

f(x2) + f(y) ≥ −p(−x2 − y)
for all x2 ∈ X0. Adding the above inequalities, we see that f(y) must satisfy

−p(x2 − y) − f(x2) ≤ f(y) ≤ p(x1 + y) − f(x1)
for all x1, x2 ∈ X0. In order to see that there is a number satisfying this inequality, we
compute

f(x1) − f(x2) = f(x1 − x2) ≤ p(x1 − x2) = p((x1 + y) − (x2 + y))
≤ p(x1 + y) + p(−x2 − y).

This completes the extension by one dimension.
We use Zorn’s Lemma to show that f can be extended to X. Let F be the collection of

all linear extensions of f that are dominated by p, and partially order F by the inclusion
relation ⊆ . Note F is nonempty by the above argument. Recall that h ⊆ g if and only if
the domain of g contains the domain of h and g(x) = h(x) on the domain of h. In order
to use Zorn’s Lemma, we must verify that each totally ordered subset in F has an upper
bound. But this is true since the union of all the extensions in any totally ordered subset
is an upper bound for this subset. By Zorn’s Lemma, there exists a maximal element f̃ in
F . Then f̃ is a linear functional that is an extension of f and is dominated by p. Finally, f̃
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must be defined on all of X, for if not, a further extension of f would be possible, as shown
in the first part of the proof.

This completes the proof. □

Corollary 1.6.17. Let f be a linear functional defined on a subspace Y in a normed linear
space X and satisfying

|f(y)| ≤ M∥y∥
for all y ∈ Y. Then f has a linear extension defined on all of X and satisfying the above
inequality on X.

Proof. Apply the Hahn–Banach Theorem (1.6.16) with p(x) := M∥x∥. □

Corollary 1.6.18. Let Y be a subspace in a normed linear space X. If w ∈ X and dist(x, Y ) >
0, then there exists a continuous linear functional f defined on X such that f(y) = 0 for all
y ∈ Y, f(w) = 1, and ∥f∥ = 1/dist(w, Y ).

Proof. Let V be the subspace generated by Y and w, that is, V := span{Y,w}. Each element
v of V has a unique representation v = y+λw, with y ∈ Y and λ ∈ R. Let f(v) = f(y+λw) =
λ for all v ∈ V. The norm of f on V is computed as follows:

∥f∥ = sup
v ̸=0

|f(y + λw)|
∥y + λw∥

= sup
v ̸=0

|λ|
∥y + λw∥

= sup
v ̸=0

1
∥ y
λ

+ w∥

= 1
infy∈Y ∥y + w∥

= 1
dist(w, Y ) .

By the above corollary (1.6.17), we can extend f to all of X without an increase in norm. □

Corollary 1.6.19. To each point w in a normed linear space there corresponds a continuous
linear functional f such that ∥f∥ = 1 and f(w) = ∥w∥.

Proof. Fix w ∈ X and let Y = {0} in the above corollary (1.6.18). There exists a continuous
linear functional ϕ : X → R such that ϕ(w) = 1 and ∥ϕ∥ = 1/∥w∥. Let ψ(x) := ∥w∥ϕ(x).
Then ψ is clearly a linear functional, and satisfies

∥ψ∥ = 1, ψ(w) = ∥w∥.
□

Definition 1.6.20 (Dual Space, Adjoint). Let X be a normed linear space. The adjoint
(dual space) of X is a normed space X∗ consisting of all continuous linear functionals
defined on X.

Example 1.6.21. Let X = Rn endowed with the max norm. Then X∗ can be identified
with the norm ∥ · ∥1. To see this, recall that if ϕ ∈ X∗, then ϕ(x) = ∑n

i=1 uixi for a suitable
u ∈ Rn. Then

∥ϕ∥ = sup
∥x∥∞≤1

∣∣∣∣∣
n∑
i=1

uixi

∣∣∣∣∣ =
n∑
i=1

|ui| = ∥u∥1.

Example 1.6.22. Let c0 denote the Banach space of all real sequences that converge to zero,
normed by putting ∥x∥∞ := supn∈N |xn|. Let ℓ1 denote the Banach space of all real sequences
u for which ∑∞

n=1 |un| < ∞, normed by putting ∥u∥1 := ∑∞
n=1 |un|. With each u ∈ ℓ1 we

associate a functional ϕu ∈ c∗
0 by means of the equation ϕu(x) = ∑∞

n=1 unxn.
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Definition 1.6.23 (Isometric). Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed linear spaces and
T : X → Y a linear operator. We say that T is isometric if for all x ∈ X, we have

∥Tx∥Y = ∥x∥X .

Proposition 1.6.24. For each u ∈ ℓ1, define the functional ϕu : c0 → R by ϕu(x) =∑∞
n=1 unxn. The mapping A : ℓ1 → c∗

0 defined by Au = ϕu is an isometric isomorphism
between ℓ1 and c∗

0.

Proof. It is to be shown that for each u ∈ ℓ1, Au is linear and continuous on c0. Then it is
to be shown that A is linear, injective, surjective, and isometric.

First, that ϕu is well–defined follows from the absolute convergence of the series defining
ϕu(x) :

∥ϕu∥ ≤
∞∑
n=1

|xnun| =
∞∑
n=1

|xn||un| ≤
∞∑
n=1

∥x∥∞|un| = ∥x∥∞

∞∑
n=1

|un| = ∥x∥∞∥u∥1.

The linearity of ϕu is obvious:

ϕu(αx+ βy) =
∞∑
n=1

un(αxn + βyn) =
∞∑
n=1

αunxn + βunyn = α
∞∑
n=1

unxn + β
∞∑
n=1

unyn

= αϕu(x) + βϕu(y).

The continuity of ϕu follows immediately from the boundedness of ϕu shown in the proof
above that ϕu is well–defined. This shows Au is linear and continuous.

To see that A is isometric, observe

∥Au∥ = ∥ϕu∥ = sup
∥x∥∞≤1

∥x∥∞∥u∥1 ≤ ∥u1∥.

On the other hand, if ϵ > 0 is given, we may select N so large that ∑∞
n=N+1 |un| < ϵ. Then

we define x by putting xn := sgn (un) for n ≤ N, and by setting xn := 0 for n > N. Clearly,
x ∈ c0 and ∥x∥∞ = 1. We have

∥ϕu∥ ≥ ϕu(x) =
N∑
n=1

xnun =
N∑
n=1

|un| > ∥u∥1 − ϵ.

Since ϵ was arbitrary, ∥ϕu∥ ≥ ∥u∥1, which shows that A is isometric, that is,

∥Au∥ = ∥ϕu∥ = ∥u∥1.

We now show that A is injective. Suppose that Au1 = Au2 for some u1, u2 ∈ ℓ1. Then
ϕu1 = ϕu2 . Thus, for any x ∈ c0, we have

ϕu1(x) − ϕu2(x) =
∞∑
n=1

(u1)nxn −
∞∑
n=1

(u2)nxn =
∞∑
n=1

((u1)n − (u2)n)xn.

Since this is for all x ∈ c0, we must have u1 = u2, which shows that A is injective.
Next, we show that A is surjective. Let ψ ∈ c∗

0. Let δn be the element of c0 that has a 1
in the n−th coordinate and zeros elsewhere. Then for any x ∈ c0,

x =
∞∑
n=1

xnδn.
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Since ψ is continuous and linear,

ψ(x) = ψ

( ∞∑
n=1

xnδn

)
=

∞∑
n=1

xnψ(δn).

Consequently, if we put un := ψ(δn), then ψ(x) = ϕu(x) for all x ∈ c0 and ψ = ϕu. To verify
that u ∈ ℓ1, we define yn = sgn (un) for n ≥ N and yn = 0 for n > N. Then

N∑
n=1

|un| =
N∑
n=1

ynun = ψ(y) ≤ ∥ψ∥∥y∥∞ = ∥ψ∥,

by the boundedness of ψ. Thus ∥u∥1 ≤ ∥ψ∥.
Finally, the linearity of A follows from

ϕαu+βv(x) =
∞∑
n=1

(αun + βvn)xn = α
∞∑
n=1

unxn + β
∞∑
n=1

vnxn = αϕu(x) + βϕv(x)

= (αϕu + βϕv)(x).
This completes the proof. □

Corollary 1.6.25. For each x in a normed linear space X, we have
∥x∥ = max{|ϕ(x)| : ϕ ∈ X∗, ∥ϕ∥ = 1}.

Proof. If ϕ ∈ X∗ and ∥ϕ∥ = 1, then for all x ∈ X, we have
|ϕ(x)| ≤ ∥ϕ∥∥x∥ = ∥x∥.

Therefore
sup{|ϕ(x)| : ϕ ∈ X∗, ∥ϕ∥ = 1} ≤ ∥x∥.

For the reverse inequality, note first that it is trivial if x = 0. Otherwise, corollary (1.6.19)
implies that there exists a continuous linear functional ψ ∈ X∗ such that ∥ψ∥ = 1 and
ψ(x) = ∥x∥. That is,

∥x∥ = |ψ(x)| ≤ ∥ψ∥∥x∥.
Note that the supremum is attained. □

Definition 1.6.26 (Fundamental Subset). A subset V in a normed linear space X is said to
be fundamental if the set of all linear combinations of elements of V is dense in X. That
is, for all x ∈ X and any ϵ > 0, there exists v1, . . . , vn ∈ V and λ1, . . . , λn ∈ R such that∥∥∥∥∥x−

n∑
i=1

λivi

∥∥∥∥∥ < ϵ.

Note that we could also state that dist(x, span(V )) = 0 for all x ∈ X.

Example 1.6.27. In the space (C[a, b], ∥ ·∥∞), an important fundamental set is the sequence
of monomials

u0(t) := 0, u1(t) := t, u2(t) := t2, . . .

In fact, the Weierstrass Approximation Theorem establishes the fundamentality of this se-
quence. Thus for any x ∈ C[a, b] and any ϵ > 0 there is a polynomial p for which ∥x−p∥∞ < ϵ.

Definition 1.6.28 (Annihilator). If A is a subset of a normed linear space X, then the
annihilator of A is the set

A⊥ := {ϕ ∈ X∗ : ∀a ∈ A, ϕ(a) = 0}.
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Theorem 1.6.29. A subset V of a normed linear space X is fundamental if and only if
V has trivial annihilator.

Proof. We first show that if V ⊥ = {0}, then V is fundamental. By contrapositive, suppose
that V is not fundamental. Denote by Y the closure of the span of V, Y := span(V ). If V
is not fundamental, there exists a point x ∈ X \ Y. Then by corollary (1.6.18), there exists
a continuous linear functional ϕ ∈ X∗ such that ϕ(v) = 0 for all y ∈ Y and ϕ(x) = 1. Since
ϕ(y) = 0 for all y ∈ Y, ϕ ∈ Y ⊥. But, since ϕ(x) = 1, ϕ ̸= 0, and we see that V ⊥ ̸= {0}. This
proves the converse.

Now assume that V is fundamental, in which case Y = X. Then any element of V ⊥

annihilates the span of V as well as Y and thus X. Thus it must be the zero functional, that
is, V ⊥ = {0}. □

Theorem 1.6.30 (Adjoints are Banach Spaces). For any normed linear space X (not
necessarily complete) its adjoint X∗ is complete.

Proof. For any normed linear space X, note that X∗ = L(X,R). Since R is complete, the
completeness of X∗ follows from theorem (1.5.20). □

1.7. The Baire Theorem and Uniform Boundedness. This section discusses impor-
tant consequences of completeness in a normed linear space. That is, the following results
distinguish Banach spaces from other normed linear spaces. These results should show why
it is always nicer to be messing with a complete space.

Definition 1.7.1 (Dense). A subset F of a metric space X is said to be dense if its closure
is the entire space, F = X.

Theorem 1.7.2 (Baire’s Theorem). In any complete metric space, the intersection of a
countable family of open dense sets is dense.

Proof. Let {On}∞
n=1 be a countable collection of open dense sets in a metric space X. In

order to show that ⋂∞
n=1 On is dense, it suffices to prove that this set intersects an arbitrary

nonempty open ball in X.
Fix x ∈ X and ϵ > 0 and define S := B(x, ϵ). Since O1 is open and dense, S ∩ O1 is open

and nonempty. Thus there exist r1 > 0 and x1 ∈ S ∩ O1 such that S1 := B(x1, r1) ⊆ S ∩ O1.
Now since O2 is open and sense, S1 ∩ O2 is open and nonempty. That is, there exist r2 > 0
and x2 ∈ S1 ∩ O2 such that S2 := B(x2, r2) ⊆ S1 ∩ O2. Continuing in such fashion, we find
xn ∈ Sn−1 ∩ On and rn → 0 such that

Sn+1 ⊆ Sn ∩ On ⊆ S1 ∩ On.

We see that the points {xn}∞
n=1 form a Cauchy sequence, for, if n,m ≥ N, then xn, xm ∈ SN

and
d(xn, xm) ≤ d(xn, xN) + d(xN , xm) < 2rN .
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Since X is complete, the sequence {xn}∞
n=1 converges to some point x∗ ∈ X. Since for n > N

we have
xn ∈ SN ⊆ S ∩ On,

we can let n → ∞ to conclude that x∗ ∈ Sn+1 ⊆ S ∩ On. Since this is for all n ∈ N, the set⋂∞
n=1 On intersects S. □

Corollary 1.7.3. If a complete metric space is expressed as a countable union of closed sets,
then one of the closed sets has a nonempty interior.

Proof. Let X be a complete metric space, and suppose by contradiction that X = ⋃∞
n=1 Fn,

where each Fn is a closed set having empty interior. The sets On := X \ Fn are open and
dense. Hence by Baire’s Theorem (1.7.2), ⋂∞

n=1 On is open and dense. In particular, it is
nonempty. Thus there exists x ∈ ⋂∞

n=1 On, so that x ∈ X \ ⋂∞
n=1 Fn, a contradiction. □

Definition 1.7.4 (Nowhere Dense). A subset A in a topological space X is said to be
nowhere dense in X if its closure has empty interior, that is, if A◦ = ∅.

Example 1.7.5. Singletons are nowhere dense in R, and the set of irrational points on the
horizontal axis in R2 is nowhere dense in R2.

Definition 1.7.6 (Category I). A set that is a countable union of nowhere dense sets in a
space X is said to be of category I in X.

Definition 1.7.7 (Category II). A set that is not of category I in a space X is said to be of
category II in X.

Example 1.7.8. Note that the set of irrationals is of category II in R but the previous
example shows that it is of category I in R2.

Theorem 1.7.9 (Banach–Steinhaus Theorem). Let X be a Banach space and Y a
normed linear space, and let {Tα}α∈A be a family of bounded linear operators in L(X, Y ).
Then supα∈A ∥Tα∥ < ∞ if and only if the set {x ∈ X : supα∈A ∥Tαx∥ < ∞} is of the
second category in X.

Proof. Define the set F := {x ∈ X : supα∈A ∥Tαx∥ < ∞}.
Assume first that supα∈A ∥Tα∥ < ∞, and put M := supα∈A ∥Tα∥. Then, for all x ∈ X, we

have
∥Tαx∥ ≤ ∥Tα∥∥x∥ ≤ M∥x∥ < ∞,

so that x ∈ F for all x ∈ X. Then F = X, and, since X is of the second category in X, this
proves one direction of the theorem.

To show the converse, assume that F is of the second category in X and, for each n ∈ N,
define

Fn := {x ∈ X : sup
α∈A

∥Tαx∥ ≤ n}.

Note that F = ⋃∞
n=1 Fn. Since F is of the second category, and each Fn is a closed subset of

X, we have by corollary (1.7.3) that there exists some N ∈ N such that FN has nonempty
interior. That is, there exists x0 ∈ FN and ϵ > 0 such that

B[x0, ϵ] := {x ∈ X : ∥x− x0∥ ≤ ϵ} ⊆ FN .
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For any x ∈ X satisfying ∥x∥ ≤ 1 we have x0 + ϵx ∈ B[x0, ϵ], for

∥(x0 + ϵx) − x0∥ = ∥ϵx∥ = ϵ∥x∥ ≤ ϵ.

Thus for all α ∈ A,

∥Tαx∥ =
∥∥∥∥Tα [x0 + ϵx− x0

ϵ

]∥∥∥∥ = 1
ϵ
∥Tα[(x0 + ϵx) − x0]∥

≤ 1
ϵ
∥Tα(x0 + ϵx)∥ + 1

ϵ
∥Tαx0∥ ≤ 2N

ϵ
.

Taking the supremum, we find for all α ∈ A that

∥Tα∥ = sup
∥x∥≤1

∥Tαx∥ ≤ 2N
ϵ
.

This completes the proof. □

Theorem 1.7.10 (The Principle of Uniform Boundedness). Let X be a Banach space
and Y a normed linear space, and let {Tα}α∈A a family of bounded linear operators in
L(X, Y ). If supα∈A ∥Tαx∥ < ∞ for each x ∈ X, then supα∈A ∥Tα∥ < ∞.

Proof. If supα∈A ∥Tαx∥ < ∞ for every x ∈ X, then the set {x ∈ X : supα∈A ∥Tαx∥ < ∞} is
all of X, and is thus of the second category in X. The result follows immediately from the
Banach–Steinhaus Theorem (1.7.9). □

Example 1.7.11. Consider the space C[0, 1]. We are going to show that most members of
C[0, 1] are not differentiable at any given point. Select a point ξ in the open interval (0, 1).
For small positive values h > 0 we define a linear functional ϕh : C[0, 1] → R by

ϕh(x) := x(ξ + h) − x(ξ − h)
2h

for x ∈ C[0, 1]. Note ϕh is linear:

ϕh(αx+ βy) = (αx+ βy)(ξ + h) − (αx+ βy)(x− h)
2h

= (αx)(ξ + h) + (βy)(ξ + h) − (αx)(ξ − h) − (βy)(ξ − h)
2h

= α
x(ξ + h) − x(ξ − h)

2h + β
y(ξ + h) − y(ξ − h)

2h
= αϕh(x) + βϕh(y).

Also note ∥ϕh∥ = 1/h :

∥ϕh∥ = sup
∥x∥≤1

∥ϕh(x)∥ = sup
∥x∥≤1

∥∥∥∥∥x(ξ + h) − x(ξ − h)
2h

∥∥∥∥∥ ≤ sup
∥x∥≤1

(∥∥∥∥∥x(ξ + h)
2h

∥∥∥∥∥
∥∥∥∥∥x(ξ − h)

2h

∥∥∥∥∥
)

= 1
2h + 1

2h = 1
h
.
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Moreover, we have equality and the supremum is attained if we define x : [0, 1] → R by

x(t) :=


−1, 0 ≤ t ≤ ξ − h,
t
h

− ξ
h
, ξ − h < t < ξ + h,

1, ξ + h ≤ t ≤ 1.

Since suph ∥ϕh∥ = ∞, by the Banach–Steinhaus Theorem, the set of all x ∈ C[0, 1] such that
suph |ϕh(x)| < ∞ is of the first category. Hence the set of x ∈ C[0, 1] for which suph |ϕh(x)| =
∞ is of the second category in C[0, 1]. That is, the set of functions in C[0, 1] that are not
differentiable at ξ is of the second category in C[0, 1].

Theorem 1.7.12. Let {Tn}∞
n=1 be a sequence of bounded linear operators from a Banach

space X into a normed linear space Y. Then limn→∞ Tnx = 0 for all x ∈ X if and only
if the following two conditions are satisfied:

(1) supn∈N ∥Tn∥ < ∞;
(2) limn→∞ Tnu = 0 for every u in some fundamental subset of X.

Proof. First assume that limn→∞ Tnx = 0 for all x ∈ X. Then clearly for any fundamental
subset V ∈ X, we have limn→∞ Tnu = for all u ∈ V. Moreover, since each Tn, n ∈ N is
bounded and limn→∞ Tnx = 0 for all x ∈ X by the assumption, we have by the Principle of
Uniform Boundedness (1.7.10), we have supn∈N ∥Tn∥ < ∞.

For the converse, suppose that supn∈N ∥Tn∥ ≤ M < ∞ and that there exists a fundamental
subset V of X such that for all u ∈ V, limn→∞ Tnu = 0.

If x ∈ span(V ), then there exist u1, . . . , uN ∈ V and λ1, . . . , λN ∈ R such that

x =
N∑
j=1

λjuj.

Thus we find

lim
n→∞

Tnx = lim
n→∞

Tn

 N∑
j=1

λjuj

 = lim
n→∞

N∑
j=1

λjTnuj = 0.

Now let x /∈ span(V ) and fix ϵ > 0. Since V is fundamental in X, we can choose u ∈
span(V ) such that

∥x− u∥ < ϵ

2M .

Moreover, by the assumption that limn→∞ Tnu = 0, there exists a positive integer N such
that for all n ≥ N, we have

∥Tnu∥ < ϵ/2.
Thus for all n ≥ N, it follows

∥Tnx∥ = ∥Tnx− Tnu+ Tnu∥ ≤ ∥Tn(x− u)∥ + ∥Tnu∥

≤ ∥Tn∥∥x− u∥ + ϵ/2 < M
(

ϵ

2M

)
+ ϵ/2

= ϵ.

Since ϵ was arbitrary, this completes the proof. □
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Example 1.7.13. Recall the limit definition of the definite Riemann integral of a continuous
function x defined on the interval [a, b] :∫ b

a
x(t) dt = lim

n→∞

n∑
j=1

x

(
a+ j

b− a

n

)[
b− a

n

]
.

Consider the problem of approximating functions ψ : C[a, b] → R that have the form

ψ(x) =
∫ b

a
x(t)w(t) dt,

where x ∈ C[a, b] and in which w is a fixed integrable weight function. We want to approx-
imate ψ by a sequence of functionals ϕn having the form

ϕn(x) =
n∑
j=1

Anjx(tnj),

where x ∈ C[a, b]. Note that ϕn is simply a linear combination of point–evaluation functionals.
We show that

∥ϕn∥ =
n∑
j=1

|Anj|.

First observe

∥ϕn∥ = sup
∥x∥≤1

∥ϕn(x)∥ = sup
∥x∥≤1

∥∥∥∥∥∥
n∑
j=1

Anjx(tnj)
∥∥∥∥∥∥ ≤ sup

∥x∥≤1

n∑
j=1

|Anj|∥x(tnj)∥ =
n∑
j=1

|Anj|.

To see the reverse inequality, we assume that for each n, {tn1, tn2, . . . , tnn} is a set of n
mutually distinct arguments in [a, b]. Let x∗ be any continuous function defined on [a, b] that
satisfies ∥x∗∥ ≤ 1 and

x∗(tnj) = sgn (Anj), j = 1, 2, . . . , n.
Then

∥ϕn∥ = sup
∥x∥≤1

∥ϕn(x)∥ ≥ ∥ϕn(x∗)∥ =
∥∥∥∥∥∥
n∑
j=1

Anjx
∗(tnj)

∥∥∥∥∥∥ =
n∑
j=1

|Anj|.

It follows ∥ϕn∥ = ∑n
j=1 |Anj|.

Theorem 1.7.14. Let ψ : C[a, b] → R be a continuous linear functional defined by

ψ(x) =
∫ b

a
x(t)w(t) dt

and let ϕn : C[a, b] → R, n ∈ N be a family of continuous linear functionals of the form

ϕn(x) =
n∑
j=1

Anjx(tnj).

Then {ϕn}∞
n=1 converges to ψ for each x ∈ C[a, b] if and only if the following two condi-

tions are satisfied:
(1) supn∈N

n∑
j=1

|Anj| < ∞;

(2) {ϕn(x)}∞
n=1 converges to ψ(x) for all monomial functions x(t) = tk, k = 0, 1, 2, . . . .
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Proof. Consider the sequence of functionals {ψ − ϕn}∞
n=1. The norm of ψ is

∥ψ∥ = sup
∥x∥≤1

∥ψ(x)∥ = sup
∥x∥≤1

∣∣∣∣∣
∫ b

a
x(t)w(t) dt

∣∣∣∣∣ ≤ sup
∥x∥≤1

∫ b

a
|x(t)||w(t)| dt =

∫ b

a
|w(t)| dt.

Consequently condition (1) is equivalent to the condition
sup
n∈N

∥ψ − ϕn∥ < ∞.

Note by the Weierstrass Approximation Theorem, the functions hk : [a, b] → R defined
by hk(t) = tk, k = 0, 1, 2, . . . , form a fundamental set in C[a, b]. Then the result follows
immediately from the preceding theorem (1.7.12). □

1.8. The Open Mapping and Closed Mapping Theorems.

Definition 1.8.1 (Closed Function). Let X and Y be normed linear spaces. A function
f : X → Y is said to be closed if f is closed as a subset of X × Y, that is, if the set

{(x, f(x)) : x ∈ X}
is closed in X × Y.

In terms of sequences, the closed property of f is that if xn → x and f(xn) → y, then
y = f(x). Clearly, every continuous map is closed.

An example of a linear transformation that is closed but not continuous is the derivative
operator D acting on the set of differentiable functions in C[a, b] and mapping into C[a, b].
The following theorem shows that if xn → x and Dxn → y, then y = Dx. We denote by
C1[a, b] the set of all continuously differentiable functions on [a, b].

Theorem 1.8.2. Let {xn}∞
n=1 be a sequence in C1[a, b] and suppose that ∥xn −x∥∞ → 0

and ∥x′
n − y∥∞ → 0 as n → ∞. Then y ∈ C[a, b] and x′ = y.

Proof. Since xn ∈ C1[a, b], we have x′
n ∈ C[a, b] for all n ∈ N. Since {x′

n}∞
n=1 converges to y

with respect to the uniform norm by the assumption, and since (C[a, b], ∥ · ∥∞) is a Banach
space (1.2.22), it follows y ∈ C[a, b]. Moreover, by the fundamental theorem of calculus,∫ s

a
y(t) dt =

∫ s

a

(
lim
n→∞

x′
n(t)

)
dt = lim

n→∞

∫ s

a
x′
n(t) dt = lim

n→∞
xn(s) − xn(a)

= x(s) − x(a).
Differentiation with respect to s now yields y(t) = x′(t). □

Recall from introductory real analysis that the uniform convergence of the derivatives is
necessary. In fact, uniform convergence of a sequence of continuously differentiable functions
does not guarantee that their derivatives converge even pointwise, for consider

xn(t) = 1
n

sin(nt), x′
n(t) = cos(nt).

Definition 1.8.3 (Open Mapping). Let X and Y be normed linear spaces. A function
f : X → Y is said to be open if f maps open sets in X to open sets in Y, that is, if for
every open set U ∈ X, f(U) is open in Y.

35



1. Normed Linear Spaces 1.8. Open Mapping and Closed Mapping Theorems

Theorem 1.8.4 (The Open Mapping Theorem). If a closed linear transformation maps
one Banach space onto another, then it is an open map.

Proof. Let X and Y be Banach spaces and let L : X → Y be a surjective closed linear
map. We denote by SX := BX(0, 1) = {x ∈ X : ∥x∥ < 1} the open unit ball in X and
SY := BY (0, 1) = {y ∈ Y : ∥y∥ < 1} the open unit ball in Y.

We first show that SY ⊆ L(tSx) for some t > 0. Since L is surjective by hypothesis,

Y = L(X) = L

( ∞⋃
n=1

BX(0, n)
)

=
∞⋃
n=1

L(BX(0, n)) =
∞⋃
n=1

L(nSX).

Since Y is complete, it follows by Baire’s Theorem (1.7.2) that one of the sets L(nSX) =
L(BX(0, n)) has nonempty interior, say L(mSX) = L(BX(0,m) has nonempty interior. By
definition, then, there exists v ∈ L(mSX) and r > 0 such that

BY (v, r) = {y ∈ Y : ∥y − v∥ < r} = v + rSY ⊆ L(mSX).
We see that v ∈ L(mSX), and thus if ∥y∥ < 1, we have

∥ry∥ = ∥ry + v − v∥ ≤ ∥ry + v∥ + ∥v∥ < r + r = 2r,
so that ry ∈ B(v, 2r) ⊆ L(2mSx). It follows that for all y ∈ SY , y ∈ L(tSX) for t := 2m/r.
This shows SY ⊆ L(tSX).

We now show that SY ⊆ L(2tSX). Fix y ∈ SY . Choose a sequence of positive numbers
δn such that ∑∞

n=1 δn < 1. Since y ∈ L(tSX), it follows by the closure of L that there exists
x1 ∈ tSX such that ∥y − Lx1∥ < δ1. Since

y − Lx1 ∈ BY (0, δ1) = δ1SY ⊆ L(δ1tSX),
there is a point x2 ∈ δ1tSX such that ∥y − Lx1 − Lx2∥ < δ2. We continue in this fashion,
obtaining a sequence x1, x2, . . . such that

xn ∈ δn−1tSX

and whose partial sums Sn := x1 + · · · + xn have the property
∥y − LSn∥ = ∥y − L(x1 + · · · + xn)∥ = ∥y − Lx1 − Lx2 + · · · − Lxn∥ < δn.

Also, we have for the sequence {Sn}∞
n=1 of partial sums that

∥Sn∥ = ∥x1 + · · · + xn∥ ≤ ∥x1∥ + · · · + ∥xn∥
≤ t+ δ1t+ δ2t+ · · · + δn−1t

= t

1 +
n−1∑
j=1

δj=1


< 2t.

Moreover, the sequence {Sn}∞
n=1 is Cauchy, for we see that

∥Sn+k − Sn∥ =
∥∥∥∥∥∥
n+k∑
j=1

xj −
n∑
j=1

xj

∥∥∥∥∥∥ = ∥xn+1 + xn+2 + · · · + xn+k∥

≤ ∥xn+1∥ + ∥xn+2∥ + · · · + ∥xn+k∥
≤ tδn + tδn+1 + · · · + tδn+k−1
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< t
∞∑
j=n

δj.

Since X is complete, {Sn}∞
n=1 converges to s for some s ∈ X. Also, since L is closed and

LSn → y, we have y = Ls. Furthermore, since s = ∑∞
j=1 xj, we have

∥s∥ = t

1 +
∞∑
j=1

δj

 < 2t.

Hence s ∈ 2tSX , so that y = Ls ∈ L(2tSX). Since y ∈ SY was arbitrary, it follows SY ⊆
L(2tSX).

Lastly, to complete the proof, we show that L(U) is open in Y whenever U is open in X.
It suffices to show that for any y ∈ L(U), there exists ϵ > 0 such that y + ϵSY ⊆ L(U). Let
y ∈ L(U) be arbitrary. Then there exists x ∈ U such that y = Lx. Since U is open, there
exists δ > 0 such that

B(x, δ) = x+ δSX ⊆ U.

Then
L(x+ δSX) = Lx+ δL(SX) = y + δL(SX) ⊆ L(U).

By the preceding arguments, we have that SX ⊆ L(2tSX). Thus δ
2tSX ⊆ δL(SX) and

B

(
y,
δ

2t

)
= y + δ

2tSX ⊆ L(U).

Thus L(U) contains a neighborhood of y, and, since y was arbitrary, L(U) is open.
This completes the proof. □

Corollary 1.8.5. If an algebraic isomorphism of one Banach space onto another is contin-
uous, then its inverse is continuous.

Proof. Let X and Y be Banach spaces and let L : X → Y be a continuous isomorphism.
Since L is continuous, L is closed. By the open mapping theorem (1.8.4), L is an open map.

Note that since L is bijective by the assumption, L has a well–defined inverse L−1 : Y → X,
L−1 : y = L(x) 7→ x. Let U be open in X. Then, since L is open, (L−1)−1(U) = L(U) is open
in Y, which completes the proof. □

Corollary 1.8.6. Let X be a linear space and suppose that ∥ · ∥a, ∥ · ∥b are two norms on X
such that (X, ∥ · ∥a) and (X, ∥ · ∥b) are both Banach spaces and

∥x∥a ≤ ∥x∥b
for all x ∈ X. Then ∥ · ∥a and ∥ · ∥b are equivalent, in the sense that there exists λ > 0 such
that

λ∥x∥b ≤ ∥x∥a ≤ ∥x∥b
for all x ∈ X.

Proof. First note that ∥x∥a ≤ ∥x∥b follows by the assumption.
Denote by I the identity map I : (X, ∥ · ∥b) → (X, ∥ · ∥a) defined by Ix = x for all x ∈ X.

Then, for all x ∈ X, we have
∥Ix∥a = ∥x∥a ≤ ∥x∥b.
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Consequently, I is bounded and thus continuous. By the preceding corollary (1.8.5), the
inverse I−1 : (X, ∥ · ∥a) → (X, ∥ · ∥b) is continuous, and hence, bounded. Thus for all x ∈ X
there exists λ > 0 such that

∥x∥b = ∥I−1x∥b ≤ 1
λ

∥x∥a.

Multiplying by λ, we find
λ∥x∥b ≤ ∥x∥a ≤ ∥x∥b

for all x ∈ X, which completes the proof. □

Theorem 1.8.7 (The Closed Graph Theorem). Let X and Y be Banach spaces. If a
linear map L : X → Y is closed, then L is continuous.

Proof. Let L : X → Y be a closed linear operator. Define a new norm N on X by

N(x) := ∥x∥X + ∥Lx∥Y
for all x ∈ X. To see that N is in fact a norm, note that N is nonnegative and N(x) = 0 if
and only if x = 0. Second, for all α ∈ R and x ∈ X,

N(αx) = ∥αx∥X + ∥L(αx)∥Y = |α|∥x∥X + |α|∥Lx∥Y = |α|(∥x∥X + ∥Lx∥Y ) = |α|N(x).

The triangle inequality also follows:

N(x+ y) = ∥x+ y∥X + ∥L(x+ y)∥Y ≤ ∥x∥X + ∥y∥Y + ∥Lx+ Ly∥Y
≤ (∥x∥X + ∥Lx∥Y ) + (∥y∥ + ∥Ly∥Y ) = N(x) +N(y).

Consequently N is a norm.
We show that (X,N) is complete. Let {xn}∞

n=1 be Cauchy in (X,N). Since

∥x∥X ≤ N(x) and ∥Lx∥Y ≤ N(x)

for all x ∈ X, {xn}∞
n=1 is Cauchy in (X, ∥ · ∥X) and {Lxn}∞

n=1 is Cauchy in (Y, ∥ · ∥). Since
X and Y are complete, {xn}∞

n=1 converges to some x ∈ X and {Lxn}∞
n=1 converges to some

y ∈ Y. Moreover, since L is closed, y = Lx. Then

N(xn − x) = ∥xn − x∥X + ∥L(xn − x)∥Y = ∥xn − x∥ + ∥Lxn − y∥Y → 0

as n → ∞. Hence (X,N) is complete.
Finally, by the preceding corollary (1.8.6), there exists λ > 0 such that ∥N(x)∥ ≤ λ∥x∥

for all x ∈ X. It follows

∥Lx∥Y ≤ ∥x∥X + ∥Lx∥Y = N(x) ≤ λ∥x∥X
for all x ∈ X. Hence L is bounded, and thus continuous, which completes the proof. □

Example 1.8.8. Note that the derivative operator D : (C1[a, b], ∥ ·∥∞) → (C[a, b], ∥ ·∥∞) was
shown to be a closed unbounded operator in a preceding example. Since C[a, b] is a Banach
space under the infinity norm, we can conclude that the space C1[a, b] does not form a Banach
space under the infinity norm.

Lemma 1.8.9. A normed linear space X is a Banach space if and only if every absolutely
convergent series is convergent.
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Proof. Let X be a normed linear space.
First assume that X is a Banach space, and let ∑∞

n=1 xn converge absolutely. Denote by
{Sn}∞

n=1 the sequence of partial sums

Sn := x1 + x2 + · · · + xn, n = 1, 2, . . . .

Since ∑∞
n=1 ∥xn∥ < ∞ by the assumption, for any ϵ > 0 there exists a positive integer

N such that ∑∞
n=N ∥xn∥ < ϵ. Consequently {Sn}∞

n=1 is Cauchy, for we see that, for all
n, n = k ≥ N, k ≥ 1,

∥Sn+k − Sn∥ =
∥∥∥∥∥∥
n+k∑
j=1

xj −
n∑
j=1

xj

∥∥∥∥∥∥ =
∥∥∥∥∥∥
n+k∑
j=n+1

xj

∥∥∥∥∥∥ ≤
n+k∑
j=n+1

∥xj∥ < ϵ.

Since X is complete, {Sn}∞
n=1 converges to some S ∈ X, which completes the proof for this

direction.
Conversely, suppose that every absolutely convergent series in X converges and let {xn}∞

n=1
be Cauchy in X. Then for every k ∈ N, there exists a positive integer Nk such that for all
n,m ≥ Nk, we have

∥xn − xm∥ < 1
k2 .

Without loss of generality, we may assume that the sequence {Nk}∞
k=1 is increasing. Then

the series ∑∞
k=1 xNk+1 − xNk

converges absolutely, for we see that
∞∑
k=1

∥xNk+1 − xNk
∥ <

∞∑
k=1

1
k2 < ∞,

since the RHS is a convergent p−series. Evidently the series ∑∞
k=1 xNk+1 −xNk

converges by
the assumption. Moreover, we see that for each k ∈ N,

xNk
= xN1 + (xN2 − xN1) + · · · + (xNk

− xNk−1) = xN1 +
k∑
j=1

xj+1 − xj.

Thus the sequence {xNk
}∞
k=1 converges to some x ∈ X. Observe

∥xn − x∥ ≤ ∥xn − xNk
∥ + ∥xNk

− x∥ → 0

as n → ∞ for some Nk large enough. This completes the proof. □

Theorem 1.8.10. A normed linear space that is the image of a Banach space under a
bounded linear open map is also a Banach space.

Proof. Let X be a Banach space and let L : X → Y be a bounded linear open map onto
Y. By the lemma (1.8.9), it suffices to prove that every absolutely convergent series in Y is
convergent. Let {yn}∞

n=1 be a sequence in Y such that ∑∞
n=1 ∥yn∥ < ∞. Since L is open,

there exists xn ∈ X such that Lxn = yn and ∥xn∥ ≤ C∥yn∥ for some C > 0. Thus
∞∑
n=1

∥xn∥ ≤ C
∞∑
n=1

∥yn∥ < ∞.
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Since X is complete, it follows by the lemma (1.8.9) that the series ∑∞
n=1 xn converges.

Finally, since L is continuous and linear,
∞∑
n=1

yn =
∞∑
n=1

Lxn = L

( ∞∑
n=1

xn

)
converges. □

Definition 1.8.11 (Adjoint Operator). Let X and Y be normed linear spaces and let L :
X → Y be a bounded linear operator. The adjoint operator of L is the map L∗ : Y ∗ → X∗

defined by L∗ϕ = ϕ ◦ L for all bounded linear functionals ϕ ∈ Y ∗.

Proposition 1.8.12. Let L : X → Y be a bounded linear operator. Then L∗ : Y ∗ → X∗ is
also a bounded linear operator.

Proof. We first show that L∗ is linear. Let ϕ, ψ ∈ Y ∗ and let α, β ∈ R. Then, by the linearity
of ϕ and ψ,

L∗(αϕ+ βψ) = (αϕ+ βψ) ◦ L = (αϕ) ◦ L+ (βψ) ◦ L = α(ϕ ◦ L) + β(ψ ◦ L)
= αL∗ϕ+ βL∗ψ.

To see that L∗ is bounded, recall that for any T ∈ L(L(Y,R),L(X,R)), we have
∥T∥ = sup

∥ϕ∥L(Y,R)≤1
∥Tϕ∥L(X,R) = sup

∥ϕ∥L(Y,R)=1
∥Tϕ∥L(X,R).

We see that
∥L∗∥ = sup

∥ϕ∥=1
∥L∗ϕ∥ = sup

∥ϕ∥=1
sup

∥x∥≤1
|(L∗ϕ)(x)| = sup

∥x∥≤1
sup

∥ϕ∥=1
|ϕ(Lx)|.

Since ϕ ∈ Y ∗ with ∥ϕ∥ = 1, it follows by Corollary (1.6.25) that sup∥ϕ∥=1 |ϕ(Lx)| = ∥Lx∥.
Hence,

∥L∗∥ = sup
∥x∥≤1

∥Lx∥ = ∥L∥.

This shows that L∗ is bounded, and, in particular, L∗ has the same norm as L in operator
norm. □

In a finite–dimensional space, an operator L can be represented by a matrix A. This
requires the prior selection of bases for the domain and range of L. The adjoint operator L∗

is represented by the complex conjugate matrix AH .

Definition 1.8.13 (Range Space). Let X and Y be normed linear spaces and let L : X → Y
be a linear operator. The range space of L, denoted by R(L), is the set

R(L) := L(X) = {y ∈ Y : y = Lx}.

Definition 1.8.14 (Null Space). Let X and Y normed linear spaces and let L : X → Y be
a linear operator. The null space of L, denoted by N (L), is the set

N (L) := ker(L) = {x ∈ X : Lx = 0}.

Theorem 1.8.15. Let X and Y be normed linear spaces and let L ∈ L(X, Y ). Then
R(L) is dense if and only if L∗ is injective.
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Proof. Let L : X → Y be continuous.
Suppose that R(L) is dense in Y. Then L(X) is a fundamental subset of Y, so it follows

by Theorem (1.6.29) that L(X)⊥ = {0}. That is, if ϕ ∈ L(X)⊥, then ϕ ≡ 0. Thus, if
ϕ(Lx) = 0 for all x ∈ X, then ϕ ≡ 0. But then L∗(ϕ) = ϕ(Lx) = 0 for all ϕ ∈ L(X)⊥, so
that ker(L∗) = {0}. This shows that L∗ is injective.

For the converse, assume that L∗ is injective. Then ker(L∗) = {0}, so that for all ϕ ∈
L(X)⊥, we have L∗(ϕ) = ϕ(Lx) = 0 if and only if ϕ ≡ 0. Thus L(X)⊥ = {0}, which implies
by Theorem (1.6.29) that L(X) is dense in Y. □

Remark. Let X be a normed linear space and let U ⊆ X∗. We use the notation
U⊥ := {x ∈ X : ϕ(x) = 0 for all ϕ ∈ U}.

Theorem 1.8.16 (Closed Range Theorem). Let X and Y be normed linear spaces and
let L ∈ L(X, Y ). Then R(L) = N (L∗)⊥.

Proof. We first show R(L) ⊆ N (L∗)⊥. Let y ∈ R(L). Then there exists a sequence {yn}∞
n=1

in R(L) converging to y. Since each yn ∈ R(L) for every n ∈ N, there exists a sequence
{xn}∞

n=1 in X such that yn = Lxn for each n ∈ N. To show that y ∈ N (L∗)⊥, we show that
ϕ(y) = 0 for any ϕ ∈ N (L∗). Given ϕ ∈ N (L∗), we have

ϕ(y) = ϕ
(

lim
n→∞

yn

)
= lim

n→∞
ϕ(yn) = lim

n→∞
ϕ(Lxn)

= lim
n→∞

(ϕ ◦ L)(xn) = lim
n→∞

L∗(ϕ(xn)) = 0,

which shows R(L) ⊆ N (L∗)⊥.
We now show N (L∗)⊥ ⊆ R(L). We proceed by contrapositive and suppose that y /∈ R(L).

Since R(L) is a subspace of Y, it follows from Corollary (1.6.18) that there exists a continuous
linear functional ϕ ∈ X∗ such that ϕ(y) = 1 and ϕ(z) = 0 for all z ∈ R(L). Thus, for all
x ∈ X, we have

L∗(ϕ(x)) = (ϕ ◦ L)(x) = ϕ(Lx) = 0.
Consequently ϕ ∈ N (L∗)⊥. But since ϕ(y) ̸= 0, we conclude that y /∈ N (L∗)⊥. □

Theorem 1.8.17. Let X and Y be Banach spaces and let L ∈ L(X, Y ). Then the range
of L is closed if and only if L is bounded below, specifically, inf∥x∥=1 ∥Lx∥Y > 0.

Proof. First assume that R(L) is closed. Then R(L) is a Banach space. Since L : X → R(L)
is bijective, it follows by Corollary (1.8.5) that L has a continuous inverse L−1 : R(L) → X.
Let y ∈ R(L). Then there exists x ∈ X such that Lx = y. Since L−1 is bounded, we have
∥L−1y∥ ≤ ∥L−1∥∥y∥, from which it follows

∥x∥ ≤ ∥L−1∥∥Lx∥.
Hence,

inf
∥x∥=1

∥Lx∥ ≥ 1
∥L−1∥

> 0,

which shows that L is bounded below.
For the converse, suppose that L is bounded below, that is, that there exists c > 0 such

that ∥Lx∥ ≥ c > 0 for all x ∈ X such that ∥x∥ = 1. By homogeneity, ∥Lx∥ = c∥x∥ for all
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x ∈ X. To show that R(L) is closed, let {yn}∞
n=1 be a sequence in R(L) converging to y ∈ Y.

By definition of R(L), there exists a sequence {xn}∞
n=1 in X such that Lxn = yn for each

n ∈ N. Observe for all n,m ∈ N that
c∥xn − xm∥ ≤ ∥L(xn − xm)∥ = ∥Lxn − Lxm∥ = ∥yn − ym∥,

so that {xn}∞
n=1 is Cauchy by the convergence of {yn}∞

n=1. Since X is complete, {xn}∞
n=1

converges to some point x ∈ X. By continuity,

Lx = L
(

lim
n→∞

xn

)
= lim

n→∞
L(xn) = lim

n→∞
yn = y,

which shows y ∈ R(L).
This completes the proof. □

1.9. Weak Convergence.

Definition 1.9.1 (Weak Convergence). A sequence {xn}∞
n=1 in a normed linear space X

is said to converge weakly to a point x ∈ X if for all ϕ ∈ X∗, the sequence {ϕ(xn)}∞
n=1

converges to ϕ(x).
If a sequence {xn}∞

n=1 converges weakly to x, we write xn ⇀ x. The usual convergence is
typically called strong or norm convergence.
Proposition 1.9.2. If a sequence in any normed linear space converges in norm, then it
converges weakly.

Proof. Suppose that {xn}∞
n=1 is a sequence in a normed linear space X converging to x ∈ X.

Then, since every ϕ ∈ X∗ is continuous, it follows

lim
n→∞

ϕ(xn) = ϕ
(

lim
n→∞

xn

)
= ϕ(x).

It follows that {xn}∞
n=1 converges in a weak sense. □

Weak convergence does not imply strong convergence in general.
Example 1.9.3. Consider the space c0 of all sequences converging to zero and the standard
unit vectors enk

:= δnk. Recall, since c∗
0 and ℓ1 are algebraically isomorphic, every continuous

linear functional on c0 is of the form

ϕ(x) =
∞∑
i=1

αixi

for some α ∈ ℓ1. Thus

ϕ
(

lim
n→∞

en

)
= lim

n→∞
ϕ(en) = lim

n→∞
αn = 0,

since {αn}∞
n=1 converges. On the other hand, the sequence {en}∞

n=1 does not converge, for
∥xn − xm∥ = 1

whenever n ̸= m.
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Lemma 1.9.4. Any weakly convergent sequence is bounded.

Proof. Let X be a normed linear space and suppose that {xn}∞
n=1 converges in a weak sense

to some point x ∈ X. Define a sequence of functionals {x̂n}∞
n=1 on X∗ by putting

x̂n(ϕ) := ϕ(xn)
for each ϕ ∈ X∗. By the assumption, the sequence {ϕ(xn)}∞

n=1 converges in R for each ϕ,
and so the sequence {x̂n(ϕ)}∞

n=1 converges for each ϕ ∈ X∗ and is thus bounded. Since X∗ is
complete and supn∈N |x̂n(ϕ)| < ∞, it follows by the Uniform Boundedness Theorem (1.7.10)
that there exists M > 0 such that ∥x̂n∥ ≤ M for all n ∈ N. That is,

sup
n∈N

{|x̂n(ϕ)| : ϕ ∈ X∗, ∥ϕ∥ ≤ 1} ≤ M.

Finally, by Corollary (1.6.25), it follows
∥xn∥ ≤ M

for all n ∈ N, which completes the proof. □

Theorem 1.9.5. In any finite–dimensional normed linear space, a sequence converges
weakly if and only if it converges strongly.

Proof. It suffices to show that weak convergence implies strong convergence.
Let X be a normed linear space such that dim(X) = n. Choose a basis {b1, . . . , bn} for X

and let ϕ1, . . . , ϕn be linear functionals such that for each x ∈ X,

x =
n∑
k=1

ϕk(x)bk.

Since X is finite–dimensional, we have by (1.5.17) that each ϕk, k = 1, . . . , n is continuous.
Now suppose that a sequence {xm}∞

m=1 converges weakly to x ∈ X. Fix ϵ > 0 and put
M := max{∥b1∥, . . . , ∥bn∥}. Since {ϕk(xm)}∞

m=1 converges to ϕk(x) for each k = 1, . . . , n by
the assumption, there exists a positive integer N such that for all m ≥ N,

|ϕk(xm) − ϕk(x)| < ϵ

nM

for each k = 1, . . . , n. Observe that for all m ≥ N,

∥xm − x∥ =
∥∥∥∥∥
n∑
k=1

(ϕk(xm) − ϕk(x))bk
∥∥∥∥∥ =

n∑
k=1

|ϕk(xm) − ϕk(x)|∥bk∥ <
n∑
k=1

(
ϵ

nM

)
M

= ϵ.

Hence, {xn}∞
n=1 converges to x in norm. □

Theorem 1.9.6. If a sequence {xn}∞
n=1 in a normed linear space X converges in a weak

sense to x ∈ X, then a sequence of linear combinations of the terms xn converges strongly
to x.

Proof. We show that x ∈ span{x1, x2, . . . } =: Y.
By contradiction, suppose that x /∈ Y. Since Y is a subspace of X, it follows by Corollary

(1.6.18) that there exists a continuous linear functional ϕ ∈ X∗ such that ϕ(y) = 0 for all
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y ∈ Y and ϕ(x) = 1. On the other hand, we have by the assumption and continuity of ϕ
that

ϕ
(

lim
n→∞

xn

)
= lim

n→∞
ϕ(xn) = 0,

a contradiction. □

In fact, a sequence of convex linear combinations of {x1, x2, . . . } converges strongly to x,
which can be proved with a separation axiom from point–set topology.

Theorem 1.9.7. Let X be a normed linear space, and suppose that the sequence {xn}∞
n=1

in X is bounded and that {ϕ(xn)}∞
n=1 converges to ϕ(x) for all ϕ in a fundamental subset

of X∗. Then xn converges weakly to x.

Proof. Let F ⊂ X∗ be a fundamental subset of X∗ and let ψ ∈ X∗ be arbitrary.
Fix ϵ > 0. By the assumption, there exists M > 0 such that ∥xn∥ ≤ M for all n ∈ N.

Since F is fundamental in X∗, there exist ϕ1, . . . , ϕm ∈ F and λ1, . . . , λn ∈ R such that∥∥∥∥∥ψ −
m∑
k=1

λkϕk

∥∥∥∥∥ < ϵ

3M .

Put ϕ := ∑m
k=1 λkϕk. Since ϕ is a linear combination of functionals in F , clearly {ϕ(xn)}∞

n=1
converges to ϕ(x). Thus there exists a positive integer N such that for all n ≥ N, we have
|ϕ(xn) − ϕ(x)| < ϵ/3. Then, for all n ≥ N, observe

|ψ(xn) − ψ(x)| ≤ |ψ(xn) − ϕ(xn)| + |ϕ(xn) − ϕ(x)| + |ϕ(x) − ψ(x)|
< ∥ψ − ϕ∥∥xn∥ + ϵ/3 + ∥ψ − ϕ∥∥x∥

<
(

ϵ

3M

)
M + ϵ/3 +

(
ϵ

3M

)
= ϵ.

This completes the proof. □

Example 1.9.8. Fix a real number p in the range 1 ≤ p < ∞. The space ℓp is defined to
be the set of all real sequences {xn}∞

n=1 for which ∑∞
n=1 |xn|p < ∞. We define a norm on the

linear space ℓp by the equation

∥x∥p :=
{ ∞∑
n=1

|xn|p
}1/p

.

For p = ∞, we take ℓ∞ to be the space of all bounded sequences, with norm ∥x∥∞ :=
supn∈N |xn|.

Theorem 1.9.9 (Hölder Inequality, ℓp). Let 1 < p < ∞, let 1/p + 1/q = 1, and let
x ∈ ℓp, y ∈ ℓq. Then

∞∑
n=1

xnyn ≤ ∥x∥p∥y∥q.
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Theorem 1.9.10 (Minkowski Inequality). If x, y ∈ ℓp, then
∥x+ y∥p ≤ ∥x∥p + ∥y∥q.

Proof. If p = 1, then

∥x+ y∥1 =
∞∑
n=1

|xn + yn| ≤
∞∑
n=1

|xn| + |yn| =
∞∑
n=1

|xn| +
∞∑
n=1

|yn| = ∥x∥1 + ∥y∥1.

Now assume that 1 < p < ∞. Then
∞∑
n=1

|xn + yn|p ≤
∞∑
n=1

{|xn| + |yn|}p ≤
∞∑
n=1

{2 max{|xn|, |yn|}}p

=
∞∑
n=1

2p max{|xn|p, |yn|p} ≤ 2p {|xn|p + |yn|p}

< ∞.

Taking the p−th root of both sides, this shows x+ y ∈ ℓp.
Now let 1/p + 1/q = 1. Then p + q = pq, and we see that if x ∈ ℓp, then |x|p−1 ∈ ℓq,

because
∞∑
n=1

{
|xn|p−1

}q
=

∞∑
n=1

|xn|p < ∞.

Thus, by the Hölder inequality,

∥x+ y∥pp =
∞∑
n=1

|xn + yn|p =
∞∑
n=1

|xn + yn|p−1|xn + yn|

≤
∞∑
n=1

|xn + yn|p−1|xn| +
∞∑
n=1

|xn + yn|p−1|yn|

≤
∥∥∥|x+ y|p−1

∥∥∥
q
∥x∥p +

∥∥∥|x+ y|p−1
∥∥∥
q
∥y∥p

=
∥∥∥|x+ y|p−1

∥∥∥
q
{∥x∥p + ∥y∥p}

= ∥x+ y∥p/qq {∥x∥p + ∥y∥p} .

Finally, since p− p/q = 1, dividing both sides by ∥x+ y∥p/qp gives

∥x+ y∥p ≤ ∥x∥p + ∥y∥p,

which completes the proof. □

Theorem 1.9.11. The adjoint ℓ∗
p is isometrically isomorphic to ℓq, where 1/p + 1/q = 1,

1 ≤ p < ∞. That is, for each element ϕ ∈ ℓ∗
p there exists a unique element y ∈ ℓq such that

ϕ(x) = ∑∞
n=1 xnyn.

Theorem 1.9.12. Let x and {x(n)}∞
n=1 be in ℓp. Then {x(n)}∞

n=1 converges weakly to x if and
only if ∥x(n)∥p is bounded and {x(n)

k }∞
n=1 converges to xk for each k ∈ N.

Proof. First, suppose that {x(n)}∞
n=1 converges weakly to x. Since weakly convergent se-

quences are bounded (1.9.4), it follows ∥x(n)∥ < ∞ for all n ∈ N. To show that {x(n)
k }∞

n=1
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converges to xk for each fixed k ∈ N, note by (1.9.11) that every continuous linear functional
on ℓp has the form

ϕ(x) :=
∞∑
n=1

αnxn

for α ∈ ℓq, where 1/p+ 1/q = 1. Define a sequence of functionals {ϕm}∞
m=1 on ℓp by

ϕm(x) :=
∞∑
k=1

e
(m)
k xk,

where e(k) denote the standard basis vectors in ℓq. We observe

ϕm(x(n)) =
∞∑
k=1

e
(m)
k x

(n)
k = x(n)

m .

But since ϕm(x(n)) → xm by the assumption, so does x(n)
m . This completes the proof for this

direction.
Next, suppose that ∥x(n)∥p is bounded and {x(n)

k }∞
n=1 converges to xk for each k ∈ N.

Defining the functionals ϕm as above, we see that ϕm(x(n)) → xm for all m ∈ N. Since e(k),
k ∈ N is fundamental in ℓ∗

p, it follows by (1.9.7) that {x(n)}∞
n=1 converges weakly to x. This

completes the proof. □

Theorem 1.9.13. Let S be a compact Hausdorff space, and let x, {xn}∞
n=1 ∈ C(S). Then

{xn}∞
n=1 converges weakly to x if and only if ∥xn∥∞ is bounded and xn(s) → x(s) for each

s ∈ S.

Theorem 1.9.14 (Schur’s Lemma). In the normed linear space ℓ1, a sequence converges
weakly if and only if it converges in norm.

Definition 1.9.15 (Weakly Sequentially Closed). A subset F in a normed linear space X is
said to be weakly sequentially closed if the weak limit of any weakly convergent sequence
in F is also in F.

Proposition 1.9.16. Let X be a normed linear space. If a subset F of X is weakly sequen-
tially closed, then F is closed.

Proof. Let F be a weakly sequentially closed subset of a normed linear space X. Let {xn}∞
n=1

be a sequence in F converging to a point x ∈ X. But since {xn}∞
n=1 also converges weakly,

we have x ∈ F by the assumption. Hence, F is closed. □

Example 1.9.17. The converse of (1.9.16) is not true in general, for consider F := {x ∈
c0 : ∥x∥ = 1}. Then F is closed and we have shown that the standard basis vectors {en}∞

n=1
in F converge weakly to zero, but 0 /∈ F.

Theorem 1.9.18. A subspace of a normed linear space is closed if and only if it is
weakly sequentially closed.

Proof. We need only show that closure in the norm topology implies closure in the weak
topology.

Let X be a normed linear space and let F be a closed subspace of X. Let {yn}∞
n=1 converge

weakly to a point y ∈ X. By contradiction, suppose that y /∈ F. Then, since F is closed, we
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have dist(y, F ) > 0. Thus, by Corollary (1.6.18), there exists a continuous linear functional
ϕ ∈ F⊥ such that ϕ(y) = 1, but

ϕ
(

lim
n→∞

yn

)
= lim

n→∞
ϕ(yn) = 0,

a contradiction.
Hence, F is weakly sequentially closed. □

More generally, a convex set is closed if and only if it is weakly sequentially closed.

Definition 1.9.19 (Weakly Sequentially Continuous). Let X and Y be normed linear spaces.
A map T : X → Y is said to be weakly sequentially continuous at x ∈ X if for all ϕ ∈ Y ∗

and every sequence {xn}∞
n=1 converging to x in a weak sense, {(ϕ ◦ T )(xn)}∞

n=1 converges to
(ϕ ◦ T )(x).

Theorem 1.9.20. Let X and Y be normed linear spaces. A linear mapping T : X → Y
is continuous if and only if it is weakly sequentially continuous.

Proof. First suppose that T : X → Y is continuous, and let {xn}∞
n=1 be a sequence in X

converging weakly to x ∈ X. Note that for all ϕ ∈ Y ∗, ϕ ◦ T ∈ X∗. Hence,

(ϕ ◦ T )
(

lim
n→∞

xn

)
= ϕ

(
lim
n→∞

(Txn)
)

= ϕ(Tx),

which shows that T is weakly sequentially continuous.
For the converse, suppose by contradiction that T is weakly sequentially continuous but

not continuous. Then T is unbounded, so that there exists a sequence {xn}∞
n=1 such that

∥xn∥ ≤ 1 for all n ∈ N, but ∥Txn∥ ≥ n2. Define a sequence {yn}∞
n=1 by yn := xn/n for all

n ∈ N. Then {yn}∞
n=1 converges to zero, but ∥Tyn∥ > n. Thus {Tyn}∞

n=1 cannot converge
weakly, for it is unbounded. □

In the adjoint X∗, the concept of weak convergence is also available. That is, ϕn ⇀ ϕ if
and only if Φ(ϕn) → Φ(ϕ) for each Φ ∈ X∗∗.

Definition 1.9.21 (Weak∗ Convergence). Let X be a normed linear space. A sequence
{ϕn}∞

n=1 is said to converge in the weak∗ sense if {ϕn(x)}∞
n=1 converges to ϕ(x) for all

x ∈ X.

Definition 1.9.22 (Separable). A normed linear space X is said to be separable if X
contains a countable dense subset.

Theorem 1.9.23. Let X be a separable normed linear space and let {ϕn}∞
n=1 be a bounded

sequence in X∗. Then there is a subsequence {ϕnk
}∞
k=1 that converges in the weak∗ sense

to an element ϕ ∈ X∗.

Proof. Since X is separable, there exists a countable dense subset, say {x1, x2, . . . }. Since
{ϕn}∞

n=1 is bounded, it follows that the sequence {ϕn(x1)}∞
n=1 is also bounded. By the

Bolzano–Weierstrass Theorem, there exists I1 ⊆ N such that the subsequence {ϕn(x1)}n∈I1

converges. Similarly, the sequence {ϕn(x2)}n∈N is bounded, so that there exists I2 ⊆ I1
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such that the subsequence {ϕn(x2)}n∈I2 converges. Continuing in this fashion, we obtain
sequences

N ⊇ I1 ⊇ I2 ⊇ . . .

and an array of functionals

ϕn11(x1) ϕn12(x1) ϕn13(x1) . . .
ϕn21(x2) ϕn22(x2) ϕn23(x2) . . .
ϕn31(x3) ϕn32(x3) ϕn33(x3) . . .

... ... ... . . .

such that limk→∞ ϕnjk
(xj) exists for each j ∈ N.

By Cantor’s diagonalization process, define nk to be the k−th element of Ik. We first note
that limi→∞ ϕni

(xk) exists for each k ∈ N, because limn∈Ik
ϕn(xk) exists by the construction,

and if i ≥ k, then i ∈ Ii ⊆ Ik.
Fix ϵ > 0 and x ∈ X. Since the sequence {ϕn}∞

n=1 is bounded, there exists M > 0 such
that ∥ϕn∥ ≤ M for all n ∈ N. Since {xk}k∈N is dense in X, there exists k ∈ N such that
∥xk − x∥ < ϵ

3M . Moreover, since limi→∞ ϕni
(xk) exists for each k ∈ N, there exists a positive

integer N such that for all l,m ≥ N, we have |ϕnm(xk) − ϕnl
(xk)| < ϵ/3. Hence, for all

m, l ≥ N,

|ϕnm(x) − ϕnl
(x)| ≤ |ϕnm(x) − ϕnm(xk)| + |ϕnm(xk) − ϕnl

(xk)| + |ϕnl
(xk) − ϕnl

(x)|
< ∥ϕnm∥∥x− xk∥ + ϵ/3 + ∥ϕnl

∥∥xk − x∥

< M
(

ϵ

3M

)
+ ϵ/3 +M

(
ϵ

3M

)
= ϵ.

This shows {ϕni
(x)}i∈I is Cauchy in R for all x ∈ X. Since R is complete, limi→∞ ϕni

(x)
exists for all x ∈ X, say limi→∞ ϕni

(x) =: ϕ(x).
We now show that ϕ ∈ X∗. First, we see that ϕ is linear, for

ϕ(αx+ βy) = lim
i→∞

ϕni
(αx+ βy) = α lim

i→∞
ϕni

(x) + β lim
i→∞

ϕni
(y)

= αϕ(x) + βϕ(y).

Next, we show that ϕ is continuous. It suffices to show that ϕ is continuous at zero. Let
{zn}∞

n=1 be a sequence in X converging to zero. Observe∣∣∣∣ϕ( lim
n→∞

zn

)∣∣∣∣ ≤
∥∥∥∥( lim

i→∞
ϕni

)∥∥∥∥ ∥∥∥∥( lim
n→∞

zn

)∥∥∥∥ ≤ M

∥∥∥∥( lim
n→∞

zn

)∥∥∥∥ = 0.

This shows ϕ ∈ X∗.
Lastly, to see that {ϕni

}i∈I converges to ϕ in the weak∗ sense, letting l → ∞ in the above
inequalities gives for all m ≥ N

|ϕnm(x) − ϕnl
(x)| < ϵ.

Hence, {ϕni
}i∈I converges weak∗ to ϕ.

This completes the proof. □
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1.10. Reflexive Spaces. Let X be a Banach space. We may embed X isomorphically and
isometrically as a subspace of X∗∗.

Definition 1.10.1 (Natural Embedding). Let X be a Banach sapce. The mapping J : X →
X∗∗ defined by

(Jx)(ϕ) = ϕ(x)
for all ϕ ∈ X∗ and x ∈ X is called the natural embedding of X into X∗∗.

Proposition 1.10.2. Let X be a Banach space. The natural mapping J : X → X∗∗ is a
linear isometry.

Proof. Let x, y ∈ X, α, β ∈ R, and ϕ ∈ X∗ be arbitrary. Then
(J(αx+ βy))(ϕ) = ϕ(αx+ βy) = αϕ(x) + βϕ(y),

so that J is linear.
To see that J is isometric, we first note that

∥Jx∥ = sup
∥ϕ∥=1

∥(Jx)(ϕ)∥ = sup
∥ϕ∥=1

|ϕ(x)| ≤ sup
∥ϕ∥=1

∥ϕ∥∥x∥ = ∥x∥.

For the reverse inequality, we have by (1.6.19) that there exists a continuous linear functional
ψ ∈ X∗ such that ∥ψ∥ = 1 and ψ(x) = ∥x∥. Hence,

∥Jx∥ = sup
∥ϕ∥=1

∥(Jx)(ϕ)∥ = sup
∥ϕ∥=1

|ϕ(x)| ≥ |ψ(x)| = ∥x∥,

which completes the proof. □

Definition 1.10.3 (Reflexive Space). Let X be a Banach space. If the natural map J : X →
X∗∗ is surjective, then X is called a reflexive space.

Note that if X is reflexive, then it is isometrically isomorphic to X∗∗. the converse is false,
that is, there exist X and X∗∗ isometrically isomorphic but X is not reflexive.
Theorem 1.10.4. Each space ℓp, 1 < p < ∞, is reflexive.

Proof. If 1/p+ 1/q = 1, then ℓp = ℓ∗
q and ℓ∗

q = ℓp by (1.9.12). Evidently ℓp = ℓ∗∗
p . It suffices

to check that J is the isometry. Let A : ℓp → ℓ∗
q and B : ℓq → ℓ∗

p be the isometries defined
by

(Ax)(y) =
∞∑
n=1

xnyn

for all x ∈ ℓp, y ∈ ℓq, and

(By)(x) =
∞∑
n=1

xnyn

for all x ∈ ℓq, y ∈ ℓp.
Define B∗ : ℓ∗∗

p → ℓ∗
q by

B∗(ϕ) := ϕ ◦B
for all ϕ ∈ ℓ∗∗

p . Then B∗ is an isometric isomorphism of ℓ∗∗
p onto ℓ∗

q. Consequently, B∗−1 is an
isometric isomorphism of ℓp onto ℓ∗∗

p . We show that B∗−1 = J. Observe that for all x ∈ ℓp,
y ∈ ℓq,

B∗−1Ax = Jx ⇐⇒ Ax = B∗Jx

⇐⇒ (Ax)(y) = (B∗Jx)(y)
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⇐⇒ (Ax)(y) = (Jx)(By)
⇐⇒ (Ax)(y) = (By)(x),

where

(Ax)(y) =
∞∑
n=1

xnyn = (By)(x).

This completes the proof. □

Theorem 1.10.5. A closed linear subspace in a reflexive Banach space is reflexive.

Proof. Let Y be a closed subspace of a reflexive Banach space X. Let J : X → X∗∗ be the
natural map, and define R : X∗ → Y ∗ by Rϕ := ϕ|Y . Let f ∈ Y ∗∗. Put y = J−1(f ◦ R). We
show that y ∈ Y.

By contradiction, suppose that y /∈ Y. By (1.6.18), there exists a continuous linear func-
tional ϕ ∈ X∗ such that ϕ(y) = 1 and ϕ(Y ) = 0. Then Rϕ = 0 and thus

ϕ(y) = ϕ(J−1(f ◦R)) = (f ◦R)(ϕ) = 0,

a contradiction.
Lastly, we show that for all ψ ∈ Y ∗, f(ψ) = ψ(y). Let ψ̃ be a Hahn–Banach extension of

ψ in X∗. Then ψ = Rψ̃ and

f(ψ) = f(Rψ̃) = (f ◦R)(ψ̃) = (Jy)(ψ̃) = ψ̃(y) = ψ(y),

which completes the proof. □

Theorem 1.10.6. A Banach space is reflexive if and only if its conjugate space is
reflexive.

Proof. First suppose that X is a reflexive Banach space. Then the natural embedding J :
X → X∗∗ is surjective. Let Φ ∈ X∗∗∗ and define ϕ ∈ X∗ by ϕ := Φ◦J. Then for any f ∈ X∗∗

we have f = Jx for some x ∈ X, and consequently

f(ϕ) = (Jx)(ϕ) = ϕ(x) = (Φ ◦ J)(x) = Φ(Jx) = Φ(f).

Thus Φ is the image of ϕ under the natural map of X∗ into X∗∗∗, which shows that X∗ is
reflexive.

For the converse, assume that X∗ is reflexive. By the above argument, X∗∗ is reflexive. But
J(X) is a closed subspace in X∗∗, and by (1.10.5), J(X) is reflexive. Since X is isometrically
isomorphic to J(X), X is reflexive.

This completes the proof. □

The following two theorems are presented without proof.

Theorem 1.10.7 (Eberlein–Smulyan Theorem). A Banach space is reflexive if and only
if its unit ball is weakly sequentially compact.
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Theorem 1.10.8. A Banach space X is reflexive if and only if each continuous linear
functional on X attains its supremum on the unit ball of X.

One application of the second adjoint occurs in the process of completion. Given a normed
linear space X that is not complete, we want to embed it linearly and isometrically as a dense
set in a Banach space. We call such a Banach space a completion of X.
Definition 1.10.9 (Completion). Let X be a normed linear space that is not complete. If
X can be embedded as a dense set in a Banach space X under a linear isometry, we call X
the completion of X.

Note that if X is a normed linear space, we can embed it, using the natural map J, into
its double adjoint X∗∗. Recall from (1.6.30) that X∗∗ is automatically complete. Hence,
J(X) can be regarded as a completion of X. It may be proved that all completions of X are
isometrically isomorphic to each other.

Consider the Lebesgue spaces Lp[a, b]. Denote by C[a, b] the space of all continuous real–
valued functions on the interval [a, b]. For 1 ≤ p < ∞, we introduce the norm

∥x∥p :=
{∫ b

a
|x(t)|p dt

}1/p

.

In this equation, the integration is with respect to the Riemann integral. Then the space
C[a, b], endowed with this norm, is denoted by Cp[a, b], and is not complete. Its completion
is Lp[a, b]. Thus, if J is the natural map of Cp[a, b] into its double adjoint, then

Lp[a, b] = J(Cp[a, b]).
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2. Hilbert Spaces

2.1. Geometry. Hilbert spaces are a special type of Banach space. The distinguishing
characteristic is that the parallelogram law is assumed to hold:

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Definition 2.1.1 (Inner Product). Let X be a complex linear space. An inner product is
a function ⟨·, ·⟩ : X×X → C such that for all x, y, z ∈ C and α ∈ C, the following properties
hold:

(1) ⟨x, y⟩ ∈ C;
(2) ⟨x, y⟩ = ⟨y, x⟩;
(3) ⟨αx, y⟩ = α ⟨x, y⟩ ;
(4) ⟨x, x⟩ > 0, x ̸= 0;
(5) ⟨x+ y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ .

Definition 2.1.2 (Inner Product Space). An inner product space is a pair (X, ⟨·, ·⟩)
where X is a linear space and ⟨·, ·⟩ is an inner product on X.

Inner product spaces may also be called “pre–Hilbert spaces.” Occasionally we also consider
real inner product spaces and real Hilbert spaces.
Example 2.1.3. Let X = Cn. Let x = (x1, . . . , xn)⊤, y = (y1, . . . , yn)⊤ ∈ Cn. We define

⟨x, y⟩ :=
n∑
j=1

xjyj.

Example 2.1.4. Let X = C[[0, 1],C]. Let x, y ∈ C[[0, 1],C]. We define

⟨x, y⟩ :=
∫ 1

0
x(t)y(t) dt.

Proposition 2.1.5. Let (X, ⟨·, ·⟩) be an inner product space. Then for all x, y, z ∈ X and
α ∈ C,

(1) ⟨x+ y, x+ y⟩ = ⟨x, x⟩ + 2Re ⟨x, y⟩ + ⟨y, y⟩ ;
(2) ⟨x, αy⟩ = α ⟨x, y⟩ ;
(3) ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ ;
(4)

〈∑n
j=1 xj, y

〉
= ∑n

j=1 ⟨xj, y⟩ .

Proof. We show (1), (2), and (3).
(1).

⟨x+ y, x+ y⟩ = ⟨x, x+ y⟩ + ⟨y, x+ y⟩ = ⟨x+ y, x⟩ + ⟨x+ y, y⟩
= ⟨x, x⟩ + ⟨y, x⟩ + ⟨x, y⟩ + ⟨y, y⟩
= ⟨x, x⟩ + ⟨y, y⟩ + ⟨x, y⟩ + ⟨y, x⟩
= ⟨x, x⟩ + ⟨y, y⟩ + 2Re ⟨x, y⟩ .

(2).
⟨x, αy⟩ = ⟨αy, x⟩ = α⟨y, x⟩ = α ⟨x, y⟩ .

(3).
⟨x, y + z⟩ = ⟨y + z, x⟩ = ⟨y, x⟩ + ⟨z, x⟩ = ⟨x, y⟩ + ⟨x, z⟩ .

□
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Definition 2.1.6 (Norm). Let (X, ⟨·, ·⟩) be an inner product space. We define the induced
norm ∥ · ∥ by

∥x∥ :=
√

⟨x, x⟩.

Theorem 2.1.7. Let (X, ⟨·, ·⟩) be an inner product space, let x, y ∈ X, and let α ∈ C.
The induced norm ∥ · ∥ has the following properties:

(1) ∥x∥ > 0, x ̸= 0;
(2) ∥αx∥ = |α|∥x∥;
(3) | ⟨x, y⟩ | ≤ ∥x∥∥y∥ (Cauchy–Schwarz inequality);
(4) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ (triangle inequality);
(5) ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 (parallelogram equality);
(6) If ⟨x, y⟩ = 0, then ∥x+ y∥2 = ∥x∥2 + ∥y∥2 (Pythagorean law).

Before giving the proof, note that (1), (2), and (4) show that the induced norm indeed
defines a norm over X.
Proof. We show (3), (4), and (5). Note that (6) follows from Proposition ((2.1.5), 1).

For (3), we see that for any λ ∈ C,
0 ≤ ⟨x− λy, x− λy⟩ = ⟨x, x⟩ − λ ⟨x, y⟩ − λ ⟨y, x⟩ + |λ|2 ⟨y, y⟩ .

If y = 0, the result follows trivially, so assume that y ̸= 0. Define λ := ⟨y,x⟩
⟨y,y⟩ . Then

0 ≤ ∥x∥2 − ⟨y, x⟩
⟨y, y⟩

⟨x, y⟩ − ⟨y, x⟩
⟨y, y⟩

⟨y, x⟩ +
∣∣∣∣∣⟨y, x⟩
⟨y, y⟩

∣∣∣∣∣
2

∥y∥

= ∥x∥2 − 2 | ⟨y, x⟩ |2

∥y∥2 + | ⟨y, x⟩ |2

∥y∥2

= ∥x∥2 − | ⟨y, x⟩ |2

∥y∥2 .

Since | ⟨y, x⟩ |2 = | ⟨x, y⟩ |2, this shows
| ⟨x, y⟩ | ≤ ∥x∥∥y∥.

For (4), we apply (3) as follows:
∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩ + 2Re ⟨x, y⟩ + ⟨y, y⟩

= ∥x∥2 + 2Re ⟨x, y⟩ + ∥y∥2

≤ ∥x∥2 + 2| ⟨x, y⟩ | + ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2

= (∥x∥ + ∥y∥)2.

Lastly, for (5) we have
∥x+ y∥2 + ∥x− y∥2 = ⟨x+ y, x+ y⟩ + ⟨x− y, x− y⟩

= ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩ + ⟨x, x⟩ + ⟨x,−y⟩ + ⟨−y, x⟩ + ⟨y, y⟩
= 2∥x∥2 + 2∥y∥2 + ⟨x, y⟩ + ⟨y, x⟩ − ⟨x, y⟩ − ⟨y, x⟩
= 2∥x∥2 + 2∥y∥2.
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□

The parallelogram law is so named because it states that the sum of the squares of the
four sides of a parallelogram is equal to the sum of the squares of the two diagonals.

Lemma 2.1.8. Let (X, ⟨·, ·⟩) be an inner product space and let x, y ∈ X. Then
(1) x = 0 if and only if ⟨x, v⟩ = 0 for all v ∈ X;
(2) x = y if and only if ⟨x, v⟩ = ⟨y, v⟩ for all v ∈ X;
(3) ∥x∥ = sup∥v∥=1 | ⟨x, v⟩ |.

Proof. For (1), first note that if ⟨x, v⟩ = 0 for all v ∈ X, then in particular ⟨x, x⟩ = 0, from
which it follows x = 0. Conversely, if x = 0, then it follows by Axiom 3 that ⟨x, v⟩ = ⟨0, v⟩ = 0
for all v ∈ X.

The condition x = y is equivalent to x − y = 0, to ⟨x− y, v⟩ = 0 for all v ∈ X, and thus
to ⟨x, v⟩ = ⟨y, v⟩ for all v ∈ X.

Lastly, if ∥v∥ = 1, then | ⟨x, v⟩ | ≤ ∥x∥∥v∥ = ∥x∥ by the Cauchy–Schwarz inequality. For
the reverse inequality, first note that if x = 0, then ∥x∥ ≤ | ⟨x, v⟩ | for all v ∈ X. Otherwise,
let v := x/∥x∥. Then ∥v∥ = 1 and

| ⟨x, v⟩ | = | ⟨x, x/∥x∥⟩ | = 1
∥x∥

⟨x, x⟩ = ∥x∥.

□

Definition 2.1.9 (Hilbert Space). A Hilbert space is an inner product space that is com-
plete.

Example 2.1.10. The space C[[0, 1],C] with inner product

⟨x, y⟩ :=
∫ 1

0
x(t)y(t) dt

is not complete. Consider the functions {xn}∞
n=1 defined by

xn(t) :=


0, 0 ≤ t ≤ 1

2 − 1
n
,

nt+ (1 − n/2), 1
2 − 1

n
< t < 1

2 ,

1, t ≥ 1
2 .

Then, for all n,m ∈ N such that m > n,

∥xn − xm∥2 =
∫ 1

0
|xn(t) − xm(t)| ≤

∫ 1/2

1/2−1/n
dt = t|1/2

1/2−1/n = 1
n

→ 0 as n → ∞.

On the other hand, this sequence converges pointwise to

x(t) :=
0, t < 1/2,

1, t ≥ 1/2,

which is not in C[[0, 1],C].

Example 2.1.11. We write L2[a, b] for the set of all complex–valued Lebesgue square inte-
grable functions on [a, b], that is, ∫ b

a
|x|2 dµ < ∞
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for all x ∈ L2[a, b], with µ the Lebesgue measure. Put

⟨x, y⟩ :=
∫ b

a
x(t)y(t) dµ.

Then L2[a, b] is complete and thus is a Hilbert space.

Recall that in L2[a, b] two functions f and g are equivalent if and only if they differ only
on a set of measure zero. The elements of L2[a, b] are thus not functions, but equivalence
classes of functions.

Example 2.1.12. Let (X,S, µ) be any measure space. The notation L2(X) then denotes
the space of all complex–valued S−measurable functions f on X such that

∫
|f |2 dµ < ∞.

In L2(X), we define
⟨f, g⟩ :=

∫
f(t)g(t) dµ(t).

Then L2(S) is a Hilbert space.

Example 2.1.13. The space ℓ2 of all complex sequences x = {xn}∞
n=1 such that ∑∞

n=1 |xn|2 <
∞ with inner product

⟨x, y⟩ :=
∞∑
n=1

xnyn

is a Hilbert space. To see this, take X = N in the previous example and take µ to be the
counting measure.

Theorem 2.1.14. Let K be a nonempty, closed, convex set in a Hilbert space X. Then
to each x ∈ X there corresponds a unique point y ∈ K closest to x, that is,

∥x− y∥ = dist(x,K) := inf
v∈K

∥x− v∥.

Proof. Fix x ∈ X, and put α := dist(x,K). By definition of an infimum, there exists a
sequence {yn}∞

n=1 in K such that ∥x− yn∥ → α as n → ∞. By the convexity of K, note that
1
2(yn + ym) ∈ K for each n,m ∈ N. Thus, by the assumption, ∥1

2(yn + ym) − x∥ ≥ α. By the
parallelogram law, observe

∥yn − ym∥2 = ∥(yn − x) − (ym − x)∥2

= 2∥yn − x∥2 + 2∥ym − x∥2 − ∥yn + ym − 2x∥2

= 2∥yn − x∥2 + 2∥ym − x∥2 − 4∥1
2(yn + ym) − x∥2

≤ 2∥yn − x∥2 + 2∥ym − x∥2 − 4α2,

which tends to zero as n → ∞. Thus {yn}∞
n=1 is a Cauchy sequence. Since X is complete,

{yn}∞
n=1 converges to y for some y ∈ X. Moreover, since K is closed, y ∈ K. By continuity

of the induced norm,
∥x− y∥ = ∥x− lim

n→∞
yn∥ = lim

n→∞
∥x− yn∥ = α = dist(x,K).

To show uniqueness, suppose that y1, y2 ∈ K are such that
∥x− y1∥ = dist(x,K) = ∥x− y2∥.
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By the above calculation and the parallelogram law we have

∥y1 − y2∥ ≤ 2∥y1 − x∥2 + 2∥y2 − x∥2 − 4α2 = 0,

which shows y1 = y2.
This completes the proof. □

Definition 2.1.15 (Orthogonal). Let (X, ⟨·, ·⟩) be an inner product space. We say that
x, y ∈ X are orthogonal if ⟨x, y⟩ = 0, and we write x ⊥ y.

Remark. Let (X, ⟨·, ·⟩) be an inner product space.
(1) If Y ⊆ X, then x ⊥ Y means that ⟨x, y⟩ = 0 for all y ∈ Y.
(2) If U, V ⊆ X, then U ⊥ V means that ⟨u, v⟩ = 0 for all u ∈ U and v ∈ V.

Theorem 2.1.16. Let Y be a subspace in an inner product space X. Let x ∈ X and
y ∈ Y. Then x− y ⊥ Y if and only if y is the unique point in Y closest to x.

Proof. First suppose that x − y ⊥ Y. Let v ∈ Y, and note that y − v ∈ Y. Then by the
Pythagorean law,

∥x− v∥2 = ∥(x− y) + (y − v)∥2 = ∥x− y∥2 + ∥y − v∥2 ≥ ∥x− y∥2.

Assume now that y is the unique point in Y closest to x. Then for any v ∈ Y and λ ∈ C,

0 ≤ ∥x− (y + λv)∥2 − ∥x− y∥2 = ∥(x− y) − λv∥2 − ∥x− y∥2

= ⟨x− y − λv, x− y − λv⟩ − ⟨x− y, x− y⟩
= ⟨x− y, x− y − λv⟩ + ⟨−λv, x− y − λv⟩ − ⟨x− y, x− y⟩
= ⟨x− y, x− y⟩ + ⟨x− y,−λv⟩ + ⟨−λv, x− y⟩ + ⟨−λv,−λv⟩ − ⟨x− y, x− y⟩
= −2Re ⟨x− y, λv⟩ + |λ|2∥v∥2,

that is,
2Re(λ ⟨x− y, v⟩) ≤ |λ|2∥v∥2.

Suppose by contradiction that ⟨x− y, v⟩ ≠ 0. Then v ̸= 0, so we may define

λ := ⟨x− y, v⟩
∥v∥2 .

But then

2Re
(

| ⟨x− y, v⟩ |2

∥v∥2

)
≤ | ⟨x− y, v⟩ |2

∥v∥2 ,

a contradiction. □

Definition 2.1.17 (Orthogonal Complement). Let Y be a subset in an inner product space
X. Then the orthogonal complement of Y is given by

Y ⊥ := {x ∈ X : ⟨x, y⟩ = 0 for all y ∈ Y }.

Theorem 2.1.18. If Y is a closed subspace of a Hilbert space X, then X = Y ⊕ Y ⊥.
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Proof. We first show that Y ⊥ is a subspace. Let v1, v2 ∈ Y ⊥, and let α, β ∈ C. Then for all
y ∈ Y,

⟨y, αv1 + βv2⟩ = ⟨y, αv1⟩ + ⟨y, βv2⟩
= α ⟨y, v1⟩ + β ⟨y, v2⟩
= 0.

Thus αv1 + βv2 ∈ Y ⊥.
Next, we show that Y ∩ Y ⊥ = {0}. Suppose that x ∈ Y ∩ Y ⊥. Then ⟨x, x⟩ = 0, so that

x = 0.
Finally, we show that X ⊆ Y ⊕ Y ⊥. Let x ∈ X be arbitrary. By Theorem (2.1.14), there

exists a unique point y ∈ Y closest to x. Moreover, by Theorem (2.1.16), x−y ∈ Y ⊥. Noting
that x = y + (x− y) ∈ Y ⊕ Y ⊥, this completes the proof. □

Theorem 2.1.19. If the parallelogram law holds in a normed linear space X, then X
is an inner product space. That is, an inner product may be defined on X such that
⟨x, x⟩ = ∥x∥2 for all x ∈ X.

Proof. We define the inner product ⟨·, ·⟩ as follows: for all x, y ∈ X,

4 ⟨x, y⟩ := ∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2.

Clearly ⟨·, ·⟩ ∈ C.
By the construction,

4Re ⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2.

By the parallelogram equality, we obtain
4Re ⟨u+ v, w⟩ = ∥u+ v + w∥2 − ∥u+ v − w∥2

=
(
2∥u+ w∥2 + 2∥v∥2 − ∥u+ w − v∥2

)
−(

2∥u∥2 + 2∥v − w∥2 − ∥u− v + w∥2
)

= 2∥u+ w∥2 + 2∥v∥2 − 2∥u∥2 − 2∥v − w∥2

= 2∥u+ w∥2 + {∥v + w∥2 + ∥v − w∥2 − 2∥w∥2} −
{∥u+ w∥2 + ∥u− w∥2 − 2∥w∥2} − 2∥v − w∥2

= ∥u+ w∥2 − ∥u− w∥2 + ∥v + w∥2 − ∥v − w∥2

= 4Re ⟨u,w⟩ + 4Re ⟨v, w⟩ .
Putting iy in place of y in the definition of ⟨x, y⟩ gives

4 ⟨x, iy⟩ = ∥x+ iy∥2 − ∥x− iy∥2 + i∥x− y∥2 − i∥x+ y∥2 = −4i ⟨x, y⟩ .
Thus we have

Im ⟨u+ v, w⟩ = −Rei ⟨u+ v, w⟩ = Re ⟨u+ v, iw⟩
= Re ⟨u, iw⟩ + Re ⟨v, iw⟩ = −Rei ⟨u,w⟩ − Rei ⟨v, w⟩
= Im ⟨u,w⟩ + Im ⟨v, w⟩ .

This shows
⟨u+ v, w⟩ = ⟨u,w⟩ + ⟨v, w⟩
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for all u, v, w ∈ X.
By induction, we have ⟨nx, y⟩ = n ⟨x, y⟩ for all n ∈ N. From this it follows, for any

n,m ∈ N, that 〈
n

m
x, y

〉
= n

m
m
〈
x

m
, y
〉

= n

m
⟨x, y⟩ .

By continuity, we obtain ⟨λx, y⟩ = λ ⟨x, y⟩ for any λ ≥ 0. By the construction, we verify that
⟨−x, y⟩ = − ⟨x, y⟩

and
⟨ix, y⟩ = i ⟨x, y⟩ .

Hence,
⟨λx, y⟩ = λ ⟨x, y⟩

for all λ ∈ C.
From the definition, we have

4 ⟨x, x⟩ = ∥2x∥2 + i∥x+ ix∥2 − i∥x− ix∥2

= 4∥x∥2 + i|1 + i|2∥x∥2 − i|1 − i|2∥x∥2 = 4∥x∥2 > 0.
Finally, we observe that

4 ⟨y, x⟩ = ∥y + x∥2 − ∥y − x∥2 + i∥y + ix∥2 − i∥y − ix∥2

= ∥x+ y∥2 − ∥x− y∥2 + i∥ − i(y + ix)∥2 − i∥i(y − ix)∥2

= ∥x+ y∥2 − ∥x− y∥2 + i∥x− iy∥2 − i∥x+ iy∥2

= 4⟨x, y⟩.
This completes the proof. □

In any inner product space X, the angle between two nonzero vectors can be defined.
Recall the Law of Cosines: In a triangle having sides a, b, c and angle θ opposite side c, we
have

c2 = a2 + b2 − 2ab cos θ.
Notice that when θ = π/2, this equation gives the Pythagorean Theorem. In an inner
product space, recall that

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2Re ⟨x, y⟩ .
On the other hand, we want the Law of Cosines to hold:

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos θ.
Thus we define cos θ so that ∥x∥∥y∥ cos θ = Re ⟨x, y⟩ . Therefore,

θ = arccos
(

Re ⟨x, y⟩
∥x∥∥y∥

)
.

Note that this angle is well-defined, since∣∣∣∣∣Re ⟨x, y⟩
∥x∥∥y∥

∣∣∣∣∣ ≤ ∥x∥∥y∥
∥x∥∥y∥

= 1

by the Cauchy-Schwarz inequality.
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2.2. Orthogonality and Bases.

Definition 2.2.1 (Orthogonal Set). A set V of vectors in an inner product space X is said
to be orthogonal if ⟨x, y⟩ = 0 for all x, y ∈ V, x ̸= y.

Recall that we write x ⊥ y if ⟨x, y⟩ = 0, x ⊥ S if ⟨x, y⟩ = 0 for all y ∈ S, And U ⊥ V if
⟨x, y⟩ = 0 for all x ∈ U and y ∈ V.

Theorem 2.2.2 (Pythagorean Law). If {x1, x2, . . . , xn} is a finite orthogonal set of n
distinct elements in an inner product space, then∥∥∥∥∥∥

n∑
j=1

xn

∥∥∥∥∥∥
2

=
n∑
j=1

∥xj∥2.

Proof. By the assumption, xi ̸= xj if i ̸= j, and, consequently,∥∥∥∥∥∥
n∑
j=1

xn

∥∥∥∥∥∥
2

=
〈

n∑
j=1

xj,
n∑
i=1

xi

〉
=

n∑
j=1

〈
xj,

n∑
i=1

xi

〉
=

n∑
j=1

n∑
i=1

⟨xj, xi⟩

=
n∑
j=1

⟨xj, xj⟩ =
n∑
j=1

∥xj∥2,

completing the proof. □

The Pythagorean Law has an important counterpart for orthogonal sets which are not
finite. First, we need to consider what it means to sum the elements in an arbitrary subset
V of X. We take the following definition.

Definition 2.2.3. Let V be an infinite subset of an inner product space X. We say that the
sum of the elements of V is s if and only if the following condition is true: For any ϵ > 0,
there exists a finite subset V0 of V such that for every larger finite subset F of V we have∣∣∣∣∣∑

x∈F
x− s

∣∣∣∣∣ < ϵ.

In other words, we partially order the finite subsets of V by inclusion. With each finite
subset F of V we associate the sum S(F ) of all the elements in F. Then S is a net, that is, a
function on a directed set. The limit of this net, if it exists, is the sum s of all the elements
of V. More precisely, it is often called the unordered sum over V.

Theorem 2.2.4 (General Pythagorean Law). Let {xj}j∈I be an orthogonal sequence
in a Hilbert space. The series ∑j∈I xj converges if and only if ∑j∈I ∥xj∥2 < ∞. If∑
j∈I ∥xj∥2 = λ < ∞, then ∥∑j∈I xj∥2 = λ, and the sum ∑

j∈I xj is independent of the
ordering of the terms.

Proof. Put Sn := ∑n
j=1 xj and sn := ∑n

j=1 ∥xj∥2.
By the finite version of the Pythagorean Law (2.2.2), we have for all m > n that

∥Sm − Sn∥2 =
∥∥∥∥∥∥

m∑
j=n+1

xj

∥∥∥∥∥∥
2

=
m∑

j=n+1
∥xj∥2 = |sm − sn|.
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Thus {Sn}n∈I is a Cauchy sequence in X if and only if {sn}n∈I is a Cauchy sequence in R.
This establishes the first assertion of the theorem.

Next, assume that λ < ∞. By the Pythagorean Law, ∥Sn∥2 = sn, and thus in the limit
we have ∥∥∥∥∥∥

∑
j∈I

xj

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥limj∈I

∑
j

xj

∥∥∥∥∥∥
2

= lim
j∈I

∥∥∥∥∥∥
∑
j

xj

∥∥∥∥∥∥
2

= lim
j∈I

∑
j

∥xj∥2 = λ.

Let u be any rearrangement of the original series, say that u = ∑
j∈I xkj

. Let Un = ∑n
i=1 xkj

.
Since any rearrangement of any absolutely convergent series in R converges to the same limit,
we have ∑j∈I ∥xkj

∥2 = λ. Thus, by the previous analysis, we have Un → u and ∥u∥2 = λ.
Moreover,

⟨Un, Sm⟩ =
〈

n∑
j=1

xkj
,
m∑
i=1

xi

〉
=

n∑
j=1

m∑
i=1

∥xi∥2δikj
.

Letting n → ∞, we obtain

⟨u, Sm⟩ =
m∑
i=1

∥xi∥2.

Now, letting m → ∞, we get ⟨u, x⟩ = λ, where x = limm→∞ Sm. It follows that x = u,
because

∥x− u∥2 = ∥x∥2 − 2Re ⟨x, u⟩ + ∥u∥2 = λ− 2λ+ λ = 0.
This completes the proof. □

Definition 2.2.5 (Orthonormal Set). A set U in an inner product space X is said to be
orthonormal if U is an orthogonal set and each v ∈ U has unit length, that is, ∥v∥ = 1 for
all v ∈ U.

Note that if {vi}i∈I is an orthogonal set of nonzero vectors, then {vi/∥vi∥}i∈I is an or-
thonormal set.

Theorem 2.2.6. If {yj}nj=1 is an orthonormal set in an inner product space X, and if
Y = span{yj}nj=1, then for any x ∈ X, the point in Y closest to x is ∑n

j=1 ⟨x, yi⟩ yi.

Proof. Put y := ∑n
j=1 ⟨x, yi⟩ yi. By Theorem (2.1.16), it suffices to show that x− y ⊥ Y. We

show that x− y is orthogonal to each basis vector yk, k = 1, 2, . . . , n. We have

⟨x− y, yk⟩ = ⟨x, yk⟩ −
〈

n∑
j=1

⟨x, yj⟩ yj, yk
〉

= ⟨x, yk⟩ −
n∑
j=1

⟨x, yj⟩ ⟨yj, yk⟩

= ⟨x, yk⟩ −
n∑
j=1

⟨x, yj⟩ δjk = ⟨x, yk⟩ − ⟨x, yk⟩

= 0,

which completes the proof. □

Definition 2.2.7 (Orthogonal Projection). Let {y1, y2, . . . , yn} be an orthonormal set in an
inner product space X and let x ∈ X. The orthogonal projection of x onto span{y1, y2, . . . , yn}
is the vector ∑n

k=1 ⟨x, yk⟩ yk.
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Definition 2.2.8 (Fourier Coefficients). Let ∑n
k=1 ⟨x, yk⟩ yk be the orthogonal projection of

x onto span{y1, y2, . . . , yn}. The coefficients ⟨x, yk⟩ are called the Fourier coefficients of x
with respect to {y1, y2, . . . , yn}.

Definition 2.2.9 (Orthogonal Projection). Let {y1, y2, . . . , yn} be an orthonormal set in an
inner product space X. The operator that produces an orthogonal projection y from x ∈ X is
called an orthogonal projection.

Corollary 2.2.10. If x is a point in the linear span of an orthonormal set {y1, y2, . . . , yn},
then x = ∑n

i=1 ⟨x, yi⟩ yi.

Proof. The result follows immediately from Theorem (2.2.6). □

Theorem 2.2.11 (Bessel’s Inequality). If {ui : i ∈ I} is an orthonormal system in an
inner product space X, then for every x ∈ X,∑

i∈I
| ⟨x, ui⟩ |2 ≤ ∥x∥2.

Proof. Let J ⊆ I be a finite subset of I. Let y = ∑
j∈J ⟨x, uj⟩uj. Note that y is the orthogonal

projection of x onto the subspace Y := span{uj : j ∈ J}. By Theorem (2.1.16), x − y ⊥ Y.
Thus by the Pythagorean Law, we have

∥x∥2 = ∥(x− y) + y∥2 = ∥x− y∥2 + ∥y∥2 ≥ ∥y∥2 =
∑
j∈J

∥ ⟨x, uj⟩uj∥2 =
∑
j∈J

| ⟨x, uj⟩ |2.

This proves the result for any finite set J of indices.
We use Zorn’s Lemma to show that∑

i∈I
| ⟨x, ui⟩ |2 ≤ ∥x∥2.

Consider the collection J of subsets of I such that∑
j∈J

| ⟨x, uj⟩ |2 ≤ ∥x∥2.

Partially order the collection J by inclusion. Let C be a totally ordered subset in J . Put
J∗ := ∪J∈CJ.

We show that J∗ is an upper bound for C.
Let S := ∑

j∈J∗ | ⟨x, uj⟩ |2. If J∗ is finite, then S ≤ ∥x∥2 by the first part of the proof.
Otherwise, suppose by contradiction that S > ∥x∥2. Choose ϵ < S−∥x∥2

2 . By definition of
an infinite sum, there exists a finite subset J0 of J∗ such that for any larger finite subset
J0 ⊂ F ⊂ J∗, we have ∣∣∣∣∣∣

∑
j∈F

| ⟨x, uj⟩ |2 − S

∣∣∣∣∣∣ < ϵ.

Then
∥x∥2 ≥

∑
j∈F

| ⟨x, uj⟩ |2 ≥ S − ϵ > ∥x∥2,

a contradiction. Therefore we must have∑
j∈J∗

| ⟨x, uj⟩ |2 ≤ ∥x∥2,
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that is, J∗ is an upper bound of C.
By Zorn’s Lemma, there exists a maximal element J0 of I. We show that J0 = I. If

not, there exists ui0 /∈ J0. Let y = ∑
j∈J0 ⟨x, uj⟩uj. Then ui0 ⊥ uj for all j ∈ J0, so that

⟨x− y, ui0⟩ = ⟨x, ui0⟩ . Thus
∥x∥2 = ∥x− y∥2 + ∥y∥2 ≥ | ⟨x, ui0⟩ |2 +

∑
j∈J0

| ⟨x, uj⟩ |2,

a contradiction to the maximality of J0. This shows J0 = I. □

Corollary 2.2.12. If {u1, u2, . . . } is an orthonormal sequence in an inner product space,
then for each x ∈ X, limn→∞ ⟨x, un⟩ = 0.
Proof. By Theorem (2.2.11), ∑∞

n=1 | ⟨x, un⟩ |2 converges. Thus ⟨x, un⟩ → 0 as n → ∞. □

Corollary 2.2.13. If {ui : i ∈ I} is an orthonormal system, then for each x at most a
countable number of the Fourier coefficients ⟨x, ui⟩ are nonzero.

Proof. Fix x ∈ X and put Jn := {i ∈ I : | ⟨x, ui⟩ | > 1/n}. By the Bessel inequality,

∥x∥2 ≥
∑
j∈Jn

| ⟨x, uj⟩ |2 ≥
∑
j∈Jn

1/n2 = #Jn
n2 .

Thus Jn is a finite set. Since
{i : ⟨x, ui⟩ ≠ 0} =

∞⋃
n=1

Jn,

we see that this set must be countable, being a union of countably many finite sets. □

Definition 2.2.14 (Orthonormal Basis). Let X be an inner product space. An orthonormal
basis for X is any maximal orthonormal set in X. That is, any orthonormal set which is
not properly contained in another orthonormal set.

Theorem 2.2.15. Every nontrivial inner product space has an orthonormal basis.

Proof. Let X be the inner product space. Since X ̸= {0}, there exists a nonzero vector
x ∈ X. Note that {x/∥x∥} is orthonormal. Let F be the family of all orthonormal subsets
of X, and partially order this family by inclusion. Let C be a totally ordered subset in F.
Put A∗ := ⋃

A∈C A. Then, for all A ∈ C, we have A ⊆ A∗, so that A∗ is an upper bound for
C. We check that A∗ is orthonormal.

Let x, y ∈ A∗ be such that x ̸= y. Then there exist A1, A2 ∈ C such that x ∈ A1 and
y ∈ A2. Since C is totally ordered, either A1 ⊆ A2 or A2 ⊆ A1, say A1 ⊆ A2. Then x, y ∈ A2.
Since A2 is orthonormal, ⟨x, y⟩ = 0 and ∥x∥ = ∥y∥ = 1. Thus A∗ is orthonormal.

By Zorn’s Lemma, it follows that there exists a maximal orthonormal set. □
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Theorem 2.2.16 (Orthonormal Basis Theorem). Let {uα}α∈A be an orthonormal family
in a Hilbert space X. The following properties are equivalent:

(1) {uα}α∈A is an orthonormal basis for X;
(2) If x ∈ X and x ⊥ uα for all α ∈ A, then x = 0;
(3) For each x ∈ X, x = ∑

α∈A ⟨x, uα⟩uα;
(4) For each x, y ∈ X, ⟨x, y⟩ = ∑

α∈A ⟨x, uα⟩ ⟨y, uα⟩;
(5) For each x ∈ X, ∥x∥2 = ∑

α∈A | ⟨x, uα⟩ |2 (Parseval Identity).

Proof. First suppose that {uα}α∈A is an orthonormal basis for X. By contradiction, let x ̸= 0
be such that x ⊥ uα for all α ∈ A. Then we may adjoin x/∥x∥ to the family {uα}α∈A to
obtain a larger orthonormal basis. Thus the original family is not maximal and is therefore
not a basis.

Next, assume that if x ∈ X and x ⊥ uα for all α ∈ A, then x = 0. Put y := ∑
α∈A ⟨x, uα⟩uα.

By Bessel’s Inequality,
∥y∥2 ≤

∑
α∈A

∥ ⟨x, uα⟩uα∥2 =
∑
α∈A

| ⟨x, uα⟩ |2 ≤ ∥x∥2.

By the Pythagorean Law, the series defining y converges. We find for all uβ, β ∈ A,

⟨x− y, uβ⟩ = ⟨x, uβ⟩ −
〈∑
α∈A

⟨x, uα⟩uα, uβ
〉

= ⟨x, uβ⟩ −
∑
α∈A

⟨x, uα⟩ ⟨uα, uβ⟩

= ⟨x, uβ⟩ −
∑
α∈A

⟨x, uα⟩ δαβ = ⟨x, uβ⟩ − ⟨x, uβ⟩ = 0.

By the assumption, x− y = 0.
Now suppose that for every x ∈ X, x = ∑

α∈A ⟨x, uα⟩uα. Put
x :=

∑
α∈A

⟨x, uα⟩uα, y :=
∑
α∈A

⟨y, uα⟩uα.

Then

⟨x, y⟩ =
〈∑
α∈A

⟨x, uα⟩uα,
∑
β∈A

⟨y, uβ⟩uβ
〉

=
∑
α∈A

⟨x, uα⟩
〈
uα,

∑
β∈A

⟨y, uβ⟩uβ
〉

=
∑
α∈A

∑
β∈A

⟨x, uα⟩ ⟨y, uβ⟩ ⟨uα, uβ⟩ =
∑
α∈A

∑
β∈A

⟨x, uα⟩ ⟨y, uβ⟩δαβ

=
∑
α∈A

⟨x, uα⟩ ⟨y, uα⟩.

Assume now that for all x, y ∈ X, ⟨x, y⟩ = ∑
α∈A ⟨x, uα⟩ ⟨y, uα⟩. Let y = x. Then we see

that
∥x∥2 =

∑
α∈A

| ⟨x, uα⟩ |2.

Finally, assume that ∥x∥2 = ∑
α∈A | ⟨x, uα⟩ |2. By contradiction, suppose that {uα}α∈A is

not an orthonormal basis for X. Then {uα}α∈A is not an orthonormal set. We may adjoin a
new element, x, to obtain a larger orthonormal set. But then

1 = ∥x∥2 ̸=
∑
α∈A

| ⟨x, uα⟩ |2 = 0,

a contradiction. □
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Example 2.2.17. One orthonormal basis in ℓ2 is obtained by defining {unk}∞
k=1 by unk = δnk

for all n ∈ N. To see that this is an orthonormal basis, suppose that x ∈ ℓ2 and ⟨x, un⟩ = 0
for all n ∈ N. Then xn = 0 for all n ∈ N, so that x = 0.

Recall that we have defined the orthogonal projection of a Hilbert space X onto a closed
subspace Y to be the mapping P such that for each x ∈ X, Px is the point of Y closest to
x.

Theorem 2.2.18 (Orthogonal Projection Theorem). The orthogonal projection P of a
Hilbert space X onto a closed subspace Y has the following properties:

(1) P is well–defined, that is, Px exists and is unique in Y ;
(2) P is surjective, that is, P (X) = Y ;
(3) P is linear;
(4) If Y ̸= {0}, then ∥P∥ = 1;
(5) x− Px ⊥ Y for all x;
(6) P is Hermitian, that is, ⟨Px,w⟩ = ⟨x, Pw⟩ for all x and w;
(7) If {uα}α∈A is an orthonormal basis for Y, then Px = ∑

α∈A ⟨x, uα⟩uα;
(8) P is idempotent, that is, P 2 = P ;
(9) Py = y for all y ∈ Y, that is, P |Y = IY ;

(10) ∥x∥2 = ∥Px∥2 + ∥x− Px∥2.

Theorem 2.2.19. Let {vn}∞
n=1 be a linearly independent sequence in an inner product

space X. Define

u1 := v1

∥v1∥
, un :=

vn −
n−1∑
k=1

⟨vn, uk⟩uk

∥vn −
n−1∑
k=1

⟨vn, uk⟩uk∥
, n = 2, 3, . . . .

Then {un}∞
n=1 is an orthonormal sequence, and for each n ∈ N, span{uk}nk=1 = span{vk}nk=1.

Example 2.2.20. A normed linear space is said to be separable if it contains a count-
able dense subset. If an inner product space is nonseparable, it cannot have a countable
orthonormal basis.

Consider the uncountable family of functions uλ(t) := eiλt, where t, λ ∈ R. This family of
functions is linearly independent and is therefore a Hamel basis for some linear space X. We
introduce an inner product in X by defining the inner product of two elements in the Hamel
basis:

⟨uλ, uσ⟩ := δλσ.

This is the family that arises in the following integration:

lim
T→∞

1
2T

∫ T

−T
uλ(t)uσ(t) dt = lim

T→∞

1
2T

∫ T

−T
ei(λ−σ)t dt.

If λ = σ, this calculation yields the result 1. If λ ̸= σ, we get zero.

Example 2.2.21. We consider the space C[−1, 1] with the inner product

⟨f, g⟩ :=
∫ 1

−1
f(t)g(t) dt.
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Applying the Gram–Schmidt process to the standard monomial basis {1, t, t2, t3, . . . } yields
the Legendre polynomials. The unnormalized polynomials may be written recursively:

P0(t) := 1, P2(t) := t, Pn(t) := 2n− 1
n

tPn−1(t) − n− 1
n

Pn−2(t), n ≥ 2.

The corresponding orthonormal system is pn := Pn/∥Pn∥. The completion of the space
C[−1, 1] with respect to the norm induced by the inner product is the space L2[−1, 1]. Thus
every function f ∈ L2[−1, 1] is represented in the L2−sense by the series

f :=
∞∑
n=0

⟨f, pn⟩ pn.

2.3. Linear Functionals and Operators. Recall that a linear functional on a linear space
X is a mapping ϕ from X to R (or C) such that for all x, y ∈ X and a, b ∈ R,

ϕ(ax+ by) = aϕ(x) + bϕ(y).
Recall also that if X has a norm, and if

sup
∥x∥=1

|ϕ(x)| < ∞,

we say that ϕ is a bounded linear functional, and we denote by ∥ϕ∥ the above inequality.

Theorem 2.3.1 (Riesz Representation Theorem). Every continuous linear functional
defined on a Hilbert space X is of the form ϕ(x) = ⟨x, v⟩ for some v ∈ X that is
determined uniquely by the given functional.

Proof. Let ϕ : X → R be a continuous linear functional. Note first that if kerX = X, then
ϕ(x) ≡ 0 and thus ϕ(x) = ⟨x, 0⟩ . Otherwise, let u ̸= 0 ∈ ker(ϕ)⊥. Without loss of generality,
we may assume that ϕ(u) = 1. Observe that X = ker(ϕ) ⊕ Ru, for we have that

x = x− ϕ(x)u+ ϕ(x)u,
and x− ϕ(x)u ∈ ker(ϕ). Put v := u/∥u∥2. Then

⟨x, v⟩ = ⟨x− ϕ(x)u+ ϕ(x)u, v⟩ = ⟨x− ϕ(x)u, v⟩ + ⟨ϕ(x)u, v⟩

= ϕ(x) ⟨u, v⟩ = ϕ(x)
〈
u,

u

∥u∥2

〉
= ϕ(x) ⟨u, u⟩ /∥u∥2 = ϕ(x).

This completes the proof. □

Example 2.3.2. Let X be a finite–dimensional Hilbert space with a basis {u1, u2, . . . , un},
not necessarily orthonormal. Each point x ∈ X can be represented uniquely in the form

x =
n∑
j=1

λj(x)uj,

where λj, j = 1, 2, . . . , n are continuous linear functionals. Hence by Theorem (2.3.1) there
exist points vj ∈ X such that

x =
n∑
j=1

⟨x, vj⟩uj,

for all x ∈ X.
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Moreover, since ui = ∑n
j=1 ⟨ui, vj⟩uj, we must have ⟨ui, vj⟩ = δij. In this situation, we

say that the two sets {u1, . . . , un} and {v1, . . . , vn} are mutually biorthogonal or that they
form a biorthogonal pair.

Example 2.3.3. The orthogonal projection P of a Hilbert space X onto a closed subspace
Y is a bounded linear operator from X into X. Theorem (2.2.6) shows that P has several
nice properties.

Example 2.3.4. It is easy to create bounded linear operators on a Hilbert space X. Take
any orthonormal system {uj}j∈I , possibly finite, countable, or uncountable. Define

Ax :=
∑
i∈I

∑
j∈I

aij ⟨x, uj⟩ui.

If the coefficients aij have the property ∑i∈I
∑
j∈I |aij|2 < ∞, then A will be continuous.

Theorem 2.3.5 (Existence of Adjoints). If A is a bounded linear operator on a Hilbert
space X, then there is a uniquely defined bounded linear operator A∗ such that

⟨Ax, y⟩ = ⟨x,A∗y⟩
for all x, y ∈ X. Moreover, ∥A∗∥ = ∥A∥.

Proof. Fix y ∈ X, and notice that the mapping ϕ : X → R defined by ϕ(x) = ⟨Ax, y⟩ is a
bounded linear functional on X :

⟨A(λx+ µz), y⟩ = ⟨λAx+ µAz, y⟩ = λ ⟨Ax, y⟩ + µ ⟨Az, y⟩
≤ λ∥Ax∥∥y∥ + µ∥Az∥∥y∥ ≤ ∥A∥∥y∥(λ∥x∥ + µ∥z∥).

Thus, by the Riesz Representation Theorem (2.3.1), there exists a unique vector v such that
⟨Ax, y⟩ = ⟨x, v⟩ for all x ∈ X. Noting that v depends on A and y, we denote v =: A∗y. We
show that the mapping A∗ is linear and bounded.

We first show linearity. By the Lemma (2.1.8), it suffices to show that for all x ∈ X,

⟨x,A∗(λy + µz)⟩ = ⟨x, λA∗y + µA∗z⟩ .
We see that, by definition of A∗, ,

⟨x,A∗(λy + µz)⟩ = ⟨Ax, λy + µz⟩ = ⟨Ax, λy⟩ + ⟨Ax, µz⟩
= λ ⟨Ax, y⟩ + µ ⟨Ax, z⟩ = λ ⟨x,A∗y⟩ + µ ⟨x,A∗z⟩
= ⟨x, λA∗y + µA∗z⟩ ,

which shows linearity.
We now show boundedness. By the Lemma (2.1.8), we have

∥A∗∥ = sup
∥y∥=1

∥A∗y∥ = sup
∥y∥=1

sup
∥x∥=1

| ⟨x,A∗y⟩ |

= sup
∥x∥=1

sup
∥y∥=1

| ⟨x,A∗y⟩ |

= sup
∥x∥=1

sup
∥y∥=1

| ⟨Ax, y⟩ |

≤ sup
∥x∥=1

sup
∥y∥=1

∥Ax∥∥y∥
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= sup
∥x∥=1

∥Ax∥ = ∥A∥.

Finally, to show uniqueness, suppose that there exists B ∈ L(X,X) such that
⟨Ax, y⟩ = ⟨x,By⟩

for all x, y ∈ X. Then, for any x ∈ X, it follows
⟨x,A∗y⟩ = ⟨Ax, y⟩ = ⟨x,By⟩

for all y ∈ X. Thus by the Lemma (2.1.8), we have A∗ ≡ B.
This completes the proof. □

Definition 2.3.6 (Adjoint). Let X be a Hilbert space and let A ∈ L(X,X). Then the operator
A∗ such that

⟨Ax, y⟩ = ⟨x,A ∗ ∗y⟩
for all x, y ∈ X is called the adjoint of A.

Recall that for an operator A on a Banach space X, A∗ is defined on X∗ by the equation
A∗ϕ = ϕ ◦ A.

If X is a Hilbert space, then X∗ may be identified with X by the Riesz Representation
Theorem, that is, for any ϕ ∈ X∗, ϕ(x) = ⟨x, y⟩ for some unique y ∈ X. Thus

(A∗ϕ)(x) = (ϕ ◦ A)(x) = ϕ(Ax) = ⟨Ax, y⟩ .

Hence, the Hilbert space adjoint coincides with the Banach space definition.

Example 2.3.7. Let S be any measure space, and let an operator T on L2(S) be defined by
the equation

(Tx)(s) :=
∫
S
k(s, t)x(t) dt.

Assume that the kernel k is L2(S) × L2(S) integrable, in the sense that∫
S

∫
S

|k(s, t)|2 dt ds < ∞.

Then T is bounded, and its adjoint T ∗ is an integral operator of the same type. More
specifically,

(T ∗x)(s) =
∫
S
k(s, t)x(t) dt.

Definition 2.3.8 (Self–Adjoint Operator). If A is a bounded linear operator such that A =
A∗, then we say that A is self–adjoint.

Definition 2.3.9 (Hermitian Operator). A linear operator on an inner–product space is said
to be Hermitian if ⟨Ax, y⟩ = ⟨x,Ay⟩ for all x and y.

Note that by definition, a Hermitian operator is not necessarily bounded.

Theorem 2.3.10. Let X be a Hilbert space. If A is a Hermitian operator on X, that
is, if A is a linear map such that ⟨Ax, y⟩ = ⟨y, Ax⟩ for all x, y ∈ X, then A is bounded
and self–adjoint.
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Proof. For every fixed y ∈ X such that ∥y∥ ≤ 1, define a functional ϕy by ϕy(x) := ⟨Ax, y⟩ .
By the linearity of A, ϕy is obviously linear, and by the Cauchy–Schwarz Inequality, we have

|ϕy(x)| = | ⟨Ax, y⟩ | = | ⟨x,Ay⟩ | ≤ ∥x∥∥Ay∥ < ∞.

Thus ϕy is bounded. Moreover, by the Lemma (2.1.8), we see that
sup

∥y∥=1
∥ϕy(x)∥ = sup

∥y∥≤1
| ⟨Ax, y⟩ | = ∥Ax∥.

Thus, by the Uniform Boundedness Principle, sup∥y∥≤1 ∥ϕy∥ < ∞, and thus
∞ > sup

∥y∥≤1
∥ϕy∥ = sup

∥y∥≤1
sup

∥x∥≤1
|ϕy(x)|

= sup
∥y∥≤1

sup
∥x∥≤1

| ⟨Ax, y⟩ |

= sup
∥x∥≤1

sup
∥y∥≤1

| ⟨Ax, y⟩ |

= sup
∥x∥≤1

∥Ax∥ = ∥A∥.

Thus, A is bounded.
Next, the equation

⟨x,A∗y⟩ = ⟨Ax, y⟩ = ⟨x,Ay⟩ ,
along with uniqueness of the adjoint, shows that A ≡ A∗. This completes the proof. □

Definition 2.3.11. Let X be a Hilbert space and let A be a bounded linear operator on X.
We define a new norm |||·||| by

|||A||| := sup
∥x∥=1

| ⟨Ax, x⟩ |.

Lemma 2.3.12 (Generalized Cauchy–Schwarz Inequality). If A is a Hermitian operator on
a Hilbert space X, then, for any x, y ∈ X,

| ⟨Ax, y⟩ | ≤ |||A|||∥x∥∥y∥.

Proof. First observe that
⟨A(x+ y), x+ y⟩ = ⟨Ax, x⟩ + ⟨Ax, y⟩ + ⟨Ay, x⟩ + ⟨Ay, y⟩ (2.3.0.1)

− ⟨A(x− y), x− y⟩ = − ⟨Ax, x⟩ + ⟨Ax, y⟩ + ⟨Ay, x⟩ − ⟨Ay, y⟩ . (2.3.0.2)
Adding equations (2.3.0.1) and applying the Hermitian property of A gives

⟨A(x+ y), x+ y⟩ − ⟨A(x− y), x− y⟩ = 4Re ⟨Ax, y⟩ .
Thus we find, for x ̸= 0,

| ⟨Ax, x⟩ | = ∥x∥2
〈
A

(
x

∥x∥

)
,
x

∥x∥

〉
≤|||A|||∥x∥2.

By the above and the parallelogram law we have
|4Re ⟨Ax, y⟩ | = | ⟨A(x+ y), x+ y⟩ − ⟨A(x− y), x− y⟩ |

≤ | ⟨A(x+ y), x+ y⟩ | + | ⟨A(x− y), x− y⟩ |
≤|||A|||∥x+ y∥2+|||A|||∥x− y∥2

=|||A|||(2∥x∥2 + 2∥y∥2).
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Letting ∥x∥ = ∥y∥ = 1 in the preceding argument shows that
|Re ⟨Ax, y⟩ | ≤|||A|||.

Finally, fix x, y ∈ X. Note that we may choose θ ∈ C such that |θ| = 1 and θ ⟨Ax, y⟩ =
| ⟨Ax, y⟩ |. Then

| ⟨Ax, y⟩ | = θ ⟨Ax, y⟩ = ⟨A(θx), y⟩ = |Re ⟨A(θx), y⟩ | ≤|||A|||.
By homogeneity, this completes the proof. □

Lemma 2.3.13. If A is Hermitian, then ∥A∥ =|||A|||.

Proof. By the Cauchy–Schwarz Inequality, we first note that
|||A||| = sup

∥u∥=1
| ⟨Au, u⟩ | ≤ sup

∥u∥=1
∥Au∥∥u∥ = sup

∥u∥=1
∥Au∥ = ∥A∥.

For the reverse inequality, we apply the preceding Lemma (2.3.12) and observe that
∥A∥ = sup

∥x∥=1
∥Ax∥ = sup

∥x∥=1
sup

∥y∥=1
| ⟨Ax, y⟩ |

≤ sup
∥x∥=1

sup
∥y∥=1

|||A|||∥x∥∥y∥ =|||A|||.

□

Definition 2.3.14 (Compact Operator). Let X and Y be normed linear spaces, and let
Σ ⊆ X denote the unit ball. An operator A : X → Y is said to be compact if the set
A(Σ) ⊆ Y is relatively compact in Y (A(Σ) is compact).

Recall that a continuous linear operator is an operator that maps the unit ball in the
domain to a bounded set in the codomain. Thus, compactness of an operator is a stronger
condition than continuity.

Lemma 2.3.15. Every continuous linear operator from a normed linear space to a finite–
dimensional normed linear space is compact.

Proof. Let X be a normed linear space, and let A be a continuous linear operator from X
to a finite–dimensional normed linear space Y. Let Σ ⊆ X be the unit ball. Since A is
continuous, A(Σ) is a bounded set in Y. Thus, A(Σ) is a closed and bounded set in the
finite–dimensional space Y , and hence A is compact. This completes the proof. □

Theorem 2.3.16. Let X and Y be Banach spaces. Then the set of compact operators
in L(X, Y ) is closed.

Proof. Let {An}∞
n=1 be a sequence of compact operators from X to Y, and suppose that there

exists A ∈ L(X, Y ) such that limn→∞ ∥An − A∥ = 0.
We show that A is compact. Denote by Σ ⊆ X the unit ball, and let {xn}∞

n=1 be a sequence
in Σ. It suffices to find a convergent subsequence in {Axn}∞

n=1.
Since A1 is compact, there exists an increasing subsequence I1 ⊆ N such that {A1xn}n∈I1

converges. Likewise, there is an increasing subsequence I2 ⊆ I1 such that the sequence
{A2xn}n∈I2 converges. Continue in this fashion. Applying Cantor’s diagonalization argu-
ment, we let I ⊆ N be the sequence whose n−th term is the n−th term of In, n ∈ N. By
this construction, the sequence {Aixn}n∈I converges for all i ∈ N.
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Finally, we show that {Axn}n∈I converges. It suffices to show that {Axn}n∈I is Cauchy.
We find that

∥Axn − Axm∥ ≤ ∥Axn − Aixn∥ + ∥Aixn − Aixm∥ + ∥Aixm − Axm∥
≤ ∥A− Ai∥∥xn∥ + ∥Aixn − Aixm∥ + ∥Ai − A∥∥xm∥.

This completes the proof. □

Theorem 2.3.17. Let S be any measure space. Define the operator T : L2(S) → L2(S) by

(Tx)(s) :=
∫
S
k(s, t)x(t) dt.

If the kernel k is in L2(S × S), then T is compact.

Proof. Choose an orthonormal basis {un}∞
n=1 for L2(S), and define anm := ⟨Tum, un⟩ . Note,

for any x ∈ L2(S), x = ∑∞
n=1 ⟨x, un⟩un, it follows

Tx =
∞∑
n=1

⟨Tx, un⟩un =
∞∑
n=1

〈 ∞∑
m=1

⟨x, um⟩Tum, un
〉
un

=
∞∑
n=1

( ∞∑
m=1

anm ⟨x, um⟩
)
un.

Observe that

∥k∥2 =
∫ ∫

|k(s, t)|2 dtds =
∫

∥k(s, ·)∥2 ds =
∫ ∞∑

n=1
| ⟨k(s, ·), un⟩ |2 ds

=
∫ ∞∑

n=1

∣∣∣∣∫ k(s, t)un(t) dt
∣∣∣∣2 ds =

∫ ∞∑
n=1

|(Tun)(s)|2 ds

=
∞∑
n=1

∫
|(Tun)(s)|2 ds =

∞∑
n=1

∥Tun∥2

=
∞∑
n=1

∞∑
m=1

| ⟨Tun, um⟩ |2 =
∞∑
n=1

∞∑
m=1

|amn|2 =:
∞∑
m=1

βm,

where βm := ∑∞
n=1 |amn|2. We truncate the series that defines T in order to obtain operators

with finite–dimensional range that approximate T. Thus, we put

Tnx :=
n∑
i=1

∞∑
j=1

aij ⟨x, uj⟩ui.

By subtraction,

Tx− Tnx =
∑
i>n

∞∑
j=1

aij ⟨x, uj⟩ui.

Further, by the Cauchy–Schwarz Inequality and the Bessel Inequality, we have

∥Tx− Tnx∥2 =
∑
i>n

∣∣∣∣∣∣
∞∑
j=1

aij ⟨x, uj⟩

∣∣∣∣∣∣
2

≤
∑
i>n

∞∑
j=1

|aij|2
∞∑
k=1

| ⟨x, uk⟩ |2

≤ ∥x∥2 ∑
i>n

∞∑
j=1

|aij|2 = ∥x∥2 ∑
i>n

βi.
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This shows that limn→∞ ∥T − Tn∥ = 0. Since each Tn has finite–dimensional range, each Tn
is compact, and thus T is compact by Theorem (2.3.16). □

Theorem 2.3.18. Let X be a Hilbert space and let A be a bounded linear operator on X.
Then N (A) = R(A∗)⊥.

Proof. Let x ∈ N (A) and let z ∈ X be arbitrary. We find
⟨x,A∗z⟩ = ⟨Ax, z⟩ = ⟨0, z⟩ = 0.

Thus x ∈ R(A∗)⊥ and N (A) ⊆ R(A∗)⊥.
On the other hand, if x ∈ R(A∗)⊥, then

⟨Ax,Ax⟩ = ⟨x,A∗(Ax)⟩ = 0.
Thus Ax = 0, x ∈ N (A), and R(A∗)⊥ ⊆ N (A), which completes the proof. □

Corollary 2.3.19. A Hermitian operator whose range is dense is injective.

Definition 2.3.20 (Weak Convergence (Hilbert Space)). A sequence {xn}∞
n=1 in a Hilbert

space X is said to converge weakly to a point x ∈ X if for all y ∈ X,

lim
n→∞

⟨xn, y⟩ = ⟨x, y⟩ .

We write xn ⇀ x.

Example 2.3.21. If {un}∞
n=1 is an orthonormal sequence in a Hilbert space, then un ⇀ 0.

This follows from Bessel’s Inequality,
∞∑
n=1

| ⟨un, y⟩ |2 ≤ ∥y∥2,

which shows that limn→∞ ⟨un, y⟩ = 0 for all y.

Definition 2.3.22 (Weakly Cauchy (Hilbert Space)). A sequence {xn}∞
n=1 in a Hilbert space

X is said to be weakly Cauchy if, for all y ∈ X, the sequence {⟨xn, y⟩}∞
n=1 is Cauchy in C.

Lemma 2.3.23. A weakly Cauchy sequence in a Hilbert space is weakly convergent to a point
in the Hilbert space.

Proof. Let X be a Hilbert space, and let {xn}∞
n=1 be weakly Cauchy in X. For each y ∈ X,

the sequence {⟨y, xn⟩}∞
n=1 has the Cauchy property in C, and is therefore bounded in C. The

linear functionals ϕn : X → C defined by ϕn(y) := ⟨y, xn⟩ consequently have the property
sup
n∈N

|ϕn(y)| < ∞,

for all y ∈ X. By the Uniform Boundedness Principle, we have that ∥ϕn∥ ≤ M for some
M ∈ R. Since

∥xn∥ = sup
∥y∥=1

| ⟨y, xn⟩ | = ∥ϕn∥ ≤ M,

we conclude that {xn}∞
n=1 is a bounded sequence. Put ϕ(y) := limn→∞ ⟨y, xn⟩ . Then ϕ is a

bounded linear functional on X. By the Riesz Representation Theorem, there exists x ∈ X
such that ϕ(y) = ⟨y, x⟩ . Hence, limn→∞ ⟨y, xn⟩ = ⟨y, x⟩ and thus xn ⇀ x. □
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Theorem 2.3.24 (Fredholm Alternative, Hilbert Space). Let A be a continuous lin-
ear operator on a Hilbert space. If the range of A is closed, then it is the orthogonal
complement of the null space of A∗. That is,

R(A) = N (A∗)⊥.

Proof. Let x ∈ R(A). Then x = Au for some u ∈ X. Thus, for all z ∈ N (A∗), we have
⟨x, y⟩ = ⟨Au, y⟩ = ⟨u,A ∗ ∗y⟩ = 0.

For the reverse inclusion, we proceed by contrapositive and suppose that x /∈ R(A). Since
R(A) is a closed subspace by the supposition, there exists a continuous linear functional ϕ
such that ϕ(x) = 1 and ϕ(z) = 0 for all z ∈ R(A). By the Riesz Representation Theorem,
there exists y ∈ X such that ϕ(u) = ⟨u, y⟩ for all u ∈ X. Note that for any z ∈ R(A), we
may write z = Av for some v ∈ X, and thus

ϕ(z) = ⟨z, y⟩ = ⟨Av, y⟩ = ⟨v,A ∗ ∗y⟩ = 0,
so that A∗y = 0 and y ∈ N (A∗). But since ⟨x, y⟩ ≠ 0, we have x /∈ N (A∗)⊥, which completes
the proof. □

2.4. Spectral Theory. In this section we study the structure of linear operators on a
Hilbert space. Ideally, we want to dissect an operator into a sum of simple operators or a
series of simple operators. Specifically, we consider operators of the form

Lx =
∞∑
j=1

aj ⟨x, uj⟩uj.

Definition 2.4.1 (Eigenvalue). An eigenvalue of an operator A is a complex number λ
such that A− λI has a nontrivial null space.

We denote by Λ(A) the set of all eigenvalues of an operator A.
If X is a finite–dimensional space, and if A : X → X is a linear operator, then A certainly

has eigenvalues. To see this, introduce a basis {un}Nn=1 for X so that A can be identified
with a square matrix. Then the following conditions on a complex number λ are equivalent:

(1) A− λI has a nontrivial null space;
(2) A− λI is singular;
(3) det(A− λI) = 0.

Note that an operator on an infinite–dimensional space may have no eigenvalues.

Definition 2.4.2 (Eigenvector). Let λ be an eigenvalue of an operator A. Then any non-
trivial solution of the equation Ax = λx is called an eigenvector of A belonging to the
eigenvalue λ.

Lemma 2.4.3. If A is a Hermitian operator on an inner–product space, then:
(1) All eigenvalues of A are real;
(2) Any two eigenvectors of A associated with distinct eigenvalues of A are orthogonal to

each other;
(3) The quadratic form x 7→ ⟨Ax, x⟩ is real–valued.
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Proof. Let Ax = λx, Ay = µy, with x, y ̸= 0, λ ̸= µ. Then
λ ⟨x, x⟩ = ⟨λx, x⟩ = ⟨Ax, x⟩ = ⟨x,Ax⟩ = ⟨x, λx⟩ = λ ⟨x, x⟩ .

Thus λ ∈ R. To see that ⟨x, y⟩ = 0, we find that
(λ− µ) ⟨x, y⟩ = ⟨λx, y⟩ − ⟨x, µy⟩ = ⟨Ax, y⟩ − ⟨x,Ay⟩ = 0.

Finally, note that
⟨Ax, x⟩ = x,Ax = Ax, x.

□

Lemma 2.4.4. A compact Hermitian operator A on an inner product space has at least one
eigenvalue λ such that |λ| = ∥A∥.

Proof. The case A = 0 is trivial. Thus we assume that A ̸= 0.
Recall from Lemma (2.3.13) that |||A||| = ∥A∥. By definition of the supremum, there

exists a sequence of points {xn}∞
n=1 such that ∥xn∥ = 1 and limn→∞ | ⟨Axn, xn⟩ | =|||A|||.

Since A is compact, there exists a subsequence {xnk
}∞
k=1 such that limk→∞ Axnk

exists. Put
y := limk→∞ Axnk

. Note y ̸= 0 because | ⟨Axnk
, xnk

⟩ | →|||A||| ≠ 0. By taking a further
subsequence by the Bolzano–Weierstrass Theorem if necessary, we may assume that the
limit λ = limk→∞ Axnk

, xnk
exists. By Lemma (2.4.3), λ is real. Then

∥Axnk
− λxnk

∥2 = ∥Axnk
∥2 − λ ⟨Axnk

, xnk
⟩ − λ ⟨xnk

, Axnk
⟩ + λ2∥xnk

∥2.

Hence
0 ≤ lim

k→∞
∥Axnk

− λxnk
∥2 = ∥y∥2 − λ2 − λ2 + λ2 = ∥y∥2 − λ2.

Taking square roots, we find |λ| ≤ ∥y∥. For the reverse inequality, from the above argument
we also find

∥y∥ = lim
k→∞

∥Axnk
∥ ≤ lim

k→∞
∥A∥∥xnk

∥ = ∥A∥ = |λ|.

Thus we have 0 ≤ limk→∞ ∥Axnk
− λxnk

∥ ≤ 0, and that
∥y − λxnk

∥ ≤ ∥y − Axnk
∥ + ∥Axnk

− λxnk
∥ → 0.

Thus xnk
→ y/λ. Finally, Ay = A(limk→∞ λxnk

) = λ limk→∞ Axnk
= λy, so that y is in the

null space of A− λI. Hence λ is an eigenvalue of A. □

Theorem 2.4.5 (Spectral Theorem). If A is a compact Hermitian operator defined on
an inner product space, then A is of the form Ax = ∑

k λk ⟨x, ek⟩ ek for an appropriate
orthonormal sequence {ek} (possibly finite) and appropriate real numbers λk satisfying
limk→∞ λk = 0. Moreover, the equations Aek = λkek hold.

Proof. If A = 0, the conclusion is trivial. Thus we assume that A ̸= 0.
Let X1 := X. Let λ1 and e1 be an eigenvalue and corresponding eigenvector determined

by the preceding Lemma (2.4.4). Note that |λ1| = ∥A∥. Let X2 := {x ∈ X : ⟨x, e1⟩ = 0}.
Then X2 is a subspace of X1, and A maps X2 into itself, for

⟨Ax, e1⟩ = ⟨x,Ae1⟩ = ⟨x, λ1e1⟩ = λ1 ⟨x, e1⟩ = 0
for any x ∈ X2. We consider the restriction of A to the inner product space X2, denoted by
A|X2 . This operator is also compact and Hermitian. Also, ∥A|X2∥ ≤ ∥A∥. If A|X2 ̸= 0, then
the preceding lemma produces λ2 and e2, where ∥e2∥ = 1, |λ2| = ∥A|X2∥ ≤ |λ1|, e2 ⊥ X1,
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Ae2 = λ2e2. Continue in this fashion. At the n−th stage we obtain |λ1| ≥ |λ2| ≥ · · · ≥
|λn| > 0, {e1, e2, . . . , en} orthonormal, and Aek = λkek for k = 1, 2, . . . , n. We define Xn+1 to
be the orthogonal complement of the linear span of {e1, . . . , en}. If A|Xn+1 = 0, the process
stops. Then the range of A is spanned by e1, . . . , en. That is, for any x ∈ X, the vector
x − ∑n

k=1 ⟨x, ek⟩ ek is orthogonal to {e1, . . . , en}. Thus, it lies in Xn+1, and so A maps it to
zero. That is,

Ax =
n∑
k=1

⟨x, ek⟩Aek =
n∑
k=1

λk ⟨x, ek⟩ ek.

If A|Xn+1 ̸= 0, we apply the preceding lemma to get λn+1 and en+1.
It remains to show that if the above process does not terminate, then limk→∞ λk = 0. by

contradiction, suppose that |λn| ≥ ϵ > 0 for all n ∈ N. Then {en/λn}∞
n=1 is a bounded se-

quence, and by the compactness of A, the sequence {A(en/λn)}∞
n=1 must contain a convergent

subsequence. But this is impossible, since A(en/λn) = en, and, {en}∞
n=1, being an orthonor-

mal sequence, satisfies ∥en − em∥ =
√

2. In the infinite case, let yn := x − ∑n
k=1 ⟨x, ek⟩ ek.

Since yn ⊥ ∑n
k=1 ⟨x, ek⟩ ek,

∥x∥2 =
∥∥∥∥∥yn +

n∑
k=1

⟨x, ek⟩ ek
∥∥∥∥∥

2

= ∥yn∥2 +
n∑
k=1

| ⟨x, ek⟩ |2 ≥ ∥yn∥2.

Since |λn+1| is the norm of ∥A|Xn+1∥, we have
∥Ayn∥ ≤ ∥A|Xn+1∥∥yn∥ ≤ |λn+1|∥x∥ → 0.

Since Ayn = Ax−∑n
k=1 λk ⟨x, ek⟩ ek, we have

Ax = lim
n→∞

n∑
k=1

λk ⟨x, ek⟩ ek.

This completes the proof. □

Corollary 2.4.6. Every nonzero eigenvalue of A is in the sequence {λn}n
Proof. By contradiction, suppose that Ax = λx, x ̸= 0, λ ̸= 0, and λ /∈ {λn}. Then x ⊥ en
for all n by Lemma (2.4.3). But then Ax = ∑

n λn ⟨x, en⟩ en = 0, a contradiction. □

Corollary 2.4.7. Every nonzero eigenvalue λ of A occurs in the sequence {λn} repeated a
number of times equal to dim{x ∈ X : (A− λI)x = 0}. Each of these numbers is finite.

Proof. Since limn→∞ λn = 0, a nonzero eigenvalue λ can be repeated only a finite number of
times in the sequence. If it is repeated N times, then the subspace {x ∈ X : (A−λI)x = 0}
contains an orthonormal set of N elements and so has dimension at least N. If the dimension
were greater than N, then there would exist x ̸= 0 such that Ax = λx and ⟨x, en⟩ = 0 for all
n, which is impossible. □

The following theorem provides an application of the spectral resolution of an operator,
specifically, a formula for inverting the operator A− λI when A is compact and λ is not an
eigenvalue of A.
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Theorem 2.4.8. Let A be a compact operator on an inner product space X having
spectral decomposition Ax = ∑

n λn ⟨x, en⟩ en. If 0 ̸= λ /∈ {λn}, then A− λI is invertible,
and

(A− λI)−1x = − 1
λ
x+ 1

λ

∑
n

λn
⟨x, en⟩
λn − λ

en.

Proof. Define the operator B by

Bx := − 1
λ
x+ 1

λ

∑
n

λn
⟨x, en⟩
λn − λ

en.

Note that if the series defining B converges, then the conclusion follows, for we see that

(A− λI)Bx = (A− λI)
{

− 1
λ
x+ 1

λ

∑
n

λn
⟨x, en⟩
λn − λ

en

}

= − 1
λ
Ax+ 1

λ

∑
n

λn
⟨x, en⟩
λn − λ

Aen + x−
∑
n

λn
⟨x, en⟩
λn − λ

en

= x− 1
λ

∑
n

λn(λn − λ)
λn − λ

⟨x, en⟩ en + 1
λ

∑
n

λ2
n

⟨x, en⟩
λn − λ

en −
∑
n

λn
⟨x, en⟩
λn − λ

en

= x.

In order to see that the series converges, define the partial sums

vn :=
n∑
k=1

⟨x, ek⟩
λk − λ

ek.

The sequence {vn}∞
n=1 is bounded, since, by the Pythagorean Law and Bessel’s Inequality

we have

∥vn∥2 =
n∑
k=1

∣∣∣∣∣ ⟨x, ek⟩λk − λ

∣∣∣∣∣
2

≤ sup
j∈N

∣∣∣∣∣ 1
λj − λ

∣∣∣∣∣
2 ∞∑
k=1

| ⟨x, ek⟩ |2 ≤ β∥x∥2,

where

β := sup
j∈N

∣∣∣∣∣ 1
λj − λ

∣∣∣∣∣
2

.

Since A is compact, {λn} converges to zero. Thus β < ∞. Moreover, the sequence {Avn}∞
n=1

contains a convergent subsequence. But {Avn}∞
n=1 is a Cauchy sequence, and a Cauchy

sequence having a convergent subsequence is convergent. To see that {Avn}∞
n=1 is Cauchy,

write
Avn =

n∑
k=1

λk
⟨x, ek⟩
λk − λ

ek,

and observe that

∥Avn − Avm∥2 =
m∑

k=n+1

∣∣∣∣∣λk ⟨x, ek⟩
λk − λ

∣∣∣∣∣
2

≤ sup
j∈N

∣∣∣∣∣ λj
λj − λ

∣∣∣∣∣
2 m∑
k=n+1

| ⟨x, ek⟩ |2 → 0.

This completes the proof. □

If an operator A is not necessarily compact but has a known spectral resolution in the form
of an orthonormal series, then certain conclusions can be drawn, as shown in the following
three theorems.
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Theorem 2.4.9. Let A be an operator on an inner product space having the form Ax =∑∞
n=1 λn ⟨x, en⟩ en, where {en} is an orthonormal sequence and {λn} is a bounded sequence

of nonzero complex numbers. Let M := span{en : n ∈ N}. Then M⊥ = ker(A).

Proof. Recall that the following properties are equivalent of a vector x ∈ X :
(1) x ∈ ker(A);
(2) ∥Ax∥2 = 0;
(3) ∑∞

n=1 |λn ⟨x, en⟩ |2 = 0;
(4) ⟨x, en⟩ = 0 for all n ∈ N.

□

Theorem 2.4.10. Let A be an operator on an inner product space having the form Ax =∑∞
n=1 λn ⟨x, en⟩ en, where {en} is an orthonormal sequence and {λn} is a bounded sequence of

nonzero complex numbers. The orthonormal set {en}∞
n=1 is maximal if and only if ker(A) = 0.

Proof. By the preceding Theorem (2.4.9), ker(A) = {0} if and only if M⊥ = {0}. The
condition M⊥ = {0} is equivalent to the maximality of {en}, by the Orthonormal Basis
Theorem (2.2.16). □

Theorem 2.4.11. Let A be an operator on a Hilbert space such that Ax = ∑∞
n=1 λn ⟨x, en⟩ en,

where {en} is an orthonormal sequence {λn} is a bounded sequence of nonzero complex
numbers. If v is in the range of A, then one solution of the equation Ax = v is x :=∑∞
n=1

1
λn

⟨v, en⟩ en.

Proof. Since v is in the range of A, v = Az for some z ∈ X. Thus

⟨v, em⟩ = ⟨Az, em⟩ =
〈 ∞∑
n=1

λn ⟨z, en⟩ en, em
〉

= λm ⟨z, em⟩ .

From this we have
∞∑
n=1

∣∣∣∣ 1
λn

⟨v, en⟩
∣∣∣∣2 =

∞∑
n=1

| ⟨z, en⟩ |2 ≤ ∥z∥2.

This implies the convergence of the series x = ∑∞
n=1

1
λn

⟨v, en⟩ en, by the Pythagorean Law.
It follows that

Ax =
∞∑
n=1

1
λn

⟨v, en⟩Aen =
∞∑
n=1

⟨v, en⟩ en =
∞∑
n=1

λn ⟨z, en⟩ en = Az = v.

This completes the proof. □

Example 2.4.12. Consider the operator A defined on L2[0, 1] by the equation

(Ax)(t) :=
∫ 1

0
G(s, t)x(s) ds,

where

G(s, t) :=
(1 − s)t, 0 ≤ t ≤ s ≤ 1,

(1 − t)s, 0 ≤ s ≤ t ≤ 1.
We first find all λ such that Ax = λx. Observe that

(Ax)′ = d

dt

{∫ 1

0
G(s, t)x(s) ds

}
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= (1 − t)tx(t) +
∫ t

0

∂

∂t
(1 − t)sx(s) ds− (1 − t)tx(t) +

∫ 1

t

∂

∂t
(1 − s)tx(s) ds

=
∫ t

0
−sx(s) ds+

∫ 1

t
(1 − s)x(s) ds

and

(Ax)′′ = d

dt

{∫ t

0
−sx(s) ds+

∫ 1

t
(1 − s)x(s) ds

}
= −tx(t) +

∫ t

0
0 ds− (1 − t)x(t) +

∫ t

0
0 ds

= x(t).
Hence finding the eigenvalues and eigenfunctions of A is equivalent to solving the BVP

x′′ − λx = 0,
x′(0) + x(0) = 0,
x′(1) − x(1) = 0.

For λ < 0, the general solution to the BVP is
x(t) := c1 sin

√
λt+ c2 cos

√
λt.

We find
x′(t) = c1λ cos

√
λt− c2λ sin

√
λt.

Applying the BC’s, we have
x′(0) − x(0) = c1λ+ c2 = 0

and
x′(1) − x(1) = (c1λ− c2) cos

√
λ− (c2λ+ c1) sin

√
λ = 0.

For compact operators that are not self–adjoint, there is still a useful canonical form that
can be exploited.

Theorem 2.4.13 (Singular Value Decomposition for Compact Operators). Every com-
pact operator A on a separable Hilbert space is expressible in the form

Ax =
∞∑
n=1

⟨x, un⟩ vn,

in which {un} is an orthonormal basis for the space and {vn} is an orthogonal sequence
converging to zero.

Proof. Note that the operator A∗A is compact and Hermitian since, for any x, y ∈ X, we see
that

⟨A∗Ax, y⟩ = ⟨x, (A∗A)∗y⟩ = ⟨x,A∗A∗∗y⟩ = ⟨x,A∗Ay⟩ .
Moreover, its eigenvalues are nonnegative, for if A∗Ax = µx, then

0 ≤ ∥Ax∥2 ⟨Ax,Ax⟩ = ⟨x,A∗Ax⟩ = ⟨x, µx⟩ = µx, x.

Applying the spectral theorem to A∗A, we obtain

A∗Ax =
∞∑
n=1

λ2
n ⟨x, un⟩un
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for some orthonormal basis {un} and sequence {λ2
n} such that limn→∞ λ2

n = 0. Note that in
this representation, each nonzero eigenvalue λ2

n is repeated a number of times equal to its
geometric multiplicity. Define vn := Aun. Then we have

⟨vm, vn⟩ = ⟨Aum, Aun⟩ = ⟨um, A∗Aun⟩ =
〈
um, λ

2
nun

〉
= λ2

nδmn.

Thus {vn} is orthogonal, and ∥vn∥ = λn → 0. Since {un} is a basis, we have, for arbitrary
x ∈ X,

x =
∞∑
n=1

⟨x, un⟩un.

Consequently,
Ax =

∞∑
n=1

⟨x, un⟩Aun =
∞∑
n=1

⟨x, un⟩ vn.

□

Definition 2.4.14 (Hilbert–Schmidt Operator). A Hilbert–Schmidt operator is a com-
pact operator A on a Hilbert space such that∑

α

∥Auα∥2 < ∞,

for some orthonormal basis {uα}.

Theorem 2.4.15. Let {uα} and {vβ} be two orthonormal bases for a Hilbert space X. Every
linear operator A on the space satisfies∑

α

∥Auα∥2 =
∑
β

∥Avβ∥2.

Proof. By the Orthonormal Basis Theorem (2.2.16) and the Parseval Identity, we have∑
α

∥Auα∥2 =
∑
α

∑
β

| ⟨Auα, vβ⟩ |2 =
∑
β

∑
α

| ⟨Auα, vβ⟩ |2

=
∑
β

∑
α

| ⟨uα, A∗vβ⟩ |2 =
∑
β

∥A∗vβ∥2.

Since {uα} and {vβ} may switch roles in this calculation, we obtain∑β ∥Avβ∥2 = ∑
β ∥A∗vβ∥2.

By combining these equations, the conclusion follows. □

2.5. Sturm–Liouville Theory. In this section we examine differential equations using
Hilbert space theory. Note that differential operators and integral operators are inverses
to each other. We find that a differential operator is usually ill–behaved, whereas the corre-
sponding integral operator may be well–behaved, even to the point of being compact. Thus
we often try to recast a differential equation as an equivalent integral equation in the hope
that the transformed problem will be less troublesome.

Definition 2.5.1 (Sturm–Liouville Operator). The Sturm–Liouville operator A is de-
fined by

(Ax)(t) := [p(t)x′(t)]′ + q(t)x(t), i.e., Ax := (px′)′ + qx,

where x ∈ C2([a, b],C), p ∈ C1([a, b],R), and q ∈ C([a, b],R). Let αij, βij ∈ R, i, j = 1, 2 be
such that

p(a)(β11β22 − β12β21) = p(b)(α11α22 − α12α21).
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Let X be the subspace of L2[a, b] consisting of all twice continuously differentiable functions
x such that

α11x(a) + α12x
′(a) + β11x(b) + β12x

′(b) = 0,
α21x(a) + α22x

′(a) + β21x(b) + β22x
′(b) = 0.

Further assume that β11β22 ̸= β12β21 or α11α22 ̸= α12α21.

Theorem 2.5.2. The Sturm–Liouville operator A is a Hermitian operator on X.

Proof. Let x, y ∈ X. Recall that we want to show that ⟨Ax, y⟩ = ⟨x,Ay⟩ . We find

⟨Ax, y⟩ − ⟨x,Ay⟩ =
∫ b

a
[yAx− xAy] =

∫ b

a
[y(px′)′ + yqx− x(py′)′ − xqy]

=
∫ b

a
[y(px′)′ − x(py′)′]

=
∫ b

a
[y(px′)′ + y′px′ − x(py′)′ − x′py′]

=
∫ b

a
[px′y − pxy′]′ = [px′y − pxy′]

∣∣∣∣∣
b

a

= p(b)[x′(b)y(b) − x(b)y′(b)] − p(a)[x′(a)y(a) − x(a)y′(a)]
Define

W (t) :=
[
x(t) y(t)
x′(t) y′(t)

]
.

Then note that
⟨Ax, y⟩ − ⟨x,Ay⟩ = −p(b) detW (b) + p(a) detW (a).

Put also
α :=

[
α11 α12
α21 α22

]
, β :=

[
β11 β12
α21 α22

]
.

Note that p is such that p(a) det β = p(b) detα. The fact that x, y ∈ X gives αW (a) +
βW (b) = 0. This yields detα detW (a) = det(−β) detW (b). Note det(−β) = det β since β
is of even order. Multiplying this by p(b) gives

p(b) detα detW (a) = p(b) det β detW (b).
By the previous analysis, this is

p(a) det β detW (a) = p(b) det β detW (b).
If det β ̸= 0, we have

p(a) detW (a) = p(b) detW (b).
If detα ̸= 0, we reach a similar conclusion. □

Lemma 2.5.3. A second–order linear differential equation
a(t)x′′(t) + b(t)x′(t) + c(t)x(t) = d(t), a ≤ t ≤ b

can be put into the form of a Sturm–Liouville equation (px′)′ + qx = f, provided that the
functions a, b, c are continuous and a(t) ̸= 0 for all t ∈ [a, b].
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Proof. Multiplying the differential equation by the integrating factor 1
a
e
∫
b/a dt gives

x′′e
∫
b/a + b

a
x′e
∫
b/a + c

a
xe
∫
b/a = d

a
e
∫
b/a,

or (
x′e
∫
b/a
)′

+ c

a
e
∫
b/ax = d

a
e
∫
b/a.

Letting

p := e
∫
b/a, q := c

a
e
∫
b/a, f := d

a
e
∫
b/a

completes the proof. □

Example 2.5.4. Consider Ax = −x′′,

x(0) = 0, x(π) = 0.
Note that in this case p ≡ −1 and q ≡ 0. Solving for the general solution to the BVP gives

x(t) = c1 sin
√
λt+ c2 cos

√
λt.

Applying the BC’s, we find c2 ≡ 0 and c1 sin
√
λπ = 0, where the latter equation holds if

and only if
√
λ ∈ N. Hence the eigenvalues of the operator A are λn = n2, n ∈ N, and the

associated eigenfunctions are xn = sinn2t.

The proceeding theorem illustrates one case of the Sturm–Liouville problem. We take
p ≡ 1 in the differential operator and let β11 = β12 = α21 = α22 = 0. We assume that
|α11| + |α12| > 0 and |β21| + |β22| > 0.

Our goal is to develop a method for solving the equation Ax = y, where y is a given
function, and x is to be determined. We find a right inverse of A, that is, an operator B
such that AB = I, and give x = By as a solution to the problem. It will turn out that the
spectral theorem is applicable to B.

Assume that there exist functions u, v such that

u′′ = qu, β21u(b) + β22u
′(b) = 0,

v′′ = qv, α11v(a) + α12v
′(a) = 0,

u′(a)v(a) − u(a)v′(a) = 1.

We see that u ̸= 0 and v ̸= 0, for the LHS of the third equation is the Wronskian of u and
v evaluated at a.

We find u and v be solving two initial value problems. We proceed as follows. Find u0
and v0 such that

u′′
0 = qu0, u0(b) = 0, u′

0(b) = 1,
v′′

0 = qv0, v0(a) = 1, v′
0(a) = 0.

The u and v required will then be suitable linear combinations of u0 and v0.
Next, we see that for all s,

u′(s)v(s) − u(s)v′(s) = 1.
80



2. Hilbert Spaces 2.5. Sturm–Liouville Theory

This is true because the LHS is prescribed to take the value 1 at s = a and is constant.
Indeed,

d

ds
[u′v − uv′] = u′′v + u′v′ − uv′′ − u′v′ = quv − uqv = 0.

We now construct a Green’s function g for the problem. We define

g(s, t) :=
u(s)v(t), a ≤ t ≤ s ≤ b,

u(t)v(s), a ≤ s ≤ t ≤ b.

Recall that the operator in this case (p ≡ 1) is defined by
Ax = x′′ − qx

and the domain of A is the L2[a, b] closure of the set of all twice continuously differentiable
functions x such that

α11x(a) + α12x
′(a) = β21x(b) + β22x

′(b) = 0.

Theorem 2.5.5. A right inverse of the differential operator Ax := x′′ − qx is the operator
B defined by

(By)(s) :=
∫ b

a
g(s, t)y(t) dt.

Proof. We show that AB ≡ I. Let y ∈ C[a, b] and put x := By. We show first that Ax = y.
From the equation

x(s) =
∫ b

a
g(s, t)y(t) dt

=
∫ s

a
u(s)v(t)y(t) dt+

∫ b

s
u(t)v(s)y(t) dt

= u(s)
∫ s

a
v(t)y(t) dt+ v(s)

∫ b

s
u(t)y(t) dt,

we have

x′(s) = u′(s)
∫ s

a
v(t)y(t) dt+ u(s)v(s)y(s) + v′(s)

∫ b

s
u(t)y(t) dt− v(s)u(s)y(s)

= u′(s)
∫ s

a
v(t)y(t) dt+ v′(s)

∫ b

s
u(t)y(t) dt.

Differentiating again, we obtain

x′′(s) = u′′(s)
∫ s

a
v(t)y(t) dt+ u′(s)v(s)y(s) + v′′(s)

∫ b

s
u(t)y(t) dt− v′(s)u(s)y(s)

= q(s)u(s)
∫ s

a
v(t)y(t) dt+ q(s)v(s)

∫ b

s
u(t)y(t) dt+ y(s)[u′(s)v(s) − u(s)v′(s)]

= q(s)x(s) + y(s),
by definition of x and since u′(s)v(s) − u(s)v′(s) ≡ 1. Thus x′′ − qx ≡ y, or Ax = y, as
asserted.

We now show that x ∈ X, that is, that x satisfies the boundary conditions. We have, from
above,

x(a) = v(a)
∫ b

a
u(t)y(t) dt = cv(a),
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and
x′(a) = v′(a)

∫ b

a
u(t)y(t) dt = cv′(a),

where
c :=

∫ b

a
u(t)y(t) dt.

Hence,
α11x(a) + α12x

′(a) = α11cv(a) + α12cv
′(a) = 0.

Similarly we find that
β21x(b) + β22x

′(b) = 0.
This completes the proof. □

Corollary 2.5.6. If the homogeneous boundary value problem has only the trivial solution,
then B is also a left inverse of A.

Proof. Let x ∈ X, y = Ax, and By = z. By the previous Theorem (2.5.5), we have y =
ABy = Az, so that z ∈ X. Thus x − z ∈ X and A(x − z) = 0. Further, x − z = 0, so that
x = By = BAx. □

Corollary 2.5.7. The operator B is Hermitian.

Now we may apply the Spectral Theorem to the operator B. Note that B is compact by
Theorem (2.3.17). By the Spectral Theorem, there exists an orthonormal sequence {un} in
L2[a, b] and a sequence of real numbers {λn} such that

By =
∞∑
n=1

λn ⟨y, un⟩un.

Since Buk = λkuk, we have uk = λkAuk, and uk satisfies the boundary conditions. This
equation shows that uk is an eigenvector of A corresponding to the eigenvalue 1/λk. Since
limk→∞ λk = 0, limk→∞ 1/λk = ∞. Consequently, a solution to the problem Ax = y, where
y is given and x must satisfy the boundary conditions, is

x = By =
∞∑
n=1

λn ⟨y, un⟩un.

Example 2.5.8. Consider the BVPAx = x′′ + x = y,

x′(0) = x(π) = 0.

We solve this problem by means of a Green’s function. Note here that p ≡ 1, q ≡ −1, and
we solve the following two IVPs:u′′

0 + u0 = 0,
u0(π) = 1, u′

0(π) = 0,

v′′
0 + v0 = 0,
v0(0) = 0, v′

0(0) = 1.

Solving for u0 and v0, we obtain
u0(t) = sin t, v0(t) = cos t.

Note that taking
u(t) := sin t, v(t) := cos t
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satisfies the boundary conditions. Thus the Green’s function g for this BVP is

g(s, t) =
sin s cos t, 0 ≤ t ≤ s ≤ π,

sin t cos s, 0 ≤ s ≤ t ≤ π.

Hence, by Theorem (2.5.5), a solution x to the BVP is given by

x(t) :=
∫ π

0
g(s, t)y(t) dt = sin s

∫ π

0
cos ty(t) dt+ cos s

∫ π

s
sin ty(t) dt.

Our next task is to find a method to determine a Green’s function for the more general
Sturm–Liouville problem. Recall that the differential equation and its boundary conditions
are as follows: 

Ax := (px′)′ + qx = y, x ∈ C2[a, b],
α11x(a) + α12x

′(a) + β11x(b) + β12x
′(b),

α21x(a) + α22x
′(a) + β21x(b) + β22x

′(b).
We determine a function g defined on [a, b] × [a, b].

Theorem 2.5.9. The Green’s function for the general Sturm–Liouville problem is charac-
terized by the following five properties:

(1) g is continuous throughout [a, b] × [a, b];
(2) ∂g

∂s
is continuous throughout a < s < t < b and a < t < s < b;

(3) For all t ∈ [a, b], g(·, t) satisfies the boundary conditions;
(4) Ag(·, t) = 0 throughout a < s < t < b and a < t < s < b;
(5) limt→s+

∂g
∂s

(s, t) − limt→s−
∂g
∂s

(s, t) = − 1
p(s) .

Proof. We again take y ∈ C[a, b] and define

x(s) :=
∫ b

a
g(s, t)y(t) dt.

We show that x ∈ domA and Ax = y. Note that the domain of A is the set of all twice
continuously differentiable functions that satisfy the boundary conditions. Since

x(s) =
∫ s

a
g(s, t)y(t) dt+

∫ b

s
g(s, t)y(t) dt,

we have

x′(s) =
∫ s

a
gs(s, t)y(t) dt+ g(s, s)y(s) +

∫ b

s
gs(s, t)y(t) dt− g(s, s)y(s)

=
∫ s

a
gs(s, t)y(t) dt+

∫ b

s
gs(s, t)y(t) dt.

Thus it follows

x(a) =
∫ b

a
g(a, t)y(t) dt, x(b) =

∫ b

a
g(b, t)y(t) dt,

x′(a) =
∫ b

a
gs(a, t)y(t) dt, x′(b) =

∫ b

a
gs(b, t)y(t) dt.

Note that any linear combination of x(a), x(b), x′(a), x′(b) is obtained by an integration of
the corresponding linear combination of g(a, t), g(b, t), gs(a, t), gs(b, t). Since g(·, t) satisfies
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the boundary conditions, so does x. Differentiating x again, we obtain

x′′(s) =
∫ s

a
gss(s, t)y(t) dt+ gs(s, s−)y(s) +

∫ b

s
gss(s, t)y(t) dt− gs(s, s+)y(s)

= y(s)
p(s) +

∫ b

a
gss(s, t)y(t) dt.

We now verify that Ax = y. Recall that
Ax = (px′)′ + qx = p′x′ + px′′ + qx.

Thus

(Ax)(s) = p′(s)
∫ b

a
gs(s, t)y(t) dt+ y(s) + p(s)

∫ b

a
gss(s, t)y(t) dt+ q(s)

∫ b

a
g(s, t)y(t) dt

= y(s) +
∫ b

a

∂

∂s
[p(s)gs(s, t) + q(s)g(s, t)]y(t) dt

= y(s) +
∫ b

a
Ag(s, t)y(t) dt

= y(s),
since Ag(·, t) = 0 almost everywhere. This completes the proof. □

Example 2.5.10. We find the Green’s function for this Sturm–Liouville problem:Ax = x′′ = y, x ∈ C2[0, 1],
x(0) = 0, x′(0) = 0.

Note that the general solution to this problem is
x(s) = c1 + c2s.

Since g solves the differential equation, we take
g(s, t) := c1(t) + c2(t)s.

First consider 0 < s < t < 1. Since g(t, ·) must satisfy the boundary conditions, we have

g(0, t) = c1(t) = 0, ∂g

∂s
(0, t) = c2(t) = 0.

Consider next 0 < t < s < 1. Note again that g(t, ·) must be linear. Thus
g(s, t) := α(t) + β(t)s.

Continuity of g on the diagonal implies that
α(t) + β(t)t = 0,

and thus
g(s, t) = −β(t)t+ β(t)s = β(t)(s− t).

The condition
gs(s, s+) − gs(s, s−) = − 1

p(s)
implies

0 − β(t) = −1.
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Hence β(t) = 1. Thus the Green’s function g(s, t) is given by

g(s, t) =
0, 0 ≤ s ≤ t ≤ 1,
s− t, 0 ≤ t ≤ s ≤ 1,

and the solution to the BVP is given by

x(s) =
∫ s

0
(s− t)y(t) dt.

Example 2.5.11. We find the Green’s function for the problemAx = x′′ − x′ − 2x = y, x ∈ C2[0, 1],
x(0) = 0, x(1) = 0.

We set

g(s, t) =
u(s)v(t), 0 ≤ s ≤ t ≤ 1,
u(t)v(s), 0 ≤ t ≤ s ≤ 1,

and try to determine the functions u and v. The general solution to the homogeneous ODE
is given by

x(s) := c1e
−s + c2e

2s.

The solution satisfying the condition x(0) = 0 is
u(s) = c1(e−s − e2s),

and the solution satisfying the condition x(1) = 0 is
v(s) = c2(e2s − e3e−s).

It may be shown that g(s, t) satisfies the first four requirements of Theorem (2.5.9). We
determine c1 and c2. Note

gs(s, s+) − gs(s, s−) = u′(s)v(s) − u(s)v′(s) = 3c1c2(1 − e3)es.
In this problem p(s) = e−s, because

p(s) := e
∫

−1/1 ds = e−s.

Thus condition (5) in Theorem (2.5.9) implies that we choose c1, c2 such that

c1c2 = − 1
3(1 − e3) .

Thus

g(s, t) =
− 1

3(1−e3)(e
−s − e2s)(e2t − e3−t), 0 ≤ s ≤ t ≤ 1,

− 1
3(1−e3)(e

−t − e2t)(e2s − e3−s), 0 ≤ t ≤ s ≤ 1.

Example 2.5.12. We find the Green’s function for this Sturm–Liouville problem:Ax = x′′ + 9x = y, x ∈ C2[0, π/2],
x(0) = 0, x(π/2) = 0.

We again write

g(s, t) =
u(s)v(t), 0 ≤ s ≤ t ≤ 1,
u(t)v(s), 0 ≤ t ≤ s ≤ 1.
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The general solution is
x(s) = c1 sin 3s+ c2 cos 3s.

The solution satisfying x(0) = 0 is
u(s) = c1 sin 3s,

and the solution satisfying x(π/2) = 0 is
v(s) = c2 cos 3s.

We have
gs(s, s+) − gs(s, s−) = u′(s)v(s) − u(s)v′(s) = 3c1c2.

Here p(s) = 1, so we must take c1c2 = −1/3. Hence the Green’s function is

g(s, t) =
−1

3 sin 3s cos 3t, 0 ≤ s ≤ t ≤ 1,
−1

3 sin 3t cos 3s, 0 ≤ t ≤ s ≤ 1.
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3. Calculus in Banach Spaces

3.1. The Fréchet Derivative.

Definition 3.1.1 (Fréchet Derivative). Let X and Y be normed linear spaces and let D ⊆ X
be an open set. Let f : D → Y be a mapping and let x ∈ D. If there is a bounded linear map
A : X → Y such that

lim
h→0

∥f(x+ h) − f(x) − Ah∥Y
∥h∥X

= 0,

then f is said to be Fréchet differentiable at x. Moreover, A is called the Fréchet de-
rivative of f at x.

Theorem 3.1.2. If f is differentiable at x with Fréchet derivative A, then A is uniquely
defined.

Proof. Suppose that A1 and A2 are both linear maps satisfying

lim
h→0

∥f(x+ h) − f(x) − Aih∥
∥h∥

= 0,

for i = 1, 2. Fix ϵ > 0. By definition, there exists δ > 0 such that whenever ∥h∥ < δ, we have
∥f(x+ h) − f(x) − Aih∥ < ϵ∥h∥,

i = 1, 2. By the triangle inequality,
∥A1h− A2h∥ = ∥(f(x+ h) − f(x) − A2h) − (f(x+ h) − f(x) − A1h)∥ ≤ 2ϵ∥h∥

for all ∥h∥ < δ. By homogeneity, this inequality is true for all h. Thus ∥A1 −A2∥ ≤ 2ϵ. Since
ϵ was arbitrary, it follows A1 = A2. □

If f is differentiable at x, its derivative, denoted by A in the preceding definition, is
usually denoted by f ′(x). Note that with this notation, f ′(x) ∈ L(X, Y ). This is not saying
f ′ ∈ L(X, Y ). Rather, f ′ ∈ L(X,L(X, Y )).

Theorem 3.1.3. If f is bounded in a neighborhood of x and if a linear map A has the
property

lim
h→0

∥f(x+ h) − f(x) − Ah∥
∥h∥

= 0,

then A is a bounded linear map, that is, A is the Fréchet derivative of f at x.

Proof. By the assumption, there exists δ > 0 such that whenever ∥h∥ ≤ δ, we have
∥f(x+ h)∥ ≤ M < ∞

and
∥f(x+ h) − f(x) − Ah∥ ≤ ∥h∥.

Then, for all ∥h∥ ≤ δ, we have
∥Ah∥ ≤ ∥f(x+ h) − f(x)∥ + ∥h∥ ≤ 2M + δ.

Hence, for all ∥u∥ ≤ 1, ∥δu∥ ≤ δ, and we have

∥Au∥ = 1
δ

∥A(δu)∥ ≤ 2M + δ

δ
= 2M

δ
+ 1.
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Thus ∥A∥ ≤ (2M + δ)/δ, which completes the proof. □

Example 3.1.4. Let X = Y = R. Let f be a function whose derivative in the usual sense
at x is λ. Then the Fréchet derivative of f at x is the linear map Ah = λh, because

lim
h→0

|f(x+ h) − f(x) − λh|
|h|

= lim
h→0

∣∣∣∣∣f(x+ h) − f(x)
h

− λ

∣∣∣∣∣ = 0.

Note here that the derivative at the point x is the map Ah = λh.

Example 3.1.5. Let X and Y be arbitrary normed linear spaces. Define f : X → Y be
f(x) = y0, where y0 ∈ Y is a fixed element. That is, f is a constant map. Then f ′(x) = 0,
where 0 denotes the zero mapping of Y, because

lim
h→0

∥f(x+ h) − f(x) − 0∥
∥h∥

= lim
h→0

∥0∥
∥h∥

= 0.

Example 3.1.6. Let X and Y be normed linear spaces and let f ∈ L(X, Y ). Then, for any
x ∈ X, f ′(x) = f, for we see that

lim
h→0

∥f(x+ h) − f(x) − f(h)∥
∥h∥

= lim
h→0

∥f(h) − f(h)∥
∥h∥

= 0.

Observe that the equation f ′ = f is not true. Rather, f(h) = f ′(x)h.

Theorem 3.1.7. If f is Fréchet differentiable at x ∈ X, then f is continuous at x.

Proof. Let A = f ′(x). Note that A ∈ L(X, Y ). Fix ϵ > 0. Then there exists δ1 such that
δ1 < ϵ/(1 + ∥A∥). On the other hand, there exists δ2 such that for all ∥h∥ < δ2, we have

∥f(x+ h) − f(x) − Ah∥ < ∥h∥.
Choose δ := min{δ1, δ2}. Then, by the triangle inequality, we see for all ∥h∥ < δ that

∥f(x+ h) − f(x)∥ ≤ ∥f(x+ h) − f(x) − Ah∥ + ∥Ah∥
< ∥h∥ + ∥Ah∥ ≤ ∥h∥ + ∥A∥∥h∥
< δ(1 + ∥A∥) < ϵ,

which completes the proof. □

Theorem 3.1.8. Let f : Rn → R. If each of the partial derivatives Dif = ∂f/∂xi exists
in a neighborhood of x and is continuous at x, then f ′(x) exists, and

f ′(x)h =
n∑
i=1

Dif(x) · hi, h = (h1, h2, . . . , hn)⊤ ∈ Rn.

Proof. We show that

lim
h→0

1
∥h∥

{
f(x+ h) − f(x) −

n∑
i=1

hi
∂f

∂xi
(x)
}

= 0.

Define the vectors v(i), i = 0, 1, . . . , n by
v(0) := x, v(i) := v(i−1) + hie

(i), i = 1, 2, . . . , n,
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where e(i) denotes the i−th standard basis vector in Rn. Note that the vectors v(i) and v(i−1)

differ in only one coordinate, for i = 1, 2, . . . , n. Thus we have

f(x+ h) − f(x) = f(v(n)) − f(v(0)) =
n∑
i=1

[f(v(i)) − f(v(i−1))].

By the mean value theorem for functions of one variable,

f(v(i)) − f(v(i−1)) = f(v(i−1) + hie
(i)) − f(v(i−1)) = hi

∂f

∂xi
(v(i−1) + θihie

(i)),

where 0 < θi < 1, i = 1, 2, . . . , n. By the Cauchy–Schwarz inequality,
1

∥h∥

∣∣∣∣∣f(x+ h) − f(x) −
n∑
i=1

hi
∂f

∂xi
(x)
∣∣∣∣∣ = 1

∥h∥

∣∣∣∣∣
n∑
i=1

hi

[
∂f

∂xi
(v(i−1) + θihie

(i)) − ∂f

∂xi
(x)
]∣∣∣∣∣

≤ 1
∥h∥

∥h∥

√√√√ n∑
i=1

[
∂f

∂xi
(v(i−1) + θihie(i)) − ∂f

∂xi
(x)
]2

,

which tends to zero as ∥h∥ → 0 by the continuity of ∂f
∂xi

at x. We see that

∥v(i−1) + θihie
(i) − x∥ = ∥(h1, h2, . . . , hi−1, θihi, 0, 0, . . . , 0)⊤∥ ≤ ∥h∥. □

Theorem 3.1.9. Let f : Rn → Rm, and let f1, . . . , fm be the component functions of f.
If all partial derivatives ∂fi/∂xj, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, exist in a neighborhood
of x and are continuous at x, then f ′(x) exists, and

(f ′(x)h)i =
n∑
j=1

∂fi
∂xj

(x) · hj, h = (h1, h2, . . . , hn)⊤ ∈ Rn.

That is, the Fréchet derivative of f is given by the Jacobian matrix J of f at x, Jij =
∂fi

∂xj
(x).

Proof. By definition of the Euclidean norm,

1
∥h∥2 ∥f(x+ h) − f(x) − Jh∥2 = 1

∥h∥2

m∑
i=1

∣∣∣∣∣∣fi(x+ h) − fi(x) −
n∑
j=1

∂fi
∂xj

(x) · hj

∣∣∣∣∣∣
2

.

Note that each of the m terms on the RHS converges to zero as h → 0, by the preceding
Theorem (3.1.8). This completes the proof. □

Example 3.1.10. Let L be a bounded linear operator on a real Hilbert space X. Define
F : X → R by the equation F (x) := ⟨x, Lx⟩ . In order to see whether F is differentiable at
x, write

F (x+ h) − F (x) = ⟨x+ h, Lx+ Lh⟩ − ⟨x, Lx⟩
= ⟨x, Lh⟩ + ⟨h, Lx⟩ + ⟨h, Lh⟩ .

Since the derivative is a linear map, we guess that A should be Ah = ⟨x, Lh⟩+ ⟨h, Lx⟩ . With
this choice,

|Ah| ≤ 2∥x∥∥L∥∥h∥,
so that

∥A∥ ≤ 2∥x∥∥L∥.
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Thus A is a bounded linear functional. Moreover,
|F (x+ h) − F (x) − Ah| = | ⟨h, Lh⟩ | ≤ ∥L∥∥h∥2 = o(h).

This shows that A = F ′(x). Note that
Ah = ⟨L∗x+ Lx, h⟩ .

3.2. The Chain Rule and Mean Value Theorems. We continue to work with a function
f : D → Y, where D ⊂ X is an open set in the normed linear space X, and Y is another
normed linear space. In the next theorem, we have another mapping g defined on an open
set in Y and taking values in a third normed linear space, say Z.

Theorem 3.2.1 (The Chain Rule). If f is differentiable at x and g is differentiable at
f(x), then g ◦ f is differentiable at x, and

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x).

Proof. Define F := g ◦ f, A := f ′(x), y := f(x), B := g′(y), and
o1(h) := f(x+ h) − f(x) − Ah,

o2(k) := g(y + k) − g(k) − Ak,

ϕ(h) := Ah+ o1(h).
We show that F ′(x) = BA. We calculate

F (x+ h) − F (x) −BAh = g(f(x+ h)) − g(f(x)) −BAh

= g(f(x) + Ah+ o1(h)) − g(y) −BAh

= g(y + ϕ(h)) − g(y) −BAh

= g(y) +Bϕ(h) + o2(ϕ(h)) − g(y) −BAh

= B[Ah+ o1(h)] + o2(ϕ(h)) −BAh

= B(o1(h)) + o2(ϕ(h)).
Thus it follows

∥F (x+ h) − F (x) −BAh∥ = ∥B(o1(h)) + o2(ϕ(h))∥ ≤ ∥B∥∥o1(h)∥ + ∥o2(ϕ(h))∥.
Since the sum of two o(h) functions is o(h), the conclusion follows. □

The mean value theorem of calculus does not have an exact analogue for mappings between
general normed linear spaces. Even for functions f : R → X, the expected mean value
theorem fails.
Example 3.2.2. Define f : R → R2 by f(t) := (cos t, sin t). Note that there exists no
t ∈ (0, 2π) such that

f(2π) − f(0) = f ′(t)2π,
since the LHS is (0, 0), while f ′(t) = (− sin t, cos t) ̸= (0, 0).

On the other hand, the mean value theorem of calculus does have a generalization to
real–valued functions on a general normed linear space.
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Theorem 3.2.3 (Mean Value Theorem I). Let f : D ⊆ X → R, where D is an open set
in a normed linear space X. Let a, b ∈ D. Assume that the line segment

[a, b] = {a+ t(b− a) : 0 ≤ t ≤ 1}
is contained in D. If f is continuous on [a, b] and differentiable on the open line segment
(a, b), then for some ξ ∈ (a, b), we have

f(b) − f(a) = f ′(ξ)(b− a).

Proof. Put g(t) := f(a+t(b−a)). Then g is continuous on the interval [0, 1] and differentiable
on (0, 1). By the Chain Rule,

g′(t) = f ′(a+ t(b− a))(b− a).
By the mean value theorem of calculus, there exists τ ∈ (0, 1) such that g(1) − g(0) = g′(τ).
Thus

f(b) − f(a) = g(1) − g(0) = g′(τ) = f ′(a+ τ(b− a))(b− a)
= f ′(ξ)(b− a),

for some ξ = a+ τ(b− a) ∈ (a, b). □

Theorem 3.2.4 (Mean Value Theorem II). Let f : [a, b] → Y be continuous, where Y
is a normed linear space. If, for every x ∈ (a, b), f ′(x) exists and satisfies ∥f ′(x)∥ ≤ M,
then ∥f(b) − f(a)∥ ≤ M(b− a).

Proof. It suffices to prove that for all α, β ∈ (a, b) such that a < α < β < b, ∥f(β)−f(α)∥ ≤
M(b− a), for then the conclusion follows by continuity. Further, it suffices to show that for
a fixed ϵ > 0, we have

∥f(β) − f(α)∥ ≤ (M + ϵ)(b− a).
Let

S := {x ∈ [α, β] : ∥f(x) − f(α)∥ ≤ (M + ϵ)(b− a)}.
Note that the set {f(x) ∈ Y : ∥f(x) − f(a)∥ ≤ (M + ϵ)(b − a)} is a closed ball in Y. By
continuity, S is closed. Put x0 := supS. Since S is bounded, S is compact, and thus x0 ∈ S.
To complete the proof, it remains to show that x0 = β.

By contradiction, suppose that x0 < β. Since f is differentiable at x0, there exists δ > 0
such that δ < β − x0 and for all |h| < δ, we have

∥f(x0 + h) − f(x0) − f ′(x0)h∥ < ϵ|h|.
Put h := δ/2 and take u := x0 + δ/2. Then u ∈ (α, β), so that

∥f(u) − f(x0) − f ′(x0)(u− x0)∥ < ϵ(u− x0)∥.
Hence,

∥f(u) − f(x0)∥ < ∥f ′(x0)(u− x0)∥ + ϵ(u− x0) ≤ (M + ϵ)(u− x0).
Since x0 ∈ S, we have also

∥f(x0) − f(α)∥ ≤ (M + ϵ)(x0 − a).
Hence

∥f(u) − f(α)∥ ≤ ∥f(u) − f(x0)∥ + ∥f(x0) − f(α)∥ ≤ (M + ϵ)(u− a).
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This shows u ∈ S. Since u > x0, we have a contradiction. Thus x0 + β, β ∈ S, and
∥f(β) − f(α)∥ ≤ (M + ϵ)(β − α) < (M + ϵ)(b− a).

□

Theorem 3.2.5 (Mean Value Theorem III). Let f : D ⊆ X → Y, where X and Y are
normed linear spaces and D is an open subset of X. If the line segment

S := {ta+ (1 − t)b : 0 ≤ t ≤ 1}
lies in D and if f ′(x) exists throughout S, then

∥f(b) − f(a)∥ ≤ ∥b− a∥ sup
x∈S

∥f ′(x)∥.

Proof. Define g(t) := f(ta + (1 − t)b) for 0 ≤ t ≤ 1. By the chain rule, g′ exists at g′(t) =
f ′(ta+ (1 − t)b)(a− b). By the second mean value theorem (3.2.4),

∥f(b) − f(a)∥ = ∥g(1) − g(0)∥ ≤ sup
t∈[0,1]

∥g′(t)∥ ≤ ∥b− a∥ sup
x∈S

∥f ′(x)∥.

□

Theorem 3.2.6. Let X and Y be normed linear spaces, let D ⊆ X be a connect open subset
of X, and suppose that f : D → Y is a differentiable map. If f ′(x) = 0 for all x ∈ D, then
f is a constant function.

Proof. Since f ′(x) exists for all x ∈ D, f is continuous throughout D. Choose x0 ∈ D and
define A := {x ∈ D : f(x) = f(x0)}. By continuity, note that A is closed.

We show that A is also open. Since A is connected, this suffices. Let x ∈ A. Then there
exists r > 0 so small such that B(x, r) ⊆ D, since D is open. If y ∈ B(x, r), then the line
segment {tx+ (1 − t)y : 0 ≤ t ≤ 1} lies in B(x, r). By the mean value theorem III (3.2.5),

∥f(x) − f(y)∥ ≤ ∥x− y∥ sup
t∈[0,1]

∥f ′(tx+ (1 − t)y)∥ = 0.

Thus f(y) = f(x) = f(x0), so that y ∈ A and B(x, r) ⊆ A. Hence, A is open, and we have
A = D. □

3.3. Extremum Problems and Lagrange Multipliers.

Definition 3.3.1 (Minimum Point). A minimum point of a real–valued function f defined
on a set M is a point x0 ∈ M such that f(x0) ≤ f(x) for all x ∈ M.

Definition 3.3.2 (Relative Minimum Point). Let M be a set and f : M → R a real–
valued function. A relative minimum point of f is a point x0 ∈ M such that for some
neighborhood N of x0, we have f(x0) ≤ f(x) for all x ∈ N .

Theorem 3.3.3 (Necessary Condition for Extremum). Let X be a normed linear space,
and let Ω ⊆ X be an open set. Let f : Ω → R. If x0 ∈ Ω is a minimum point of f and
if f ′(x0) exists, then f ′(x0) = 0.
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Proof. By contradiction, suppose that f ′(x0) ̸= 0. By linearity of f ′(x0), there exists v ∈ X
such that f ′(x0)v = −1. Choose λ > 0 so small that x0 + λv ∈ Ω and

|f(x0 + λv) − f(x0) − λf ′(x0)v|
λ∥v∥

<
1

2∥v∥
.

Since f ′(x0)v = −1, this gives∣∣∣∣1λ [f(x0 + λv) − f(x0)] − (−1)
∣∣∣∣ < 1

2 .

Thus 1
λ
[f(x0 + λv) − f(x0)] is within distance 1

2 of −1, so that
1
λ

[f(x0 + λv) − f(x0)] < 0.

But this implies
f(x0 + λv) < f(x0),

a contradiction to the assumption. □

We are concerned mostly with constrained extremum problems. For example, consider
two functions f, g : R2 → R. Put M := {(x, y) ∈ R2 : g(x, y) = 0}. We look for an extremum
of f restricted to M. Suppose that the equation g(x, y) = 0 defines y as a function of x,
say y = y(x). Then we can look for an unrestricted extremum problem of ϕ(x) = f(x, y(x)).
Thus we try to solve the equation ϕ′(x) = 0. By the Implicit Function Theorem,

0 = f1(x, y(x)) + f2(x, y(x))y′(x)
= f1(x, y(x)) − f2(x, y(x))g1(x, y(x))/g2(x, y(x)).

Thus we must solve simultaneously
g(x, y) = 0 and f1(x, y) − f2(x, y)g1(x, y)/g2(x, y) = 0.

Using the method of Lagrange multipliers, we introduce the function
H(x, y, λ) := f(x, y) + λg(x, y).

We solve simultaneously the equations

∂H

∂x
= 0,

∂H

∂y
= 0,

∂H

∂
λ = 0

=



∂f

∂x
+ λ

∂g

∂x
= 0,

∂f

∂y
+ λ

∂g

∂y
= 0,

g(x, y) = 0

.

Example 3.3.4. Let f, g : R2 → R be defined by
f(x, y) = x2 + y2

and
g(x, y) = x− y + 1.

Note that the set M := {(x, y) : g(x, y) = 0} is a straight line in R3. We note
H(x, y, λ) = x2 + y2 + λ(x− y + 1),
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and the three equations to be solved are
2x+ λ = 0,
2y − λ = 0,
x− y + 1 = 0.

The solution is (x, y) = (−1/2, 1/2).
Example 3.3.5. We find the minimum distance from a point c to a line in R3. Let the line
be given as the intersection of two planes with equations ⟨a, x⟩ = k and ⟨b, x⟩ = ℓ, where
a, b, x ∈ R3. We take the function H to be

H(x1, x2, x3, λ, µ) := ∥x− c∥2 + λ[⟨a, x⟩ − k] + µ[⟨b, x⟩ − ℓ].
Note that H is a function of (x1, x2, x3, λ, µ). We solve the following system of equations:

∂H

∂x1
= 2(x1 − c1) + λa1 + µb1 = 0,

∂H

∂x2
= 2(x2 − c2) + λa2 + µb2 = 0,

∂H

∂x3
= 2(x3 − c3) + λa3 + µb3 = 0,

∂H

∂λ
= ⟨a, x⟩ − k = 0,

∂H

∂µ
= ⟨b, x⟩ − ℓ = 0.

Theorem 3.3.6 (Lagrange Multiplier). Let X be a Banach space and let Ω ⊆ X be an
open subset of X. Let f, g ∈ C(Ω,R), and let M := {x ∈ Ω : g(x) = 0}. If x0 is a local
minimum point of f |M and if g′(x0) ̸= 0, then f ′(x0) = λg′(x0) for some λ ∈ R.

Proof. Let U be a neighborhood of x0 such that for all x ∈ U ∩ M, we have f(x0) ≤ f(x).
We may assume that U ⊆ Ω, for otherwise define U := U ∩ Ω. Define a function F : U → R2

by
F (x) := (f(x), g(x)).

Then notice that
F (x0) = (f(x0), g(x0)) = (f(x0), 0),

and
F ′(x)v = (f ′(x)v, g′(x)v)

for all v ∈ X. Observe that if r < f(x0), then (r, 0) is not in F (U), for otherwise we get
a contradiction to the assumption that f ′(x0) is a minimum point. Thus F (U) is not a
neighborhood of F (x0). Hence, F ′(x0) is not surjective, as a linear map from X to R2. It
follows

F ′(x0)v = α(v)(θ, µ)
for some continuous linear functional α ∈ X∗. Then we have that f ′(x0)v = α(v)θ and
g′(x0)v = α(v)µ. Since g′(x0) ̸= 0, µ ̸= 0. Therefore,

f ′(x0)v = θ

µ
α(v)µ = θ

µ
g′(x0)v.
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This is for all v ∈ X, so that this completes the proof. □

Theorem 3.3.7 (Lagrange Multipliers). Let X be a Banach space and let Ω ⊆ X be an
open subset. Let f, g1, . . . , gn ∈ C(Ω,R) and let M := {x ∈ Ω : g1(x) = · · · = gn(x) = 0}.
If x0 is a local minimum point of f |M , then there exist µ, λ1, . . . , λn ∈ R not all zero
such that

µf ′(x0) + λ1g
′
1(x0) + λ2g

′
2(x0) + · · · + λng

′
n(x0) = 0.

Proof. Let U be a neighborhood of x0 such that U ⊆ Ω and so that f(x0) ≤ f(x) for all
x ∈ U ∩M. Define F : U → Rn+1 by

F (x) := (f(x), g1(x), g2(x), . . . , gn(x)).
If r < f(x0), then the point (r, 0, 0, . . . , 0) is not in F (U). Thus F (U) does not contain a
neighborhood of the point

(f(x0), g1(x0), . . . , gn(x0)) = (f(x0), 0, 0 . . . , 0).
It follows that F ′(x0) is not surjective. Since the range of F ′(x0) is a linear subspace of Rn+1,
we see that it is a proper subspace of Rn+1. Thus it is contained in a hyperplane through
the origin. This means that for some µ, λ1, . . . , λn ∈ R, not all zero, we have

µf ′(x0)v + λ1g
′
1(x0)v + · · · + λng

′
n(x0)v = 0

for all v ∈ X. This completes the proof. □

Example 3.3.8. Let X be a Hilbert space and let A : X → X be a compact operator. Then
∥A∥ = max{|λ| : λ ∈ Λ(A)}, where Λ(A) denotes the set of eigenvalues of A. Then recall
that

∥A∥ = sup{| ⟨Ax, x⟩ | : ∥x∥ = 1}.
Thus we can find an eigenvalue of A by determining an extremum of ⟨Ax, x⟩ on the set
defined by ∥x∥ = 1.

Lemma 3.3.9. If A is Hermitian, then the Rayleigh quotient

f(x) := ⟨Ax, x⟩
⟨x, x⟩

has a stationary value at each eigenvector.

Proof. Let A be Hermitian, and suppose that Ax = λx, where x ̸= 0. Then f(x) =
⟨Ax, x⟩ / ⟨x, x⟩ = ⟨λx, x⟩ / ⟨x, x⟩ = λ. Recall that the eigenvalues of a Hermitian operator
are real. Taking the derivative of f, we find

lim
h→0

|f(x+ h) − f(x)|
∥h∥

= lim
h→0

∣∣∣ ⟨Ax+Ah,x+h⟩
⟨x+h,x+h⟩ − λ

∣∣∣
∥h∥

= lim
h→0

| ⟨Ax, x⟩ + ⟨Ah, x⟩ + ⟨Ax, h⟩ + ⟨Ah, h⟩ − λ∥x+ h∥2|
∥h∥∥x+ h∥2

= lim
h→0

| ⟨h,Ax⟩ + λ ⟨x, h⟩ + ⟨Ah, h⟩ − 2λRe ⟨x, h⟩ − λ ⟨h, h⟩ |
∥h∥∥x+ h∥2

= lim
h→0

|λ ⟨h, x⟩ + λ ⟨x, h⟩ + ⟨Ah, h⟩ − 2λRe ⟨x, h⟩ − λ ⟨h, h⟩ |
∥h∥∥x+ h∥2

95



3. Calculus in Banach Spaces 3.3. Extremum Problems

= lim
h→0

| ⟨Ah, h⟩ − λ ⟨h, h⟩ |
∥h∥∥x+ h∥2

= lim
h→0

| ⟨Ah− λh, h⟩ |
∥h∥∥x+ h∥2

≤ lim
h→0

∥Ah− λh∥∥h∥
∥h∥∥x+ h∥2

≤ lim
h→0

∥A− λI∥∥h∥
∥x+ h∥2 = 0.

Thus f ′(x) = 0. □

Notice that we defined the Rayleigh quotient
⟨Ax, x⟩
∥x∥2 .

We may write this as
⟨Ax, x⟩
∥x∥2 =

〈
A

(
x

∥x∥

)
,
x

∥x∥

〉
.

Thus it is possible to consider the simpler function F (x) = ⟨Ax, x⟩ restricted to the unit
sphere.

Theorem 3.3.10. Let X be a Hilbert space and let A : X → X be a Hermitian operator.
Then each local constrained minimum or maximum point of ⟨Ax, x⟩ on the unit sphere
is an eigenvector of A. Moreover, the value of ⟨Ax, x⟩ is the corresponding eigenvalue.

Proof. Put F (x) := ⟨Ax, x⟩ and G(x) := ∥x∥2 − 1. Then
F ′(x)h = 2Re ⟨Ax, h⟩ and G′(x)h = 2Re ⟨x, h⟩ .

Let x ∈ X be an extremum point of F on the set M := {x ∈ X : G(x) = 0}. By the
method of Lagrange multipliers in Theorem (3.3.6), there exist µ, λ ∈ R, not both zero, such
that

µF ′(x) + λG′(x) = 0.
Since ∥x∥ = 1, G′(x) ̸= 0, and thus µ ̸= 0. By homogeneity, we set µ := −1. Thus

0 = −2Re ⟨Ax, h⟩ + 2λRe ⟨x, h⟩ = −2Re ⟨Ax, h⟩ + 2Re ⟨λx, h⟩
= 2Re ⟨λx− Ax, h⟩ = −2Re ⟨(A− λI)x, h⟩

for all h ∈ X. Hence, Ax = λx. □

Extremum problems with inequality constraints can also be discussed, leading to Kuhn–
Tucker Theory.

Definition 3.3.11 (Ordered Vector Space). An ordered vector space is a pair (X,≥)
in which X is a real vector space and ≥ is a partial order on X that is consistent with the
linear structure, that is,

x ≥ y =⇒ x+ z ≥ y + z,

and
x ≥ y, λ ≥ 0 =⇒ λx ≥ λy.
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If (X,≥) is an ordered vector space, then X∗ is ordered in a standard way; namely, we
define ϕ ≥ 0 to mean ϕ(x) ≥ 0 for all x ≥ 0.

Consider for example the space C[a, b], in which the order f ≥ g is defined to mean
f(t) ≥ g(t) for all t ∈ [a, b]. The conjugate space consists of signed measures.

In the following theorem, we seek necessary conditions for a point x0 to maximize f(x)
subject to G(x) ≥ 0.

Theorem 3.3.12. Let X be a normed linear space and let (Y,≥) be an ordered vector
space. Let f : X → R and G : X → Y be differentiable. If x0 is a local maximum point
of f on the set {x ∈ X : G(x) ≥ 0} and if there is an h ∈ X such that G(x0) +G′(x0)h
is an interior point of the positive cone K := {x ∈ X : x ≥ 0}, then there exists a
nonnegative functional ϕ ∈ Y ∗ such that ϕ(G(x0)) = 0 and f ′(x0) = −ϕ ◦G′(x0).

3.4. Calculus of Variations. The calculus of variations, interpreted broadly, deals with
extremum problems involving functions. It is analogous to the theory of maxima and minima
in elementary calculus, but with the added complication that the unknowns in the problems
are not simple numbers – they are functions.

Example 3.4.1. Find the equation of an arc of minimal length joining two points in the
place. Let the points be (a, α) and (b, β), where a < b. Let the arc be given by a continuously
differentiable function y = y(x), where y(a) = α and y(b) = β. The arc length is given by
the integral ∫ b

a

√
1 + y′(x)2 dx.

The solution is obviously a straight line, which will be proved later.

Example 3.4.2. We find a function y ∈ C1[a, b], satisfying y(a) = α and y(b) = β, such that
the surface of revolution obtained by rotating the graph of y about the x−axis has minimum
area. To solve this, recall from calculus that the area to be minimized is given by∫ b

a
2πy(x) ds = 2π

∫ b

a
y(x)

√
1 + y′(x)2 dx.

Notice that the above examples have a common form, that is, in each one, there is a
nonlinear functional of the form ∫ b

a
F (x, y(x), y′(x)) dx

to be minimized. The unknown function y is required to satisfy endpoint conditions y(a) = α
and y(b) = β. In addition, some smoothness conditions must be imposed on y, since the
functional is allowed to involve y′. The first theorem establishes a necessary condition for
the extrema, known as the Euler–Lagrange Equation.

Lemma 3.4.3. If v : [a, b] → R is piecewise continuous and if
∫ b
a u(x)v(x) dx = 0 for every

u ∈ C1[a, b] that vanishes at the endpoints a and b, then v ≡ 0.

Proof. By contradiction, suppose that v ̸= 0. Then there exists a nonempty open interval
(α, β) ⊆ [a, b] such that v is continuous on (α, β) and does not vanish for any t ∈ (α, β).
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Without loss of generality, we assume that v(t) > 0 throughout (α, β). There exists a function
u ∈ C1[a, b] such that u(t) > 0 throughout (α, β) and u(t) = 0 elsewhere in [a, b]. Thus∫ b

a
u(x)v(x) dx =

∫ β

α
u(x)v(x) dx > 0,

a contradiction. □

Theorem 3.4.4 (The Euler–Lagrange Equation). Let F : R3 → R be a function with
piecewise continuous second order partial derivatives. Suppose that y ∈ C1[a, b] minimizes
the nonlinear functional 

∫ b

a
F (x, y(x), y′(x)) dx,

y(a) = α, y(b) = β.

Then the Euler–Lagrange Equation
d

dx
F3(x, y(x), y′(x)) = F2(x, y(x), y′(x))

is satisfied.

Proof. Let u ∈ C1[a, b] be such that u(a) = u(b) = 0. Suppose that y ∈ C1[a, b] is a solution of
the problem. Notice that the function ỹ := y + tu ∈ C1[a, b] satisfies ỹ(a) = α and ỹ(b) = β.
We find

0 = d

dt

∫ b

a
F (x, y(x) + tu(x), y′(x) + tu′(x)) dx

∣∣∣∣∣
t=0

=
∫ b

a
[F2(x, y(x) + tu(x), y′(x) + tu′(x))u(x) + F3(x, y(x) + tu(x), y′(x) + tu′(x))u′(x)]

∣∣∣∣∣
t=0

dx

=
∫ b

a
F2(x, y(x), y′(x))u(x) + F3(x, y(x), y′(x))u′(x) dx

Integrating
∫ b
a F3(x, y(x), y′(x))u′(x) dx by parts and noting that u vanishes at the endpoints,

we obtain

0 =
∫ b

a
F2(x, y(x), y′(x))u(x) dx+ u(x)F3(x, y(x), y′(x))|ba −

∫ b

a

d

dx
[F3(x, y(x), y′(x))]u(x) dx

=
∫ b

a
F2(x, y(x), y′(x))u(x) − d

dx
[F3(x, y(x), y′(x))]u(x) dx

=
∫ b

a

[
F2(x, y(x), y′(x)) − d

dx
F3(x, y(x), y′(x))

]
u(x) dx.

Since u was arbitrary, we have by the preceding Lemma (3.4.3) that

F2(x, y(x), y′(x)) − d

dx
F3(x, y(x), y′(x)) = 0,

which completes the proof. □

Example 3.4.5. Recall the Example (3.4.2). In this problem,

F (u, v, w) =
√

1 + w2.
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We note that F1 ≡ 0, F2 ≡ 0, and
F3 = w(1 + w2)−1/2.

Hence,
F3(x, y(x), y′(x)) = y′(x)[1 + y′(x)2]−1/2.

Thus the Euler–Lagrange Equation gives
d

dx
F3(x, y(x), y′(x)) = 0.

Integrating, we have
F3(x, y(x), y′(x)) = C,

for some C ∈ R. Solving for y′(x), we find that y′(x) must be constant. Thus y(x) =
α +m(x− a), where m = (β − α)/(b− a).

Theorem 3.4.6. Assume the hypotheses of Theorem (3.4.4). If, in addition, F1 ≡ 0,
then the Euler–Lagrange Equation implies that

y′(x)F3(x, y(x), y′(x)) − F (x, y(x), y′(x)) = C,

for some C ∈ R.

Proof. We show that d
dx

[y′(x)F3(x, y(x), y′(x))−F (x, y(x), y′(x))] = 0. Observe, by the Chain
Rule and the Euler–Lagrange Equation,

d

dx
[y′(x)F3(x, y(x), y′(x)) − F (x, y(x), y′(x))]

= y′′(x)F3(x, y(x), y′(x)) + y′(x) d
dx

[F3(x, y(x), y′(x))] − F1(x, y(x), y′(x)) −

y′(x)F2(x, y(x), y′(x)) − y′′(x)F3(x, y(x), y′(x))

= y′(x) d
dx

[F3(x, y(x), y′(x)) − F2(x, y(x), y′(x))]
= 0,

which completes the proof. □

Theorem 3.4.7. Any function y ∈ C2[a, b] that minimizes the integral equation∫ b

a
F (x, y(x), y′(x)) dx

subject to the endpoint constraint y(a) = α must satisfy the two conditions
d

dx
F3(x, y(x), y′(x)) = F2(x, y(x), y′(x))

and
F3(b, y(b), y′(b)) = 0.
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4. Basic Approximate Methods in Analysis

4.1. The Method of Iteration.

Definition 4.1.1 (Iteration). Let X be a normed linear space, and let F : X → X be
continuous. Fix x0 ∈ X. By iteration, we mean one of the following two processes:

xn+1 = Fxn, n ∈ N0, or xn = F nx0, n ∈ N0.

We see that if limn→∞ xn exists, then it is a fixed point of F, for
F ( lim

n→∞
xn) = lim

n→∞
Fxn = lim

n→∞
xn+1 = lim

n→∞
xn.

Thus we see that the method of iteration is one technique for finding fixed points of operators.
Definition 4.1.2 (Contraction Mapping). Let (X, d) be a metric space. A mapping F is
called a contraction mapping if there exists 0 < θ < 1 such that for all x, y ∈ X,

d(Fx, Fy) < θd(x, y).
Recall that every Banach space is necessarily a complete metric space with the induced

metric d(x, y) = ∥x− y∥. Moreover, a closed set in a Banach space is also a complete metric
space.

The following theorem is due to Banach, 1922.

Theorem 4.1.3 (Contraction Mapping Theorem). Let (X, d) be a complete metric space.
If F is a contraction mapping on X, then there exists a unique fixed point ξ ∈ X.
Moreover, for any x ∈ X, the point ξ is the limit of every sequence {F nx}n∈N0 .

Proof. Choose x0 ∈ X. Since F is a contraction mapping, there exists 0 < θ < 1 such that
d(F nx0, F

n−1x0) = d(F (F n−1x0), F (F n−2x0)) < θd(F n−1x0, F
n−2x0).

Repeating this process n− 2 subsequent times, we find
d(F nx0, F

n−1x0) ≤ θn−1d(Fx0, x0).
We show that {F nx0}n∈N0 is Cauchy. Let m,n > N be such that m ≥ n. Then

d(Fmx0, F
nx0) ≤ d(Fmx0, F

m−1x0) + d(Fm−1x0, F
m−2x0) + · · · + d(F n+1x0, F

nx0)
≤ [θm−1 + θm−2 + · · · + θn]d(Fx0, x0)

≤
{ ∞∑
n=N

θn
}
d(Fx0, x0)

≤ θN

1 − θ
d(Fx0, x0).

Since 0 < θ < 1, limN→∞ θN = 0. Thus the sequence {F nx0}n∈N0 is Cauchy. Since the space
X is complete, the sequence converges to a point ξ ∈ X. Since the contractive property of
F implies the continuity of F, it follows that ξ is a fixed point of F.

We now show uniqueness of ξ. Suppose that η ∈ X is another fixed point of F. Then we
have

d(ξ, η) = d(Fξ, Fη) ≤ θd(ξ, η).
If ξ ̸= η, then d(ξ, η) > 0, and thus the above inequality implies that θ ≥ 1, a contradiction.
Hence, the fixed point ξ is unique. □
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We illustrate the iterative process with a Fredholm integral equation.
Definition 4.1.4 (Fredholm Integral Equation of the Second Kind). Let w ∈ C[0, 1] and
K ∈ C([0, 1]×[0, 1]×R,R). A Fredholm integral equation of the second kind is defined
by x = Fx, where

(Fx)(t) :=
∫ b

a
K(s, t, x(s)) ds+ w(t).

We determine a solution x ∈ C[0, 1]. Recall that the space (C[0, 1], ∥ · ∥∞) is complete. To
see whether F is a contraction, we calculate ∥Fu− Fv∥ :

∥Fu− Fv∥ = sup
t∈[0,1]

∣∣∣∣∫ 1

0
K(s, t, u(s)) −K(s, t, v(s)) ds

∣∣∣∣
≤ sup

t∈[0,1]

∫ 1

0
|K(s, t, u(s)) −K(s, t, v(s))| ds.

Thus if K satisfies a Lipschitz condition in the third argument
|K(s, t, ξ) −K(s, t, η)| ≤ θ|ξ − η|,

where 0 < θ < 1, then we obtain

∥Fu− Fv∥ ≤ sup
t∈[0,1]

∫ 1

0
θ|u(s) − v(s)| ds ≤

∫ 1

0
θ∥u− v∥ = θ∥u− v∥.

Hence, by the Banach Fixed Point Theorem, the iteration xn = F nx0 leads to a solution,
starting from any x0 ∈ C[0, 1].

We get the following theorem.

Theorem 4.1.5. Let K ∈ C([0, 1] × [0, 1] × R,R) satisfy a Lipschitz condition in the
third argument

|K(s, t, ξ) −K(s, t, η)| ≤ θ|ξ − η|,
with 0 < θ < 1. Then the Fredholm integral equation

x = (Fx)(t) =
∫ 1

0
K(s, t, x(s)) ds+ w(t)

has a unique solution in C[0, 1].

Example 4.1.6. Consider the nonlinear Fredholm equation

x(t) = 1
2

∫ 1

0
cos(stx(s)) ds.

Define K(s, t, ξ) := 1
2 cos(stξ). We see that, by the Mean Value Theorem,

|K(s, t, ξ) −K(s, t, η)| = 1
2 | cos(stξ) − cos(stη)| = 1

2 | sin(stζ)|ξ − η| ≤ 1
2 |ξ − η|.

Thus Theorem (4.1.5) is applicable with θ = 1
2 .

Say the iteration is begun with x0 := 0. Then

x1(t) = (Fx0)(t) = 1
2

∫ 1

0
ds = 1

2 ,

and
x2(t) = (Fx1)(t) = 1

2

∫ 1

0
cos

(1
2st

)
ds = 1

t
sin

(1
2t
)
.
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The method of iteration can also be applied to differential equations, usually by first
turning them into equivalent integral equations. This procedure is of high importance, as it
is capable of yielding existence theorems with very little effort.

Theorem 4.1.7. Let S := [0, b], where b > 0. Let a continuous map f : S × R → R
satisfy a Lipschitz condition in the second argument

|f(s, t1) − f(s, t2)| ≤ λ|t1 − t2|,
where λ > 0 is a constant depending only on f. Then the initial value problem

x′(s) = f(s, x(s)), x(0) = β (4.1.0.1)
has a unique solution in C(S).

Proof. We first show that the initial value problem (4.1.0.1) is equivalent to the integral
equation

x = (Ax)(s) := β +
∫ s

0
f(t, x(t)) dt. (4.1.0.2)

First suppose that x ∈ C(S) solves (4.1.0.1). Then it follows

(Ax)(s) = β +
∫ s

0
f(t, x(t)) dt = β +

∫ s

0
x′(t) dt = β + x(s) − x(0)

= x(s),
so that x solves (4.1.0.2). Now assume that x solves (4.1.0.2). Then

x′(s) = d

ds
(Ax)(s) = d

ds

{
β +

∫ s

0
f(t, x(t)) dt

}
= f(s, x(s)) +

∫ s

0

∂

∂s
f(t, x(t)) dt

= f(s, x(s)).
Moreover,

x(0) = (Ax)(0) = β +
∫ 0

0
f(t, x(t)) dt = β,

so that x solves (4.1.0.2).
We now introduce a new norm on C(S) by defining

∥x∥w := sup
s∈S

|x(s)|e−2λs.

The space (C(S), ∥ · ∥w) is complete. By the equivalence of (4.1.0.1) and (4.1.0.2), it suffices
to show that A has a fixed point. We show that A is a contraction. Let u, v ∈ (C(S), ∥ · ∥w).
Then, for s ∈ [0, b], we have

|(Au− Av)(s)| =
∣∣∣∣∫ s

0
f(t, u(t)) − f(t, v(t)) dt

∣∣∣∣ ≤
∫ s

0
|f(t, u(t)) − f(t, v(t))| dt

≤
∫ s

0
λ|u(t) − v(t)| dt

= λ
∫ s

0
e2λte−2λt|u(t) − v(t)| dt

≤ λ∥u− v∥w
∫ s

0
e2λt dt

= λ∥u− v∥w
(
e2λs

2λ − 1
2λ

)
102



4. Approximate Methods 4.1. The Method of Iteration

≤ λ∥u− v∥w
e2λs

2λ
= 1

2e
2λs∥u− v∥w.

Thus
e−2λs|(Au− Av)(s)| ≤ 1

2∥u− v∥w,

so that
∥Au− Av∥w ≤ 1

2∥u− v∥w,

which shows that A is a contraction. By the Contraction Mapping Theorem (4.1.3), A has
a unique fixed point. This completes the proof. □

Example 4.1.8. Consider the following initial value problem:x′ = cos(xes), x ∈ C[0, 10],
x(0) = 0.

Note that f(s, t) = cos(tes). By the Mean Value Theorem,

|f(s, t1) − f(s, t2)| =
∣∣∣∣∣∂f∂t (s, τ)

∣∣∣∣∣ |t1 − t2|.

For s ∈ [0, 10] and t ∈ R,∣∣∣∣∣∂f∂t
∣∣∣∣∣ = | − es sin(tes)| = es| sin(tes)| ≤ e10.

Hence f satisfies a Lipschitz condition in the second argument, and the IVP has a unique
solution in C[0, 10] by Theorem (4.1.7).

The iteration described above Theorem (4.1.5) is often referred to as Picard iteration.

Example 4.1.9. Consider the following initial value problem:x′ = 2t(1 + x), x ∈ C[0, b],
x(0) = 0.

The formula for Picard iteration for this IVP is

xn+1(s) := (Axn)(s) =
∫ s

0
2t(1 + xn(t)) dt = s2 + 2

∫ s

0
txn(t) dt.

If x0 := 0, then
x1(s) = s2,

x2(s) = s2 + 2
∫ s

0
t3 dt = s2 + 1

2s
4,

x3(s) = s2 + 2
∫ s

0
t3 + 1

2t
5 dt = s2 + 1

2s
4 + 1

6s
6.

We see taht the partial sums tend to x(s) = es
2 − 1.

Theorem 4.1.10. Let (X, d) be a complete metric space, and suppose that F : X → X is a
mapping such that for some m ∈ N0, F

m is a contraction. Then F has a unique fixed point
ξ ∈ X, and ξ is the limit of every sequence {F nx}n∈N0 , for any x ∈ X.
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Proof. Since Fm is a contraction mapping, Fm has a unique fixed point ξ ∈ X, by Theorem
(4.1.3). Thus

Fξ = F (Fmξ) = Fm+1ξ = Fm(Fξ).
Thus Fξ is also a fixed point of Fm. By uniqueness, Fξ = ξ, so that F has at least one fixed
point, namely, ξ. If x is any fixed point of F, then

Fx = x, F 2x = F (Fx) = Fx = x, · · · Fmx = Fm−1Fx = Fm−1x = x.

Thus x is a fixed point of Fm, and by uniqueness, x = ξ. That is, ξ is the only fixed point
of F.

It remains to show that the sequence F nx converges to ξ as n → ∞. For i ∈ {1, 2, . . . ,m},
we have

F nm+ix = F nm(F ix) → ξ

as n → ∞. Fix ϵ > 0. Since ξ is a fixed point of Fm, there exists a positive integer N so
large that for all n ≥ N, we have d(F nm+ix, ξ) < ϵ. Since each j ∈ N such that Nm can be
written as j := nm + i, where n ≥ N and i ∈ {1, 2, . . . ,m} by the division algorithm, we
have d(F jx, ξ) < ϵ for all j ≥ Nm. This proves that limj→∞ F jx = ξ, which completes the
proof. □

Definition 4.1.11 (Linear Volterra Equation of the Second Kind). Let v ∈ C[a, b] and
K ∈ C([a, b] × [a, b],R). A linear Volterra equation of the second kind is defined by

x(t) = v(t) +
∫ t

a
K(t, s)x(s) ds, x ∈ C[a, b].

Note that a Volterra equation can be written as
x = Ax+ v,

where
(Ax)(t) :=

∫ t

0
K(t, s)x(s) ds.

We see that

|(Ax)(t)| =
∣∣∣∣∫ t

a
K(t, s)x(s) ds

∣∣∣∣ ≤
∫ t

a
|K(t, s)||x(s)| ds ≤ ∥K∥∞∥x∥∞(t− a).

From this it follows that

|(A2x)(t)| =
∣∣∣∣∫ t

a
K(t, s)(Ax)(s) ds

∣∣∣∣ ≤
∫ t

a
|K(t, s)||(Ax)(s)| ds

≤
∫ t

a
|K(t, s)|∥K∥∞∥x∥∞(s− a) ds

≤ ∥K∥2
∞∥x∥∞

∫ t

a
s− a ds

= ∥K∥2
∞∥x∥∞

(t− a)2

2 .

Repetition of this process gives

|(Anx)(t)| ≤ ∥K∥n∞∥x∥∞
(t− a)n
n! ≤ ∥K∥n∞∥x∥∞

(b− a)n
n! .

Hence,
∥An∥ = sup

∥x∥=1
∥Anx∥ = (∥K∥∞(b− a))n

n! .
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Choose m ∈ N0 so large that ∥Am∥ < 1. Write

(Fx)(t) := v(t) +
∫ t

a
K(t, s)x(s) ds,

and note Fx = Ax+ v. Then
F 2x = F (Fx) = F (Ax+ v) = A(Ax+ v) + v = A2x+ Av + v,

F 3x = F 2(Fx) = A2(Fx) + Av + v = A2(Ax+ v) + Av + v = A3x+ A2v + Av + v,

and so on. Thus
∥Fmx− Fmy∥ = ∥Amx− Amy∥ ≤ ∥Am∥∥x− y∥ < ∥x− y∥,

which shows that Fm is a contraction. By Theorem (4.1.10), F has a unique fixed point,
which we may obtain through iteration of the map F. Notice also that this conclusion is
reached without making strong assumptions regarding the kernel K. In particular, K need
only be bounded throughout [a, b] × [a, b].

Theorem 4.1.12. Let v ∈ C[a, b] and let K ∈ C([a, b] × [a, b],R). Then the integral
equation

x(t) = v(t) +
∫ t

a
K(s, t)x(s) ds

has a unique solution in C[a, b].

Proof. The proof follows immediately from the preceding argument. □

Theorem 4.1.13. Let X be a Hilbert space, and let F : X → X be a mapping such that for
all x, y ∈ X,

(1) ⟨Fx− Fy, x− y⟩ ≥ α∥x− y∥2, for some α > 0;
(2) ∥Fx− Fy∥ ≤ β∥x− y∥, for some β > 0.

Then F is bijective. Consequently, F−1 exists.

Proof. We first show that F is injective. Suppose that Fx = Fy for some x, y ∈ X. Then,
by (1),

α∥x− y∥2 ≤ ⟨Fx− Fy, x− y⟩ = 0.
Since α > 0, it follows that x = y.

To see that F is surjective, let w ∈ X. We show that there exists x ∈ X such that Fx = w.
It is equivalent to show that, for any λ > 0, there exists x ∈ X satisfying x−λ(Fx−w) = x.
Define

Gx := x− λ(Fx− w).
We show the existence of a fixed point of G. Letting λ = α/β2, we obtain

∥Gx−Gy∥2 = ∥x− λ(Fx− w) − y + λ(Fy − w)∥2

= ∥x− y − λ(Fx− Fy)∥2

= ∥x− y∥2 − 2λ ⟨Fx− Fy, x− y⟩ + λ2∥Fx− Fy∥2

≤ ∥x− y∥2 − 2λα∥x− y∥2 + λ2β2∥x− y∥2

= ∥x− y∥2(1 − 2λα + λ2β2)
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= ∥x− y∥2
(

1 − 2α
2

β2 + α2

β2

)

= ∥x− y∥2
(

1 − α2

β2

)
.

Note that α ≤ β, for by the Cauchy–Schwarz Inequality and (2),
| ⟨Fx− Fy, x− y⟩ | ≤ ∥Fx− Fy∥∥x− y∥ ≤ β∥x− y∥2,

which implies
β∥x− y∥2 ≥ α∥x− y∥2.

This completes the proof. □
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5. Distributions

5.1. Definition and Examples. The objective of distributions is to treat functions and
functionals, and to notice that when so interpreted, differentiation is always possible. The
functionals that now become the focus of study are called “distributions,” or “generalized
functions.”
Definition 5.1.1 (Multi–Index). A multi–index is any n−tuple of nonnegative integers

α := (α1, α2, . . . , αn).
Definition 5.1.2 (Order of Multi–Index). The order of a multi–index α is the quantity

|α| :=
n∑
k=1

αk.

For any multi–index α = (α1, α2, . . . , αn), we associate a partial differential operator Dα

corresponding to it. We define

Dα :=
(
∂

∂x1

)α1 ( ∂

∂x2

)α2

. . .

(
∂

∂xn

)αn

= ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.

This operates on functions of n real variables x1, x2, . . . , xn.

Example 5.1.3. If n = 3 and α = (3, 0, 4), then

Dαϕ =
(
∂ϕ

∂x1

)3 (
∂ϕ

∂x3

)4

= ∂7ϕ

∂x3
1∂x

4
3
.

Remark. The space C∞(Rn) consists of all functions ϕ : Rn → R such that Dαϕ ∈ C(Rn)
for each multi–index α. Thus all the partial derivatives of ϕ of all orders exist and are
continuous.

Definition 5.1.4 (Support). The support of a function ϕ on a space X is the set
supp(ϕ) := {x ∈ X : ϕ(x) ̸= 0}.

Definition 5.1.5 (Space of Test Functions). The vector space D also denoted C∞
c (Rn), called

the space of test functions, is the space of all functions in C∞(Rn) with compact support.

We now show that D is nonempty.
Lemma 5.1.6. For any polynomial p, the function f : R → R defined by

f(x) :=
p(1/x)e−1/x, x > 0,

0, x ≤ 0,

is in C∞(R).
Proof. We first show that f is continuous. Note that f is clearly continuous at all nonzero
points, so we show continuity at zero. We have

lim
x→0+

f(x) = lim
x→0+

p(1/x)
e1/x = lim

t→+∞

p(t)
et

.

Through repeated application of L’Hôpital’s Rule on the RHS, we see that
lim
x→0+

f(x) = 0.
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5. Distributions 5.1. Definition and Examples

Thus f is continuous at zero.
Next, differentiation of f gives

f ′(x) =
Q(1/x)e−1/x, x > 0,

0, x < 0,

whereQ(1/x) := 1
x2 [p(x)−p′(x)], by the Chain Rule. By the above argument, limx→0+ f ′(x) =

0. We show that f ′(0) = 0. We have by the Mean Value Theorem that

f ′(0) = lim
h→0

f(h) − f(0)
h− 0 = lim

h→0
f ′(ξ(h)) = 0

for some ξ(h) ∈ (0, h). Thus it follows

f ′(x) =
Q(1/x)e−1/x, x > 0,

0, x ≤ 0.

This is the same form as f, and therefore f ′ is continuous. This argument can be repeated
indefinitely, which completes the proof. □

Lemma 5.1.7. The function

ρ(x) :=
Ce

1
∥x∥2−1 , x ∈ Rn, ∥x∥ < 1,

0, x ∈ Rn, ∥x∥ ≥ 1,

where C ∈ R is chosen so that
∫
ρ(x) dx = 1, is an element of D.

Proof. Take p(x) ≡ 1 in the preceding lemma (5.1.6), and note that ρ(x) = Cf(1 − ∥x∥2).
Thus ρ = Fc ◦ g, where g(x) = 1 − ∥x∥2, and belongs to C∞(Rn), since the composition of
continuous functions is continuous. By the Chain Rule, Dαρ may be expressed as a sum of
products of ordinary derivatives of f with various partial derivatives of g. Since these are all
continuous, Dαρ ∈ C(Rn) for all multi–indices α.

By the construction, ρ clearly has compact support. Thus ρ ∈ D. □

Definition 5.1.8 (Mollifier). A mollifier is a function ϕ ∈ C∞(Rn) such that

ϕ ≥ 0,
∫
ϕ(x) dx = 1, supp(ϕ) ⊆ {x ∈ Rn : ∥x∥ ≤ 1}.

Remark.
(1) The function ρ as defined in Lemma (5.1.7) is a mollifier.
(2) If ϕ is a mollifier, then the scaled versions of ϕ, defined by

ϕj(x) = jnϕ(jx), {x ∈ Rn, j ∈ N},

are also mollifiers.

Definition 5.1.9 (Convergence in D). A sequence {ϕj}∞
j=1 in D converges to zero if the

following two conditions are satisfied:
(1) There exists a compact set K ⊆ Rn such that supp(ϕj) ⊆ K for all j ∈ N;
(2) For any multi–index α, Dαϕj converges uniformly to zero on K.

Moreover, we write ϕj ↠ 0 if {ϕj}∞
j=1 converges to zero in D. We write ϕj ↠ ϕ if and only

if ϕj − ϕ↠ 0.
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Recall that uniform convergence to zero on K of the sequence {Dαϕj}∞
j=1 for any multi–

index α means that
sup
x∈K

|(Dαϕj)(x)| → 0

as j → ∞. Since all ϕj also vanish outside of K, we have that

sup
x∈Rn

|(Dαϕj)(x)| → 0

as j → ∞.

Definition 5.1.10 (Continuity on D). Let Y be any topological space, and let F : D → Y.
Then F is continuous if for any sequence {ϕj}∞

j=1 converging to zero in D, we have that
{F (ϕj)}∞

j=1 converges to F (ϕ).

Theorem 5.1.11. For every multi–index α, Dα is a continuous linear operator of D
into D.

Proof. The linearity of Dα follows immediately from the linearity of differentiation.
For the continuity of Dα, it suffices to show continuity at zero by the linearity of Dα. Thus,

suppose that {ϕj}∞
j=1 is a sequence in D such that ϕj ↠ ϕ. Then there exists a compact set

K ⊆ Rn such that supp(ϕj) ⊆ K for all j ∈ N. by definition, Dβϕj(x) converges uniformly
to zero on K for every multi–index β. Consequently, we have that

DβDαϕj

converges to zero uniformly on K for every multi–index β, so that Dαϕj ↠ 0, by definition
of convergence in D. □

Definition 5.1.12 (Distribution). A distribution is a continuous linear functional on D.

Definition 5.1.13 (Continuity of a Distribution). Let T : D → R be a linear functional.
Then T is continuous if for any sequence {ϕj}∞

j=1 in D such that ϕj ↠ 0, we have that
{T (ϕj)}∞

j=1 converges to 0 ∈ R.

Definition 5.1.14 (Space of Distributions). We denote the space of all distributions by D′.

Example 5.1.15. A Dirac distribution δξ is defined by selecting ξ ∈ Rn and putting

δξ(ϕ) = ϕ(ξ)

for all ϕ ∈ D. This is a distribution, for linearity is satisfied:

δξ(αϕ1 + βϕ2) = (αϕ1 + βϕ2)(ξ) = αϕ1(ξ) + βϕ2(ξ)
= αδξ(ϕ1) + βδξ(ϕ2).

Secondly, it is continuous because ϕj ↠ implies immediately that ϕj(ξ) → 0.

Example 5.1.16. For n = 1, the Heaviside distribution is defined by

H̃(ϕ) :=
∫ ∞

0
ϕ(x) dx,

for all ϕ ∈ D.
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Example 5.1.17. Let f : Rn → R be continuous. With f we associate a distribution f̃ as
follows:

f̃(ϕ) :=
∫
Rn
f(x)ϕ(x) dx,

for all ϕ ∈ D.
The linearity of f̃ follows from the linearity of the integral. For continuity, suppose that

ϕj ↠ 0. Then there is a compact set K containing all the supports of each ϕj, j ∈ N. Then
it follows

lim
j→∞

|f̃(ϕj)| = lim
j→∞

∣∣∣∣∫
K
f(x)ϕj(x) dx

∣∣∣∣ ≤ lim
j→∞

max
x∈K

|ϕj(x)|
∫
K

|f(x)| dx = 0,

since ϕj ↠ 0 implies that limj→∞ maxx∈K |ϕj(x)| = 0.

Example 5.1.18. Fix a multi–index α and define

T (ϕ) :=
∫
Rn
Dαϕ(x) dx

for all ϕ ∈ D. Then T is a distribution, which follows from Theorem (5.1.11) and Example
3.

Theorem 5.1.19. If f ∈ C(Rn), then f̃ : D → R, defined by

f̃(ϕ) :=
∫
Rn
f(x)ϕ(x)

for all ϕ ∈ D, is a distribution. the mapping T (f) = f̃ is linear and injective from C(Rn)
into D′.

Proof. It follows from Example 3 that f̃ is a distribution.
The linearity of the mapping T (f) = f̃ follows from the computation

˜(α1f1 + α2f2)(ϕ) =
∫
Rn

(α1f1 + α2f2)(x)ϕ(x) dx

= α1

∫
Rn
f1(x)ϕ(x) dx+ α2

∫
Rn
f2(x)ϕ(x) dx

= α1f̃1(ϕ) + α2f̃2(ϕ)
= (α1f̃1 + α2f̃2)(ϕ).

For the injectivity, we recall that it suffices to show that if f ̸= 0, then f̃ ̸= 0. Thus,
assume that f ̸= 0, and let ξ ∈ Rn be a point such that f(ξ) ̸= 0. Select j such that f(x)
is of constant sign in the open ball B(ξ, 1/j). Then ρj(x − ξ) = jnρ(jx), where ρ is defined
as in Lemma (5.1.7), is positive in this same ball about ξ and vanishes elsewhere. Hence,∫
Rn f(x)ρj(x− ξ) dx ̸= 0. This shows f̃(ϕ) ̸= 0, completing the proof. □

Note that Example 3 shows that in a certain natural way, each continuous function f :
Rn → R “is” a distribution. That is, we can associate a distribution f̃ with f. In fact, we
can extend this notion to some functions that are not continuous.

Definition 5.1.20 (Locally Integrable Function). A Lebesgue–measurable function f : Rn →
R is called locally integrable if for every compact set K ⊆ Rn, we have

∫
K |f(x)| dx < ∞.
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Remark. We denote by L1
loc(Rn) the space of equivalence classes of locally integrable func-

tions.

Theorem 5.1.21. If f is locally integrable, then the equation f̃(ϕ) =
∫
fϕ dµ defines

a distribution f̃ that does not depend on the representative selected from the equivalence
class of f. The mapping T (f) = f̃ is linear and injective from L1

loc(Rn) into D′.

Theorem 5.1.22. Let µ be any Borel measure on Rn such that µ(K) < ∞ for each
compact set K ⊆ Rn. Then µ induces a distribution T by the equation

T (ϕ) :=
∫
Rn
ϕ dµ,

for all ϕ ∈ D.

Proof. The linearity of T follows immediately from the linearity of integration.
For the continuity of T, let {ϕj}∞

n=1 be a sequence in D such that ϕj ↠ 0. Then there exists
a compact set K ⊆ Rn such that supp(ϕj) ⊆ K for all j ∈ N. Consequently, we observe

lim
j→∞

|T (ϕj)| = lim
j→∞

∣∣∣∣∫
K
ϕj dµ

∣∣∣∣ ≤ lim
j→∞

∫
K

|ϕj| dµ ≤ lim
j→∞

max
x∈K

|ϕj(x)|
∫
K
dµ

= µ(K) lim
j→∞

max
x∈K

|ϕj(x)| = 0.

This completes the proof. □

Definition 5.1.23 (Regular Distribution). A distribution of the form f̃(ϕ) =
∫
fϕ dµ, where

f ∈ L1
loc(Rn), is called a regular distribution.

5.2. Derivatives of Distributions. We note here that the space D′ of distributions is very
large – it contains images of all continuous functions of Rn as well as all locally integrable
functions. It also contains functionals on D that are not readily associated with functions.
For instance, the Dirac distribution is a “point evaluation” functional. We now define deriva-
tives of distributions, and show that the new notion of this derivative will coincide with the
classical definition when both are defined.

Definition 5.2.1 (Derivative of a Distribution). If T ∈ D′ is a distribution and α any
multi–index, then the derivative of T ∂αT is the distribution defined by

∂αT := (−1)|α|T ◦Dα

Lemma 5.2.2. Let T be a distribution and α any multi–index. Then ∂αT is a distribution.

Proof. The linearity of ∂αT follows from the linearity of T and Dα.
To see that ∂αT is continuous, let {ϕj}∞

j=1 be any sequence in D such that ϕj ↠ 0. Then,
since T is linear and continuous, we have by continuity of Dα by Theorem (5.1.11) that

lim
j→∞

∂αT (ϕj) = lim
j→∞

(−1)|α|T (Dα(ϕj)) = (−1)|α|T
(

lim
j→∞

Dα(ϕj)
)

= (−1)|α|T (0)

= 0,
which completes the proof. □
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Lemma 5.2.3. Let f ∈ Ck(Rn). Then f̃ is a distribution, and for any multi–index α such
that |α| ≤ k,

∂αf̃ = (̃Dαf).

Proof. Let f ∈ Ck(Rn) and let α be any multi–index. Without loss of generality, assume
that α1 ̸= 0. We see that

(̃Dαf)(ϕ) =
∫
Rn

(Dαf)(x)ϕ(x) dx

=
∫
Rn

[(
∂f

∂x1

)α1

· · ·
(
∂f

∂xn

)αn
]

(x)ϕ(x) dx.

Write x′ := (x2, x3, . . . , xn). Then

(̃Dαf)(ϕ) =
∫
Rn−1

∫ ∞

−∞

[(
∂f

∂x1

)α1

· · ·
(
∂f

∂xn

)αn
]

(x)ϕ(x) dx1 dx
′.

Integrating by parts once, we obtain

(̃Dαf)(ϕ) =
∫
Rn−1


( ∂f

∂x1

)α1−1

· · ·
(
∂f

∂xn

)αn
 (x)ϕ(x)

∣∣∣∣∣∣
∞

−∞

−

∫ ∞

−∞

( ∂f
∂x1

)α1−1

· · ·
(
∂f

∂xn

)αn
 (x)

(
∂ϕ

∂x1

)
(x) dx1

 dx′

= −
∫
Rn−1

∫ ∞

−∞

( ∂f
∂x1

)α1−1

· · ·
(
∂f

∂xn

)αn
 (x)

(
∂ϕ

∂x1

)
(x) dx1 dx

′,

since ϕ has compact support in Rn and thus vanishes outside of a closed and bounded set.
Repeating this process α1 − 1 times, we find

(̃Dαf)(ϕ) = (−1)α1
∫
Rn−1

∫ ∞

−∞

[(
∂f

∂x2

)α2

· · ·
(
∂f

∂xn

)αn
]

(x)
(
∂ϕ

∂x1

)α1

(x) dx1 dx
′

= (−1)α1
∫
Rn

[(
∂f

∂x2

)α2

· · ·
(
∂f

∂xn

)αn
]

(x)
(
∂ϕ

∂x1

)α1

(x) dx.

Finally, we see that repeating the above process n− 1 subsequent times gives

(̃Dαf)(ϕ) = (−1)|α|
∫
Rn
f(x)

[(
∂ϕ

∂x1

)α1

· · ·
(
∂ϕ

∂xn

)αn
]

(x) dx

= (−1)|α|
∫
Rn
f(x)Dαϕ(x) = (−1)|α|f̃(Dαϕ)

= ∂αf̃(ϕ),

which completes the proof. □

We comment here that it can happen that ∂αf̃ ̸= (̃Dαf) for a function f that does not
have continuous partial derivatives.
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Example 5.2.4. Let H̃ be the Heaviside distribution and let δ0 be the Dirac distribution at
zero. Then with n = 1 and α := (1), we have ∂H̃ = δ0. We observe that for any test function
ϕ ∈ D,

(∂H̃)(ϕ) = −H̃(Dϕ) = −
∫ ∞

0
ϕ′(x) dx = ϕ(0) − ϕ(∞) = ϕ(0) = δ0(ϕ).

Example 5.2.5. Let n = 1 and α := (1), so that D is an ordinary derivative. Put

f(x) :=
x, x ≥ 0,

0, , x < 0.

Note that f ′ is not the Heaviside function, since f ′(0) is undefined in the classical sense. On
the other hand, we see that for any test function, integration by parts gives ϕ ∈ D,

(∂f̃)(ϕ) = −f̃(Dϕ) = −
∫ 0

−∞
f(x)ϕ′(x) dx−

∫ ∞

0
f(x)ϕ′(x) dx =

∫ ∞

0
ϕ(x) dx = H̃(ϕ).

That is, in the distributional sense, f ′ = H.

A “distributional derivative” of a function f is a distribution T such that (f̃)′ = T. In
the general case of an operator Dα, we require ∂αf̃ = T. If T is a regular distribution, say
T = g̃, then the defining equation is∫

gϕ = (−1)|α|
∫
fDαϕ,

for all ϕ ∈ D.

Example 5.2.6. We find the distributional derivative of the function f(x) = |x|. We note
that it itself is a distribution g̃, where g is a function such that for all test functions ϕ ∈ D,∫ ∞

−∞
g(x)ϕ(x) dx = −

∫ ∞

−∞
f(x)ϕ′(x) dx

= −
∫ 0

−∞
−xϕ′(x) dx−

∫ ∞

0
xϕ′(x) dx

= xϕ(x)|0−∞ −
∫ 0

−∞
ϕ(x) dx− xϕ(x)|∞0 +

∫ ∞

0
ϕ(x) dx

=
∫ 0

−∞
(−1)ϕ(x) dx+

∫ ∞

0
(+1)ϕ(x) dx.

Hence,

g(x) =
−1, x < 0,

1, x ≥ 0
= 2H(x) − 1,

where H denotes the Heaviside function.
We say that f ′ = g in the distributional sense, or write ∂f̃ = g̃. We note that f does not

have a classical derivative, because particularly f ′ is not defined at zero.

Theorem 5.2.7. The distributional derivative operators ∂α are linear from D′ into D′.
Moreover, ∂α∂β = ∂β∂α = ∂α+β for any pair of multi–indices α and β.
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Proof. The linearity of ∂α has been established in Lemma (5.2.2).
For the commutativity of the operators, we recall that for any function f of two variables,

if ∂2f
∂x∂y

and ∂2f
∂y∂x

exist and are continuous, then they are equal. More generally, for any
function f ∈ Ck(Rn), up to k partial derivatives of f may be interchanged. Therefore, for
any ϕ ∈ D, we have DαDβϕ = DβDαϕ. Consequently, for any arbitrary distribution T ∈ D′

and test function ϕ ∈ D, we have
∂α∂βT = ∂α(∂βT ) = (−1)|α|(∂βT ) ◦Dα = (−1)|α|(−1)|β|(T ◦Dβ) ◦Dα

= (−1)|α|+|β|T ◦Dβ ◦Dα = (−1)|β|(−1)|α|T ◦Dα ◦Dβ

= (−1)|α|(∂αT ) ◦Dβ = ∂β∂αT,

which completes the proof. □

Theorem 5.2.8. For n = 1, that is, for functions of one variable, every distribution is
the derivative of another distribution.

Proof. Let 1̃ be the regular distribution induced by the constant 1 : that is,

1̃(ϕ) :=
∫ ∞

−∞
ϕ(x) dx

for all ϕ ∈ D. Note that ker(1̃) is a closed hyperplane in D. Choose a test function ψ ∈ D
such that

1̃(ψ) =
∫ ∞

−∞
ψ(x) dx = 1.

Define
Aϕ := ϕ− 1̃ϕψ

for all ϕ ∈ D, and
(Bϕ)(x) :=

∫ x

−∞
ϕ(y) dy

for all ϕ ∈ ker(1̃). We see that if ϕ ∈ ker(1̃), then Bϕ ∈ D, since ϕ has compact support.
Now let T ∈ D′ be any distribution, and define S := −T ◦ B ◦ A. We show that S is a

distribution and that ∂S = T. First note that for all test functions ϕ ∈ D, we have
1̃(Aϕ) = 1̃(ϕ− 1̃(ϕ)ψ) = 1̃(ϕ) − 1̃(ϕ)1̃ψ = 1̃(ϕ)(1 − 1) = 0,

so that Aϕ ∈ ker(1̃). Thus, BAϕ ∈ D. Since B ◦A is continuous from D into D, and because
T is a distribution, it follows that S is a distribution. Finally, we compute

(∂S)(ϕ)(x) = −S(ϕ′)(x) = T (BAϕ′)(x) = TB(Aϕ)(x)

= TB
(
ϕ′(x) − 1̃(ϕ′)ψ(x)

)
= TB

(
ϕ′(x) −

{∫ ∞

−∞
ϕ′(x) dx

}
ψ(x)

)
= TB(ϕ′)(x) = T ((Bϕ′)(x)) = T

(∫ x

−∞
ϕ′(y) dy

)
= T (ϕ)(x).

This completes the proof. □
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Theorem 5.2.9. Let n = 1, and let T be a distribution for which ∂T = 0. Then T = c̃
for some c ∈ R.

Proof. We adopt the same notation as the proof of Theorem (5.2.8). Recall from the Fun-
damental Theorem of Calculus that

ϕ(x) = d

dx

∫ x

−∞
ϕ(y) dy,

which implies ϕ ≡ (DB)(ϕ). Note that this equation holds for all ϕ ∈ ker(1̃). Moreover, since
Aϕ ∈ ker(1̃) for all ϕ ∈ D, we have Aϕ = (DBA)(ϕ) for all ϕ ∈ D. Consequently, if ∂T = 0,
then for all test functions ϕ ∈ D, we have

T (ϕ) = T (Aϕ+ 1̃(ϕ)ψ) = T (Aϕ) + 1̃(ϕ)T (ψ)
= T ((DBA)(ϕ)) + 1̃(ϕ)T (ψ)
= −(∂T )(BA(ϕ)) + T (ψ)1̃(ϕ)

= T (ψ)1̃(ϕ) = T (ψ)
∫ ∞

−∞
ϕ(x) dx

=
∫ ∞

−∞
T (ψ)ϕ(x) dx.

Thus T = c̃, with c = T (ψ). □

Theorem 5.2.10. If T ∈ D′ is a distribution and K ⊆ Rn is a compact set in Rn, then
there exists f ∈ C(Rn) and a multi–index α such that for all ϕ ∈ D with supp(ϕ) ⊆ K,

T (ϕ) = (∂αf̃)(ϕ).

5.3. Convergence of Distributions.

Definition 5.3.1 (Convergence in D′). Let {Tj}∞
j=1 ⊆ D′ be a sequence of distributions. We

say that {Tj}∞
j=1 converges to zero if for every ϕ ∈ D, we have that {Tj(ϕ)}∞

j=1 converges to
zero. We write

Tj → 0 ⇐⇒ Tj(ϕ) → 0 ∀ϕ ∈ D.

Moreover, we say that {Tj}∞
j=1 converges to a distribution T ∈ D′ if for all ϕ ∈ D, {(Tj −

T )(ϕ)}∞
j=1 converges to zero.

Notice that this definition coincides with weak∗ convergence of a sequence of linear func-
tionals. Topological notions in D′, such as continuity, will be based on this notion of con-
vergence.

Theorem 5.3.2. For every multi–index α, ∂α is a continuous linear map of D′ into D.

Proof. Let {Tj}∞
j=1 be a sequence in D′ such that Tj → 0. Let ϕ ∈ D be any test function.

Recall that, for any j ∈ N,
∂αTj(ϕ) = (−1)|α|Tj(Dαϕ)
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Since Dαϕ is a test function, it follows by the assumption that

∂αTj(ϕ) = (−1)|α|Tj(Dαϕ) → 0

as j → ∞. This completes the proof. □

Theorem 5.3.3. If a sequence of distributions {Tj}∞
j=1 has the property that {Tj(ϕ)}∞

j=1
is convergent for each test function ϕ, then the equation T (ϕ) := limj→∞ Tj(ϕ) defines a
distribution T, and Tj → T.

Proof. Let {Tj}∞
j=1 be a sequence in D′ such that limj→∞ Tj(ϕ) exists in R for all ϕ ∈ D.

Define a mapping T by
T (ϕ) := lim

j→∞
Tj(ϕ).

Note that T is clearly well–defined.
To see that T is linear, we have for all α, β ∈ R and ϕ, ψ ∈ D that

T (αϕ+ βψ) = lim
j→∞

Tj(αϕ+ βψ) = lim
j→∞

[αTj(ϕ) + βTj(ψ)]

= α lim
j→∞

Tj(ϕ) + β lim
j→∞

Tj(ψ)

= αT (ϕ) + βT (ψ).

For the continuity of T, see Rudin’s Functional Analysis. □

Corollary 5.3.4. A series of distributions ∑∞
j=1 Tj converges to a distribution T ∈ D′ if and

only if for each test function ϕ ∈ D, the series ∑∞
j=1 Tj(ϕ) converges in R.

Proof. Define a new sequence of distributions {SN}∞
N=1 by

SN(ϕ) :=
N∑
j=1

Tj(ϕ).

By the assumption, {SN(ϕ)}∞
N=1 is convergent in R for each test function ϕ ∈ D, so that by

Theorem (5.3.3) we have that {SN}∞
N=1 converges to a distribution T ∈ D′. □

Corollary 5.3.5. Let {Tj}∞
j=1 be a sequence in D′ such that ∑∞

j=1 Tj converges. Then for
any multi–index α, ∂α∑∞

j=1 Tj = ∑∞
j=1 ∂

αTj.

Proof. By Theorem (5.3.2), ∂α is a continuous linear operator. Hence, for all test functions
ϕ ∈ D,

∂α

 ∞∑
j=1

Tj

 = ∂α

 lim
N→∞

N∑
j=1

Tj

 = lim
N→∞

∂α N∑
j=1

Tj


= lim

N→∞

N∑
j=1

∂αTj =
∞∑
j=1

∂αTj.

□
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Note the contrast with the above results and the results for the classical derivative. Recall
that a pointwise convergent sequence of continuous functions need not have a continuous
limit. For example, consider the sequence {fn}∞

n=1 ⊆ C[0, 1] defined by

fn(t) :=
1 − n, 0 ≤ t < 1

n
,

0, 1
n

≤ t ≤ 1.

It may be shown that this sequence converges pointwise to the function

f(t) :=
0, t = 0,

1, 0 < t ≤ 1.

Similarly, even a uniformly convergent series of continuously differentiable functions can fail
to satisfy the equation

d

dx

∞∑
n=1

Fn =
∞∑
n=1

d

dx
fn.

A famous example is provided by the Weierstrass function

f(x) :=
∞∑
n=1

2−n cos(3nx).

This function is continuous but differentiable nowhere.

Example 5.3.6. Define the sequence {fn(x)}∞
n=1 by fn(x) := cos(nx) for each n ∈ N. Note

that this sequence of functions does not converge even pointwise. On the other hand, the
sequence of distributions {f̃n}∞

n=1 converges to zero. We observe that, for any test function
ϕ ∈ D(R),

lim
n→∞

|f̃n(ϕ)| = lim
n→∞

∣∣∣∣∫ ∞

−∞
fnϕ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫ ∞

−∞
cos(nx)ϕ(x) dx

∣∣∣∣
= lim

n→∞

{∣∣∣∣∣ 1n sin(nx)ϕ(x)
∣∣∣∣∣
∞

−∞
−
∫ ∞

−∞

1
n

sin(nx)ϕ′(x) dx
∣∣∣∣∣
}

= lim
n→∞

∣∣∣∣ 1n
∫ ∞

−∞
sin(nx)ϕ′(x) dx

∣∣∣∣ .
Since ϕ′(x) is a test function, it has compact support. Thus there exists a closed interval
[a, b] such that supp(ϕ′) ⊆ [a, b]. Hence,

lim
n→∞

|f̃n(ϕ)| = lim
n→∞

∣∣∣∣∣ 1n
∫ b

a
sin(nx)ϕ′(x) dx

∣∣∣∣∣ ≤ lim
n→∞

1
n

∫ b

a
| sin(nx)ϕ′(x)| dx

≤ lim
n→∞

1
n

{
(b− a) max

x∈[a,b]
|ϕ′(x)|

}
= 0.

Theorem 5.3.7. Let {fn}∞
n=1 be a sequence in L1

loc(Rn), and suppose that {fn}∞
n=1 con-

verges pointwise to a function f ∈ L1
loc(Rn) almost everywhere. If there exists an element

g ∈ L1
loc(Rn) such that |fj| ≤ g for all j ∈ N, then f̃j → f̃ in D′.
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5. Distributions 5.4. Convolutions

Proof. Let ϕ ∈ D(Rn) be any test function, and let K := supp(ϕ). Note that, for all j ∈ N,
we have fjϕ ∈ L1(K). Furthermore, we have that

|fjϕ| = |fj||ϕ| ≤ g|ϕ|

for each j ∈ N and (fj ◦ ϕ)(x) → (f ◦ ϕ)(x) pointwise almost everywhere. Hence, by the
Dominated Convergence Theorem, it follows

lim
j→∞

f̃j(ϕ) = lim
j→∞

∫
fjϕ dµ =

∫
lim
j→∞

fjϕ dµ =
∫
fϕ dµ

= f̃(ϕ).

This is for all ϕ ∈ D(Rn), so that limj→∞ f̃j = f̃ . □

Theorem 5.3.8. Let {fj}∞
j=1 be a sequence of nonnegative functions in L1

loc(Rn) such
that

∫
fj dµ = 1 for each j ∈ N and such that

lim
j→∞

∫
[|x|≥r]

fj dµ = 0

for all r > 0. Then f̃j → δ, the Dirac distribution.

Proof. Let ϕ ∈ D(Rn) be any test function, and put ψ := ϕ − ϕ(0). Fix ϵ > 0, and select
r > 0 so that |ψ(x)| < ϵ whenever |x| < r. Since

∫
fj dµ = 1 for all j ∈ N, we see that

lim
j→∞

|f̃j(ϕ) − δ| = lim
j→∞

=
{∣∣∣∣∫

Rn
fjϕ dµ− ϕ(0)

∣∣∣∣} = lim
j→∞

{∣∣∣∣∫
Rn
fjϕ dµ− ϕ(0)

∫
Rn
fj dµ

∣∣∣∣}
= lim

j→∞

∣∣∣∣∫
Rn
fj(ϕ− ϕ(0)) dµ

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
Rn
fjψ dµ

∣∣∣∣
≤ lim

j→∞

∫
Rn

|fψ| dµ = lim
j→∞

{∫
|x|<r

|fjψ| dµ+
∫

|x|≥r
|fjψ| dµ

}

< lim
j→∞

{
ϵ
∫
Rn
fj dµ+ max

x∈supp(ψ)
|ψ(x)|

∫
|x|≥r

fj dµ

}

= ϵ lim
j→∞

∫
Rn
fj dµ+ max

x∈supp(ψ)
|ψ(x)| lim

j→∞

∫
|x|≥r

fj dµ

= ϵ.

Since ϵ > 0 was arbitrary, it follows that limj→∞ f̃j(ϕ) = δ(ϕ) for all ϕ ∈ D(Rn). Hence,
f̃j → δ. □

5.4. Convolutions.

Definition 5.4.1 (Convolution). The convolution of two functions f and ϕ on Rn is a
function f ∗ ϕ defined by

(f ∗ ϕ)(x) :=
∫
Rn
f(y)ϕ(x− y) dy.
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Note that the above integral exists and is finite if ϕ ∈ D and f ∈ L1
loc(Rn), because for

each x ∈ Rn, the integration takes place over a compact subset of Rn. With a change of
variable in the integral, z := x− y, we see that

(f ∗ ϕ)(x) =
∫
Rn
f(x− z)ϕ(z) dz = (ϕ ∗ f)(x).

In taking the convolution of two functions, we expect that some favorable properties of
one function will be inherited by the convolution function. For example, suppose that f is
integrable, and let ϕ ∈ D. In the case n = 1, differentiating f ∗ ϕ with respect to x gives

(f ∗ ϕ)′(x) =
∫ ∞

−∞
f(y)ϕ′(x− y) dy.

Thus the differentiability of ϕ is inherited by the convolution f ∗ϕ. This property also holds
with higher derivatives and with functions of several variables.

It follows from the above that if ϕ is a polynomial of degree at most k, then so is f ∗ ϕ,
for the (k + 1)−st derivative of f ∗ ϕ will be zero. Similarly, if ϕ is a periodic function, then
so is f ∗ ϕ.

We will see that convolutions are useful in approximating functions by smooth functions.
Here mollifiers play a role. Recall that a mollifier is a function ϕ ∈ D such that ϕ ≥ 0,∫
ϕ = 1, and ϕ(x) = 0 when |x| ≥ 1. Let ϕ be a mollifier. Define ϕj(x) := jnϕ(jx). Since∫
ϕj(x) = 1,

f(x) − (f ∗ ϕj)(x) = f(x) −
∫
f(x− z)ϕj(z) dz

=
∫
f(x)ϕj(z) dz −

∫
f(x− z)ϕj(z) dz

=
∫

[f(x) − f(x− z)]ϕj(z) dz.

Since ϕ vanishes outside the unit ball in Rn, ϕj vanishes outside the ball of radius 1/j. Hence
in the equation above the only values of z that have any effect are those for which |z| < 1/j.
If f is uniformly continuous, the calculation shows that f ∗ ϕj(x) is close to f(x), and we
have therefore approximated f by the smooth function f ∗ ϕ.

Define linear operators Ex and B by
(Exϕ)(y) := ϕ(y − x),

(Bϕ)(y) := ϕ(−y).
Thus we have

(f ∗ ϕ)(x) = f̃(ExBϕ).
For f ∈ L1

loc(Rn) and ϕ ∈ D we have

Ẽxf(ϕ) =
∫
Exf ∗ ϕ =

∫
f(y − x)ϕ(y) dy =

∫
f(z)ϕ(z + x) dz

= f̃(E−xϕ).

Definition 5.4.2. If T is a distribution, we define ExT := TE−x. If ϕ ∈ D, then the
convolution T ∗ ϕ is defined by (T ∗ ϕ)(x) := T (ExBϕ).

Lemma 5.4.3. For T ∈ D′ and ϕ ∈ D,

Ex(T ∗ ϕ) = (ExT ) ∗ ϕ = T ∗ Exϕ.
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5. Distributions 5.4. Convolutions

Proof. By straightforward calculation,
[Ex(T ∗ ϕ)(y)] = (T ∗ ϕ)(y − x) = T (Ey−xBϕ),

[(Ex)T ∗ ϕ](y) = (ExT )(EyBϕ) = T (E−xEyBϕ) = T (Ey−xBϕ),
[T ∗ Exϕ](y) = T (EyBExϕ) = T (EyE−xBϕ) = T (Ey−xBϕ).

□

Lemma 5.4.4. If T is a distribution and if ϕj ↠ ϕ in D, then T ∗ ϕj → T ∗ ϕ pointwise.

Proof. By linearity, it suffices to consider the case ϕ = 0. If ϕj ↠ 0 in D, then, for all x ∈ Rn,

(T ∗ ϕj)(x) = T (ExBϕj) → 0
by continuity of B, Ex, and T. □

Lemma 5.4.5. Let {xj}∞
j=1 be a sequence of points in Rn converging to x. For each ϕ ∈ D,

Exj
ϕ↠ Exϕ

in D.

Proof. Choose ϕ ∈ D, let K1 := {xj}∞
j=1 ∪ {x}, and let K2 := suppϕ. Then the supports of

Exj
ϕ are contained in the compact set

K1 +K2 := {u+ v : u ∈ K1, v ∈ K2}.
Next, we observe that (Exj

ϕ)(y) → (Exϕ)(y) uniformly for y ∈ K1 + K2. Indeed, by the
uniform continuity of ϕ over a compact set, for any given ϵ > 0, there exists δ > 0 such that
|ϕ(u) −ϕ(v)| < ϵ whenever |u− v| < δ. Hence, if |xj −x| < δ, then |ϕ(y−xj) −ϕ(y−x)| < ϵ.
Thus it follows that

(DαExj
ϕ)(y) → (DαExϕ)(y)

uniformly for y ∈ K1 + K2, because DαExj
ϕ = Exj

Dαϕ, and the above argument may be
applied to Dαϕ. □
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6. Additional Topics

6.1. Compact Operators and the Fredholm Theory. This section is focused on “per-
turbations of the identity,” that is, operators I + A, where I is the identity operator and A
is a compact operator. Recall that in §2.3, we found that operators with finite–dimensional
range are compact, and that the set of compact operators in L(X, Y ) is closed if X and Y
are Banach spaces. Thus, the limit of operators, each having finite–dimensional range, is
necessarily a compact operator. In many Banach spaces, every compact operator is such a
limit. This fact can be exploited in many practical problems involving compact operators
— we may approximate the operator by a simpler one having finite–dimensional range.

In this section, we consider a related class of operators, namely, those of the form I + A,
where A is compact, and find that such operators have favorable properties also. Intuitively,
we expect such operators to be well–behaved, because they are close to the identity operator.
For instance, we will prove the Fredholm Alternative, which asserts that for such operators
the property of injectivity is equivalent to surjectivity. This is a familiar theorem in the
context of linear operators from Rn to Rn : recall that for an n× n matrix, the properties of
having a zero–dimensional kernel and an n−dimensional range are equivalent.

Lemma 6.1.1. Let A be a compact operator on a normed linear space. If I+A is surjective,
then it is injective.

Proof. Put B := I + A and Xn := ker(Bn). By contradiction, suppose that B is surjective
but not injective. By linearity, note that

{0} ⊆ X1 ⊆ X2 ⊆ · · · .
We now show that the above inclusions are proper. By the assumption that B is not

injective, there exists a nonzero element y1 ∈ X1. Since B is surjective, there exist points
y2, y3, . . . such that Byn+1 = yn for n = 2, 3, . . . . Note that

Bnyn = Bn−1Byn = Bn−1yn−1 = · · · = B2y2 = By1 = 0,
so that yn ∈ Xn for each n ∈ N. Moreover,

Bn−1yn = Bn−2Byn = Bn−2yn−1 = · · · = B2y3 = By2 = y1 ̸= 0,
and thus yn /∈ Xn−1 for each n ∈ N. This proves yn ∈ Xn \Xn−1 for all n ∈ N, and thus the
above inclusions are proper.

Next, by the Riesz Lemma, there exist points xn ∈ Xn such that ∥xn∥ = 1 and dist(xn, Xn−1) ≥
1/2. Recall that Bmxm = 0 because xm ∈ Xm = ker(Bm). Moreover, if m > n, then
Bm−1xn = 0 because xn ∈ Xn ⊂ Xm−1. Finally, Bmxn = 0 because xn ∈ Xn ⊂ Xm. Thus

Bm−1(Bxm + xn −Bxn) = Bmxm +Bm−1xn −Bmxn = 0.
Thus Bxm + xn −Bxn ∈ Xm−1, and for all m > n, we can write

∥Axn − Axm∥ = ∥(B − I)xn − (B − I)xm∥ = ∥Bxn − xn −Bxm + xm∥
= ∥xm − (Bxm + xn −Bxn)∥ ≥ dist(xm, Xm−1) ≥ 1/2.

This shows that the sequence {Axn}∞
n=1 can have no Cauchy subsequence, a contradiction

to the compactness of A. □

Lemma 6.1.2. Let A be a compact operator on a Banach space. Then the range of I + A
is closed.
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6. Additional Topics 6.1. Fredholm Theory

Proof. Put B := I + A. Let {yn}∞
n=1 be a convergent sequence in the range of B, and write

y := limn→∞ yn. We want to show that y ∈ R(B). Since this is obvious if y = 0, we assume
that y ̸= 0. Denote K := ker(B), and let yn = Bxn for points xn.

First suppose that {xn}∞
n=1 contains a bounded subsequence. Then, since A is compact,

{Axn}∞
n=1 contains a convergent subsequence, say limi→∞ Axni

= u. Since Axni
+ xni

=
Bxni

= yni
, we infer that

lim
i→∞

xni
= lim

i→∞
{yni

− Axni
} = y − u.

Thus, by continuity, y = limi→∞ Bxni
= B(limi→∞ xni

) = B(y − u), and y ∈ R(B). This
completes the proof for this case.

Now assume that {xn}∞
n=1 contains no bounded subsequence. Then limn→∞ ∥xn∥ = ∞.

Since y ̸= 0, we may remove finitely many terms from the sequence {xn}∞
n=1 and assume

that xn /∈ K for all n ∈ N. Using the Riesz Lemma, construct vectors vn := kn + αnxn so
that ∥vn∥ = 1, kn ∈ K, and dist(vn, K) ≥ 1/2. Note that

Bvn = αBxn = αnyn.

Since ∥αnyn∥ = ∥Bvn∥ ≤ ∥B∥ and limn→∞ yn = y ̸= 0, the sequence {αn}∞
n=1 is bounded.

Since {vn}∞
n=1 is bounded, {Avn}∞

n=1 contains a convergent subsequence. By the Bolzano–
Weierstrass Theorem, {αn}∞

n=1 also has a convergent subsequence, and, reindexing if neces-
sary, we may assume that

lim
i→∞

Avni
= z, lim

i→∞
αni

= α.

Thus we conclude that Bvni
= (I + A)vni

= αni
yni

and
lim
i→∞

vni
= lim

i→∞
{αni

yni
− Avni

} = αy − z.

If α were 0, we would have limi→∞ vni
= −z and thus

B(−z) = lim
i→∞

Bvni
= lim

i→∞
(vni

+ Avni
) = −z + z = 0.

This would imply z ∈ K. On the other hand, this would imply
1/2 ≤ dist(vni

, K) ≤ ∥vni
+ z∥ = 0.

Hence α ̸= 0. Since limi→∞ Bvni
= αy, we have

lim
i→∞

B(vni
/α) = y.

Consequently, B(y − z/α) = y, and we have y ∈ R(B). □

Lemma 6.1.3. Let A be a compact operator on a Banach space. If I + A is injective, then
it is surjective.

Proof. Let B := I + A and let Xn := R(Bn). By the binomial theorem,

Bn = (I + A)n =
n∑
k=0

(
n

k

)
Ak = I +

n∑
k=1

(
n

k

)
Ak.

Since each Ak is compact for k ≥ 1, Bn is the identity plus a compact operator. Thus Xn is
closed by Lemma 2.

Next let x ∈ Xn for some n ∈ N. Then there exists u such that x = Bnu, and thus
x = Bnu = Bn−1Bu ∈ Xn−1.
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Thus
X := X0 ⊇ X1 ⊇ X2 ⊇ · · · .

We now show that X0 = X1.
By contradiction, suppose that all of the above inclusions are proper. By the Riesz Lemma,

there exists xn ∈ Xn such that ∥xn∥ = 1 and dist(xn, Xn+1) ≥ 1/2. Then, for n < m, we
have

∥Axm − Axn∥ = ∥(B − I)xm − (B − I)xn∥ = ∥xn − (xm +Bxn −Bxm)∥
≥ dist(xn, Xn+1) ≥ 1/2,

because xm ∈ Xm ⊆ Xn+1, Bxm ∈ Xm+1 ⊂ Xn+1, and Bxn ∈ Xn+1. This shows that
{Axn}∞

n=1 can contain no Cauchy subsequence, a contradiction to the compactness of A.
Thus not all of the above inclusions are proper, and for some n ∈ N, Xn = Xn+1. We

define n to be the first integer having this property. We show that n = 0.
By contradiction, suppose that n > 0. Let x ∈ Xn−1 be arbitrary. Then x = Bn−1y for

some y, and
Bx = Bny ∈ Xn = Xn+1.

It follows that Bx = Bn+1z for some z. Since B is injective by the hypothesis, x = Bnz ∈ Xn.
Since x was an arbitrary point in Xn−1, this shows that Xn−1 ⊆ Xn. But the inclusion
Xn ⊆ Xn−1 also holds. Hence Xn−1 = Xn, a contradiction to the choice of n. Thus n = 0,
and we have X = R(B). □

Theorem 6.1.4. Let A be a compact linear operator on a Banach space. Then the
operator I + A is injective if and only if it is surjective.

Proof. See Lemmas 1 and 3. □

The traditional formulation of the above theorem states that one and only one of these
alternatives holds:

(1) I + A is surjective;
(2) I + A is not injective.
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