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1. PRELIMINARIES

1.1. Partial Differential Equations. In this section we introduce the definition of a partial
differential equation.

A partial differential equation is an equation that involves an unknown function of two
or more variables and partial derivatives of this unknown function with respect to its
independent variables.

For the remainder of this section, fix an open subset (2 C R".

Let us recall that if v : 2 — R is any function, we write

w(z) =u(zy,...,x,), x €.
We may also consider vector-valued functions. If u : 2 — R™, we write
u(z) = (u'(z),...,u™(z)), =€

The function v’ is the i—th component of u, i =1,...,m.
We will need some notation for the partial derivatives of a sufficiently smooth function
u: 2 — R. Let us first recall that

CF(Q) = {u: Q — R:uisk — times continuously differentiable}
and

C*(Q) = {u € C*(€2) : D*u is uniformly continuous on bounded subsets of €2,
forall |o| < k}.
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Preliminaries 1.1 — Partial Differential Equations

See below for a review of multi-index notation. Recall also that we denote the partial
derivative of u with respect to z; by
ou u(x + he;) — u(x)

- ox; (z) = flllg(l) h ’

provided that this limit exists.
Next we recall multi-index notation.

Definition (Multi-index, Order of Multi-index). A vector of the form o = (o, ..., an),
where each component o, i = 1,. .., n is a nonnegative integer, is called a multi-index of order

la] = a1 + -+ ay.

The purpose of multi-index notation is to write the partial derivatives of u more cleanly.
Given a multi-index «, we define

o ololu(x N N
D U<I> = axal—(ai’;an = aml cee 833:71/(217)
1 n

Example 1.1.1. If u : R? — R is given by u(z) := 2232 and o = (1, 2), then
D%u(x) = 0,02 u(x) = 1811€*2, € R%

1Yz

Next, if £ > 0 is an integer, we write
DFu(z) := {D%(z) : |a| = k},

the set of all partial derivatives of order k. If we assign some ordering to the various
partial derivatives, we can also regard D*u(z) as a point in R, We define

1

|DFul = | > |Duf?
la|=k

Before giving the definition of a partial differential equation, we first give some special
cases of multi-index notation that will be useful to us later. If £ = 1, we regard the
elements of Du as being arranged in a vector, called the gradient vector of w :

Du = (g, ..., Uy,).

Therefore Du gives a vector field in R". If k = 2, we regard the elements of D?u as being

arranged in a matrix, called the Hessian matrix of  :

Q2w - Opaytl

D%y = : . :
Oppart -++ 02w

Therefore D?u € S™, the space of real symmetric n x n matrices.
Definition (Partial Differential Equation). An expression of the form

F(DFu(z), D" u(z), ..., Du(z),u(z),z) =0, x€Q (1.1.1) @
is called a k—th order partial differential equation, where

F-RYXRY ' .. xR'xRxQ—=R

2



Preliminaries 1.1 — Partial Differential Equations

is given and
u: =R
is the unknown.

Note that in @% do not actually assert that u € C*(Q), even though we are con-
sidering the k—th order partial derivatives of u. We will see why this makes sepse in §2.2.
We say that we solve the PDE (il ; i i ) if we find all functions u satisfying zﬁ)@ssibly
among only those functions satisfying certain auxiliary boundary conditions on some
part I' of the boundary 02 of 2. By “finding the solutions," we mean, ideally, obtaining
simple, explicit solutions, or, failing that, deducing the existence and other properties of

solutions.
We may also categorize PDE by their linearity /nonlinearity.

1.1-1

Definition (Linear PDE, Homogeneous). The PDE (@Walled linear if it has the form

j{: ao(z)D% = f(x) (1.1.2)

| <k

:1.1-2
for given functions a,(|o| < k), f : Q@ — R. Moreover, the linear PDE @‘lﬁalled homoge-
neous if f = 0.
1.1-1

Definition (Semilinear PDE). The PDE @Walled semilinear if it has the form

> ao(x)Du+ ag(D*u, ..., Du,u,x) = 0. (1.1.3)
|a|=k
:1.1-1
Definition (Quasilinear PDE). The PDE @‘zﬁalled quasilinear if it has the form
Z ao (D, ..., Du,u, ) D*u 4 ag(D* u, ..., Du,u,x) = 0. (1.1.4)

|al=k

:1.1-1
Definition (Fully Nonlinear PDE). The PDE @‘wﬁalled fully nonlinear if it depends
nonlinearly upon the highest order derivatives.

Lastly, we may also consider systems of PDE, which we briefly present here. A system
of partial differential equations is, informally speaking, a collection of several PDE for
several unknown functions.

Definition (System of PDE). An expression of the form
F(D*a(z), D*'u(z),...,Du(z),u(z),2) =0, xz€Q, (1.1.5)

is called a k—th order system of partial differential equations, where
F:R™ ) R™ 7 x o x R™ x R™ x Q — R™
is given and
u:Q—=R™ u=(u',...,u™)

is the unknown.

Here we are supposing that the system comprises the same number m of scalar equa-
tions as unknowns (u',...,u™). This is the most common circumstance, although other
systems may have fewer or more equations than unknowns. Systems are classified in the
obvious way as being linear, semilinear, etc., as above. Note again that we do not assert
that u € C*(Q; R™).

{eg:1.1-2

{eg:1.1-3

{eg:1.1-4

.

{eg:1.1-5



Preliminaries 1.2 — Convolution and Mollification

1.2. Convolution and Mollification. We next want to introduce tools that will allow us
to construct smooth approximations to certain functions. These will be important in the
proofs of the Sobolev space approximation theorems in §2.3.

Definition (£2.). If Q C R" is open and € > 0, we write
Qe = {x € Q: dist(z,0Q) > €}.
Thus we see that (), is the set of all points in (2 that are “away from the boundary."
Definition (Standard Mollifier). We define the standard mollifier » € C*(R") by
1
']7(37) — CeXp (W—_l) s ‘.T’ < 1,
0, [ > 1,
where the constant C' > 0 is selected so that [y, n dz = 1.
Definition (Mollifier). For each e > 0, we define the mollifier
1 x
) = o ().
Note that for each ¢ > 0, the functions 7. belong to C>*(R") and satisfy
/ nedv =1, supp(n.) C B(0,¢).

Definition (Mollification). If f € Li. (), we define its mollification

loc
fei=nex [ in Q..

Recalling the definition of the convolution of two functions, that is,

fe(x) = /Qne(fc—y)f(y) dy:/B(o )ne(y)f(x—y) dy

for all x € Q.. Recall also that

supp(fe) = supp(ne + f) C supp(n.) + supp(f).

Before presenting several properties of the mollification of a locally integrable function
f, the intuitive idea is to “smooth out" or “average out" f. Note that we only require that
f is locally integrable on €2, and these functions may be very irregular. When we take
the convolution of f with 7. and take the limit as ¢ — 0, we are “smoothing out" sharp
features of f while still remaining close —in a certain, specific sense, as we will see in the
following theorem — to the original (nonsmoooth) function f.

t1.2-1| Theorem 1.2.1 (Properties of Mollifiers). Let Q0 C R" be open and let f € Li (Q). Then
p p

loc
(i) fe € C®(Q);
(ii)) fo — f L"—a.e. as e — 0;
(iii) If f € C(2), then f. — f uniformly on compact subsets of (2;
(iv) If1 <p < +ooand f € L}, (), then f. — fin L] ().

loc

4



Preliminaries 1.2 — Convolution and Mollification

Proof.

i. Fixz € Q, i € {1,...,n}, and h so small that = + he; € (.. Since supp(n.) C B(0,¢),
there exists an open set U C C 2 such that 7.(z + he; — y) and n.(x — y) both vanish for all
y € Q\ U. Thus

fo(x + he}i) — Jelz) _ /Q(ne(f + he; —y) —n(x —y) f(y) dy

:Eln Q%[n(%)—n(x;y)}f(y)@
b (e

o (HeE) o (BY) 1 (z—y
}ng(l) h — €

Since

) = €"Op,ne(x — y).

uniformly on U, Lebesgue’s Dominated Convergence Theorem shows that the partial de-
rivative 0,, fe(z) and equals

O, () 2 / Oz — y)(y) dy

for all € Q.. Repeating this argument as necessary shows that D° f.(x) exists, and

D f(x /Do‘nex— (y) dy, x€Q

for each multi-index «.. This proves assertion (i).
ii. By Lebesgue’s Differentiation Theorem,

h_)r% lf(y) — f(z)|dy=0 (1.2.1) |{eg:1.2-1
T B(z,r)
for £"—a.e. x € ). Fixsuch a point x € (2. Then, noting that n(*-*) < Ceforally € B(z,¢),
@)~ @) = | [ (wnte —0)f ) dy - 1) [
B

B(z,e€)

Ne(x —y) dy’

/B . ne(x —y)f(y) — fz)] dy‘

1 (
<— 77
<c/ F(y) — F(2)| dy — 0

B(xz,e)

2
ase — 0, by @W required. This proves assertion (ii).
iii. Assume now that f € C(€2). Choose U CC {2, and then choo_%e gny U CC V CC Q

and note that f is uniformly continuous on V. Thus the limit in  holds uniformly for
x € U. Consequently the calculation in part (ii) implies that f, — f uniformly on U.

iv. Next assume that 1 < p < +ooand f € L} (€2). Choose an open set U CC 2 and, as
above, choose an open set V' so that U CC V' CC 2. We claim that for sufficiently small

) () — F()] dy

5



Preliminaries 1.3 — Boundaries

€ >0,
[ fello@y < N fllLeqwy.-
To see this, we note thatif 1 < p < +oo and z € V, then

/ ne(x —y)f(y) dy‘

B(z,e€)

g/' ne(e =)' “Snu(e — y) | £(v)] dy
B(z,e€)

< </B(“)ne(fv—y) dy>1_; : </B(“)m(w—y)|f(y)lp dy);,

‘fe(x” =

(1.2.2) |{eg:1.2-2

where we have used Holder’s inequality with conjugate exponents p and = on the RHS.

Since |’ B(ee) e(x —y) = 1, this inequality implies that

[ 16w Pm</(/ e = 1) dy) do
/If Ip(/ye)n(:ﬂ—y)dw) dy
= [ 1l dy

:1.2-2
for all € > 0 sufficiently small. This is @7
v. Now fix U CC V CC , § > 0, and choose g € C(V') such that

I = gllerry <0
:1.2-2
Then by Minkowski’s inequality and @Wz have
11 = flle@) < M1fe = gellewy + 1196 = gllowy + |9 = fllee@)

<2\f = gllzeevy + lge = gllr )
<20+ [|ge = 9l r(v)

Since g — g uniformly on U by assertion (iii) of the theorem, we have

limsup || fe = fllzo@) < 26,
e—0

as required, since U and V' were arbitrary. The proof is complete.

Remark.

:1.2-2
(i) If f € L}, (), inequalit @Wserts that mollification reduces the Lloc norm
(ii) Notice that Theorem
not dense in L>°(§2), so we may not necessarily be able to find g € C(2) such that
holds.

(1.2.3) |{eg:1.2-3

of f.

iv) does not hold in the case p = +oc. This is because C? 0) %s 53




Preliminaries 1.3 — Boundaries

1.3. Boundaries. In this section we give the definition of a C*— smooth boundary and
discuss its properties. We let {2 be an open, bounded subset of R", and k£ € N.

Definition (C* Boundary). We say that the boundary 02 of Q2 is C* if for each point x4 € 09
there exist r > 0 and a C* function v : R"~! — R such that, upon relabeling and reorienting the
coordinate axes if necessary, we have

QN B(xg,r) ={x € B(xo,7) : Ty > y(T1,...,Tp-1)}

We sometimes also write 0f) € C*.

FIGURE 1.3.1. The Boundary of 2.

Intuitively, the definition of a C* boundary 99 states that 99 is given by the graph of
a C*(R™!) function ~ and is one-sided, that is, no part of the domain ) can lie on both
sides of any part of the boundary 0.

Example 1.3.1 (A Smooth Boundary). Any open ball B(x,r) in R™ has a smooth (C*) bound-
ary forall n > 1.

We show this for the open unit ball Q := B(0, 1) in R?. To see this, fix any point (xo,y) € 02,
choose r = 1 > 0, and reorient the coordinate axes so that (x,yo) = (0, —1). Then

QN B((xo,50),m) = 20 B((0,-1),1)

3 3
:{(x,y)ERQ:—\/T_<x<§, —\/1—x2<y<+\/1—x2—1}

Define then the function v : R — R by
v(z) = —V1 =22
Clearly v € C>(—1,1). It remains to show that
Q= QN0 B((0,-1),1) = {(z,y) € B((0, =1),1) : y > 7(2)} =: 2a.

It is obvious that Qy C . For the reverse inclusion, let (x,y) € €. First note that if |x| > \/75,
then
3 1
y >7(x) x? > 1= "3

7



Preliminaries 1.3 — Boundaries

FIGURE 1.3.2. Qand QN B((0,—1),1).

But this is impossible since (z,y) € B((0,—1),1), and

2

3 1 3 1
V22 2>+ (1-2) =4/2+-=1.
x+(y+)_\/4+< 2) 1T
So then —%3 <z < ‘/73 Now if y > /1 — a2 — 1, we obtain another contradiction, for

Vi+(y+1)2> a2+ (1—22) =1,
Thus Qy C €y, so that 0y = Q, as required.
Example 1.3.2 (A Nonsmooth Boundary). We now give an example of a boundary that is not
C'. Define Q) C R? by
Q:=DB(0,1)\[0,1).

FIGURE 1.3.3. B(0,1) \ [0,1).

To see that O is not C', first note that xo := 0 € 9. Let r > 0. Then
QN B(0,r) = B(0,min{1,7}) \ [0, min{1,r}).

min{1,r} +o0

Suppose by contradiction that 0 is C'. Put ro := === and choose any sequence {x, } >,
such that x,, > 0, x,,, — 0, and (x,,,m0) € QN B(0,r) for all m € N. Since 9 is C*, there exists
v € CY(R) such that

y>~(x) forall (xz,y) € B(0,r).

8



Preliminaries 1.3 — Boundaries

By continuity,
ro > lim (@) =7(0).
But note also that (z,,,, —ro) € QN B(0, ) for all m € N. Thus
—ro > lim ~(z,)=7(0),

m—+00

a contradiction, because ry > 0.
The definition of an “analytic boundary" is the obvious one.

Definition (Analytic Boundary). We say that the boundary OS2 of €2 is analytic if for each point
xo € O there exist r > 0 and an analytic function v : R"~' — R such that, upon relabeling and
reorienting the coordinate axes if necessary, we have

QN B(zg,r) ={x € B(xo,7) : p > y(x1,...,Tn_1)}

We will often have occasion to consider the outer unit normal when applying the
Gauss—Green theorem or the divergence theorem.

Definition (Outer Unit Normal). If 9Q is C', then along OS2 is defined the outward pointing
unit normal vector field
v= (.. .,v").
Definition (Outer Normal Derivative). Let u € C'(Q2). We call
ou

$Z:V'DU

the outward normal derivative of u.

We will often consider BVPs with Dirichlet boundary conditions, that is, equations of
the form
F(D*u(z), D¥'u(x), . .., Du(z),u(z),z) = 0, x €,
ulaq = g,

where g is some given function. In this case the outer unit normal along 0f2 is
Du 1 ou ou
\Du| — |Dul (axl" o 635”) ’

provided that Du # 0.

Flattening the Boundary. We will frequently need to change coordinates near a point of
01 so as to “flatten out" the boundary. To be specific, fix xy € 052, and choose » > 0 and
v € C*(R"1) as above. Define then

Yy =x; = ®(z), i=1,...,n—1,
Yn = Tpn — 7($1, s 7xn—l) = (I)n(x)’

and write
y=®(z).
Similarly, we set
{xi:yi = U(y), i=1,...,n—1
T = Yo+ YY1, Yn1) = U (Y)

)
Y




Preliminaries 1.3 — Boundaries

and write

\‘P/

. -coordinates
x-coordinates 2 4

FIGURE 1.3.4. Flatting out the boundary.

Then ® = ¥, and the mapping x — ®(z) = y “straightens out Q" near z,. Observe
also that

1 0 0
Dd = '
0 1 0
Yy Yz 1
and

1 0 0
DV = ,

0 1 0

Yy Vyn1 1

so that det D® = det DV = 1.

10



Sobolev Spaces 2.1 — Holder Spaces

2. SOBOLEV SPACES

In this section we mostly develop the theory of Sobolev spaces, which we will see to be
the proper settings in which to apply ideas of functional analysis when considering PDE.

Keeping in mind eventual applications to wide classes of PDEs (we want a theory that
deals with linear/nonlinear elliptic, parabolic, and hyperbolic equations), we sketch out
here our overall point of view. The intention is to take various specific PDEs and recast
them abstractly as operators acting on appropriate normed linear spaces. We can symbol-
ically write

A: X =Y,

where the operator A describes the structure of the PDEs, including possibly boundary
conditions, and X, Y are normed linear spaces of functions. The advantage of this for-
mulation is that once our PDE problem has been interpreted in this form, we often can
employ the general principles of functional analysis to study the properties (including
solvability, existence, and uniqueness) of various equations involving the differential op-
erator A. We will see that the most difficult work is not so much the invocation of func-
tional analysis, but finding the “right" function spaces X and Y and the “right" differen-
tial operators A. Sobolev spaces are designed specifically to make this choices work out
nicely.

As mentioned above, Sobolev spaces are useful for studying linear elliptic, parabolic,
and hyperbolic PDE, as well as nonlinear elliptic and parabolic PDE.

2.1. Holder Spaces. Before studying Sobolev spaces, we first consider the simpler Holder
spaces.

Throughout this section, we assume that {2 C R" is openand 0 < v < 1.

We first recall the definition of Lipschitz continuity:

Definition (Lipschitz Continuity). A function v : 2 — R is said to be Lipschitz continuous
if there exists some constant C' > 0 such that

lu(z) —u(y)| < Clz—y|, =z,yeld (2.1.1) |{eg:2.1-1
1-1

2.1-1 22
Note that if (ﬁ_h_olds, then clearly u is continuous, and more importantly, @7
provides a modulus of C(_)%tip_qity. It turns out to be useful to consider also functions

satisfying a variant of

Definition (Holder Continuity). A function u : Q@ — R" is said to be Holder continuous
with exponent v if there exists C' > 0 such that

lu(z) —u(y)| < Cle —y|?, xz,y€ Q. (21.2) |{eq:2.1-2
Let us recall here a simple but important definition from functional analysis.
Definition (Norm). Let X be a linear space. A function || - || : X — [0,400) is called a norm
on X if the following three conditions hold:
(i) ||u|| = 0 if and only if u = 0;
(ii) ||yu|| = |y|||u|| for all w € X and v € R (or C);
(iii) ||u + v|| < ||u]| + ||v|| for all u,v € X (triangle inequality).

11



Sobolev Spaces 2.1 — Holder Spaces

Definition (| - [[¢))- If u : @ — Ris bounded and continuous, we write
||U||C(ﬁ) 1= sup |u(z)|.
e
Definition (y—th Holder Seminorm | - ’cw@))- The ~—th Holder seminorm of a function u :

Q> Ris {|u(x)—u(y)|}
= SuUp T (-

|U|CO,~/( ‘iL‘ _ Z/‘

2

Note that | - |0 g) is indeed only a seminorm, and not a norm, as any nonzero constant
function u : Q — R satisfies |u¢o. @) = 0.

Definition (y—th Holder Norm | - [|co. q))- The y—th Holder norm of a function u : Q — Ris
[ulleon@ = lulleg) + luleon @)
Definition (Holder Space C*7(Q)). The Holder space
Ck1(Q)
consists of all functions u € C*(Q) for which the norm
”UHckw(ﬁ) = Z HDO‘uHC@) + Z ‘Dau|c0w(§) (2.1.3)
<k lal=k

is finite.

Note that the space C*7(Q) consists of all functions u :  — R that are k—times contin-
uously differentiable and whose k—th partial derivatives are bounded and Holder con-

tinuous with exponent . These functions are well-behaved, and furthermore we want to
show that C*7(Q) is a Banach space.

Definition (Banach Space). A Banach space is a normed linear space which is complete.
Theorem 2.1.1. The Holder space C*(Q) is a Banach space.

Proof. 1t is clear that || - [|cx.- @) is @ norm on CFY ().

It remains to show that C*7(Q) is complete. Let {u,,}*, € C*7(Q) be a Cauchy se-
quence. Recalling that C*(Q) is a Banach space under the norm

||U||ck(§) = Z ||Dau||c@)
la|<k
and Ck7(Q) C C*(Q2), define u : © — R by
w:= lim u, inC*Q). (2.1.4)

m——+00

7

Wg 1nyst first show that u € Ck7(Q). Fix a multi-<index o with |a| = k. Note that by

D*u,, = D% uniformly on €.
Thus, forany z,y € Q, x # yand m € N,
|[Du(z) — Duly)| _ [Du(x) = Dum(2)| | |D%m(2) — D (y)|
[z =yl -

+
|z —y| |z —y|

12
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Sobolev Spaces 2.2 — Sobolev Spaces
| Dum(y) — D*u(y)|

|z =yl
D*u(x) — D*u,,(x D*u,,(y) — D%
100 = D@ D% uny) = Duly)]
[z —y|? [z —y|"

By the uniform convergence, we may choose m, € N such that for all m > m,
[Du(x) — Dy ()] N | D% tm, (y) — D*u(y)]
|z —yp |z —yp

<1

Hence,
| D%u(x) — D*u(y)|
[z —yl*
This is for all z,y € 2, x # y so that taking the supremum on the LHS over all z,y € €,
x # y, and multi-indices |o| = & gives

< 1+ | D% oy -

[ D%ulcon @y < 14 DUy leon @) < +00,
as required.
+oo

Finally, we show that { D%u,, }>
any z,y € Q, x # y,and m € N. Then

[(D%Um — Du)(x) — (D%t — Du)(y) _ |D%um(x) — D*u(x) — D%up(y) + Du(y)]

converges to D%u in the Holder seminorm. Choose

|z —y| |z —y|
| DUy, () — Du(2)| N | D% (y) — Du(y)|
- |z —y| lz —y|
— lim | D%y (x) — DUp ()] N | Duy(y) — D% ()] ’
I=++00 |z —y| |z —y|”

and, since { D%u,, },"* is Cauchy in C%7((2), the RHS vanishes by taking the limit as m —
+00. Hence

D%u,, — D*u in C*7(Q),
as required. The proof is complete. O

2.2. Sobolev Spaces. Holder spaces as introduced in §5.1 are unfortunately not often
suitable settings for PDE theory, as we generally cannot make good enough analytic es-
timates to demonstrate that the solutions we construct actually belong to such spaces.
What are needed are some other kinds of spaces, containing less smooth functions. In
practice we must strike a balance, by designing spaces comprising functions which have
some, but not too great, smoothness properties.

What we will end up defining is a space of functions v : @ — R" with k “weak deriva-
tives." That is, the functions belonging to this space may not have derivatives in the clas-
sical sense, but have “derivatives" that behave nicely with respect to integration against a
certain class of functions.




Sobolev Spaces 2.2 — Sobolev Spaces

2.2.1. Weak Derivatives. As mentioned, we start by weakening the notion of partial deriva-
tives.

Definition (C2°(€2), Test Function). We denote by
C(©)

the space of all infinitely differentiable functions ¢ : 2 — R with compact support in (2. We call a
function ¢ € C°(12) a test function.

Motivation for Definition of Weak Derivative. Assume that we are given a function
u € C1(Q). Then if ¢ € C*(Q2), we see from the integration by parts formula that

/u@i d:c——/uxicﬁdx—i—/ v’ dS——/uxl(b de, 1=1,...,n, (2.2.1)
Q Q Biy) Q

where the boundary term vanishes because ¢ has compact support in 2. More generally

now, if k is a positive integer, u € C*(Q), and @ = (o, ..., ,) is a multi-index of order
la| = a1 + -+ + a,, <k, then
/ uD%¢ dx = (—1) / D%u¢ dz. (2.2.2)
Note that the equality in %;%[ds because '
po=2.

Ox{*  Oxon
and we may apply formula (2.2.T) [of times.

We next assume that formnla (2.2.2) holds for some function v : 2 — R and every test
function ¢. Note that in we required that u be k—times continuougly differentiable,
and we consider now if this requirement may be weakened, thaj is, if (Iﬁ%éi may still be
true even if u is not C*—smooth. Note that the LHS of :E%%; makes sense if u is only
locally integrable, as ¢ and all its derivatives have compact support in (2. The problem
is the RHS: if u is not C*—smooth, then the expression “D*u" has no obvious meaning.
We resolve this issue by formulating the definition of a “wea derjvative” of u, thatis, a
locally integrable function v : 2 — R for which formula olds, with v in place of
D%u.

1
loc

Definition (Weak Derivative). Suppose that u,v € L
that v is the o™ —weak partial derivative of u, written

D% = v,

(Q) and « is a multi-index. We say

provided that
/ uD*¢ dx = (—1) / v dx (2.2.3)
Q Q
holds for all test functions ¢ € C°(12).

1

That is, if we are given a function,u € L,,.(£2) and if there happens to exist a function
v € L} .(Q) which satisfies (%'_ﬁ all test functions ¢, we then say that D%u = v in the
weak sense. If on the other hand there does not exist such a function v, then evidently u
does not possess an o' —weak partial derivative.

Recall that if « has a classical derivative, it is clear that this derivative is unique. We

show that the same is true for weak derivatives, at least up to sets of measure zero.

14
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Lemma 2.2.1 (Uniqueness of Weak Derivatives). Suppose that v € L{ () possesses a weak
o partial derivative v. Then v is uniquely defined up to a set of measure zero.

Proof. Suppose that v, w € Lj, () satisfy

loc

/QuD“qb dr = (1)l /Qvgb dr = (—1)k /qub dx
for all ¢ € C°(Q2). Then evidently
/(v—w)qﬁ dr =0 (224) |{eg:2.2-4
Q

forall ¢ € C°(Q2), so that v = w a.e. The proof is complete. O

Example 2.2.1. Let n =1,Q = (0,2), and

x, O<ax <1,
u(x) ==
1, 1<z <2

Note that w is not differentiable at x = 1 in the classical sense. However, differentiating the
piecewise components of u, we might expect that

, 1, 0<x <1,
u'(x) =
0, l<zx<?2

to be the weak derivative of u. > 23
To verify this, choose any ¢ € C°(2). By (%',W must show that

2 2
/ ug dr = —/ ¢ dr.
0 0
Integrating by parts and using the fact that ¢ vanishes at x = 0 and x = 2, we calculate

2 1 2
/ ud dx = / ¢ dx + / ¢ dx
0 0 1

— (1) — $(0) - / b da+ 6(2) — 6(1)

1
= —/ ¢ dx
0
2
= —/ u' ¢ dz,
0
as required.

Example 2.2.2. Letn =1,Q = (0,2), and

T, O<ax <1,
u(z) ==
2, 1<z <2

. . ) . . i2.2-1
Note again that w is not differentiable at x = 1. Based on the procedure in Example %szgkt

expect that
1, O<z<l,
v(x) =
0, l<x<?2

15
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is the weak derivative of u. However, let us show that u does not have a weak derivative.
For motivation, let us first choose a test function ¢ € C°(2) and observe that

2 1 2
/ ug do = / ¢ dr + / 2¢" dw
0 0 1

— 6(1) /¢daz+2¢(>—2¢<>
:—/Olvgzﬁdx—qﬁ(l)
——/Olvgbdx—dl(qj).

Intuitively, the problem is that the Dirac delta distribution is not a function — it is a distribution.
To verify that u possesses no weak derivative, suppose by contradiction that there exists v €

Li (Q) such that

loc

/2u¢/dx:—/2v¢dx (2.2.5) [{eg:2.2-5
0 0

forall ¢ € C(S2). Then

2 2
—/ v(bda::/ ug’ dx
0 0
1 2
:/xgb'dx—f—Q/ ¢ dx
0 1

— (1) — $(1) - /1¢da:+2¢<> 6(1)
/¢dZE— (2.2.6) {eq:2.2-6

Choose then a sequence {¢,, }.°% C C°(Q) such that
0< ¢, <1, on(l)=1 o¢n(zr) = 0forall z#1.
But then replacing ¢ with ¢, in (%% taking the limit as ¢ — +o0, we find

2 1
1= lim ¢p(1)= lim [/ wmdx—/ Om d:c} LRCg
0 0

m——+00 m—-+00

a contradiction.

2.2.2. Definition of Sobolev Spaces. Fix 1 < p < +o0o0 and let £ be a nonnegative integer.
With the definition of a weak derivative in mind, we now define certain function spaces
comprised of functions which have weak derivatives of various orders lying in various
L? spaces.

16
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Definition (Sobolev Space W*?((Q2)). The Sobolev space
W (Q)

consists of all locally integrable functions u :  — R such that for each multi—index o with
la| < k, D*u exists in the weak sense and belongs to LP(2).

Note that choosing || = 0 implies that u € LP(2).

Remark.
(i) If p = 2, we write
H*(Q) == WH"(Q), ke N,.
The letter H is used, since, as we will see later, H*(Q) is a Hilbert space. Note also that
H(Q) = L*(Q).
(ii) We identify functions in W"?(Q) which coincide L"—a.e.

Definition (|| - ||wr.r(o)). If u € WFP(2), we define the W*?(Q)—norm of u by

P
( > fQ | D>ul? dw) , 1<p<+o0,
HUHW’W(Q) =

la| <k

Z ||Dau||Loo(Q), P = —+00.

Notice that the W*?(Q)—norm of a function u € W*?(Q) is the Minkowski norm
of the L?(2)—norms of all weak derivatives of u if 1 < p < +o00, and the sum of all
L*>(Q)—norms of all weak derivatives of u if p = +oc.

Another choice of norm on W*?(Q) is given by

, 2. [D%ullLro, 1 <p < oo,
||u||Wk7P(Q) 1= q lelsk .
maxja|<k || D*ul| L= (@), p = +0o0.
It may be shown that the norms || - ||yyx.0(q) and || - ||{m,p(9) are equivalent.

Definition (Convergence in W*?(Q)). Let {u,, },)>%, u € W*P(Q). We say that u,, converges
to w in W*P(Q), and write
U — u in WEP(Q),
provided that
mlirilm |t — ullwrp) — 0.
Definition (Convergence in W;"”(Q)). Let {u,,} 5>, u € W*?(Q). We say that u,, converges
tow in WFP(Q), and write

loc

U — u in WP (Q),

loc
provided that
Uy —u in WEP(U)
forallU CC Q.
Definition (I, ?(Q)). We define W,"(Q) to be the closure of C°(2) in W*»(2), that is,

WP (Q) == WhP N C2(Q).

17
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Thus v € W,*(Q) if and only if there exists a sequence {u,,}:>, C C*(Q) such that

Uy, — u in WHP(Q). We will see later that we can think of W)”(Q) functions as W*? (1)
functions whose first £ — 1 partial derivatives “vanish at the boundary of 2" (specifically,
we will see that they have zero trace), that is, all functions u € W"?(Q) such that

“D*u=00n 0" forall |a| <k — 1.
Remark (Notation). We will write
HE(Q) = WE2(Q).

In fact if n = 1 and Q is an open interval in R, then v € W?(Q) if and only if u is
equal £'—a.e. to an absolutely continuous function whose ordinary derivative (which
exists L'—a.e.) belongs to L?(2). This simple characterization is however only available
for n = 1. In general a function can belong to a Sobolev space and yet be discontinuous
and/or unbounded.

Example 2.2.3. Tuke ) := B(0, 1), the open unit ball in R™, and let
u(z) =z[™ ze€Q xz#0.

We consider the values of o > 0, n, and p for which u belongs to W*(Q). Note first that u is
smooth away from x = 0, with

ou o —ax;
R — - ——. 2 ;= —_—, 07
ox; (z) 2|z|a—2 . ||t T

and thus

_ _ldf
|DU($)| - ’(’E‘a+1.

Now fix ¢ € C2°(2) and € > 0. Then integration by parts gives

/ UQ,, dr = —/ Uy, @ dx + / ugr' ds,
Q\B(0,¢) O\B(0,¢) 9B(0,¢)

where v := (v, ..., v") denotes the inward pointing unit normal on 9B(0,¢). Now if a + 1 < n,
then |Du(z)| € L*(Q). In this case
/ ugv' dS| < / lugr’| dH™ ' < || ¢ L€ / dH"
0B(0,¢) OB(0,¢) 0B(0,¢)

< Ce 17 S5 0ase—0

/uqf)wi dr = —/uwlgb dz
Q Q

forall ¢ € C(Q2), provided that 0 < a < n — 1. Furthermore |Du(z)| = Ix}% € LP(Q) if and
only if (o + 1)p < n. Consequently u € WP (Q) if and only if o < =k, since =oF < n —1.1In
particular u ¢ W'?(Q) for any p > n.

Example 2.2.4. Let {r;,}{2; be a countable, dense subset of Q2 = B(0, 1). Write

sincen — 1 —a > 0. Thus
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Then u € WHP(Q) for a < *2.If 0 < a < ™2, we see that u belongs to W'P(2) and yet is
unbounded on each open subset of (2.

The last example shows that although a function u belonging to a Sobolev space pos-
sesses certain smoothness properties, it can still be rather badly behaved in other ways.

2.2.3. Elementary Properties. Next we show certain properties of weak derivatives. Note
here that these rules are obvious for smooth functions, but functions belonging to Sobolev
spaces are not necessarily regular, and thus we have to rely only on the definition of weak
derivatives.

Theorem 2.2.1 (Properties of Weak Derivatives). Assume that u,v € W*?(Q) and let o be a
multi—index with |«| < k. Then
(i) D € Wrlebp(Q) and DP(D*u) = D*(DPu) = D Pu for all multi-indices «, 3 with
af + (8] < k;
(it) Foreach \,pu € R, u+ pv € WHP(Q) and D*(\u + pv) = AD%u + pD%v;
(iii) If U is an open subset of 2, then u € W*?(U);
(iv) If C € C(Q), then Cu € W*P(Q) and

D*(Cu) = Z (g) DP¢D* Py (Leibniz’s formula), (2.2.7)
BLa

(3) = ma=ar
Proof.

i. The first assertion in (i) is clear by choosing any multi-index g such that || + |5]| = k
and applying the definition of weak derivatives and W*?((Q).
To prove the second assertion, fix ¢ € C>°(Q2). Then DP¢ € C°(f2), and so

/D“uD% dx = (—1)|a/uDa+ﬁ¢ dx
Q Q
— (_1)|a(_1)a+ﬁ|/(Da+6u>¢ dr

Q

where

= (=1)/l(=1)2letbl / uD*"P ¢ dx
Q

:(—1)|B/uDa+ﬂgb dx.
Q

Thus D?(D%u) = D*"Py in the weak sense. Similarly D*(DPu) = D>y in the weak
sense, which proves (i).

ii. The first assertion in (ii) simply states that W"P((2) is a real linear space, which is
clear from linearity of the integral. The second assertion also follows by linearity of the
integral as follows: for any ¢ € C:°(2), we have

/ D*(\u + )¢ do = (—1)1 /(/\u + pw) D% dx
Q Q

19
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— (—1)'“')\/UD°‘¢ dx+(—1)|a|u/vD°‘¢ dx
Q Q

=\ D~ d D* d
/Q< W) xw/Q< v)6 da
= /(/\Do‘u—l—uDav)gb dx.

Q

Since this is for all ¢ € C°(2), (ii) follows.
iii. Assertion (iii) follows immediately by taking the restrictions of © and D“u from (2
to U.
:2.2-7
iv. To prove (%fwe use induction on |«|. First suppose that |o| = 1. Choose any
¢ € CX(Q). Then

[ cupods = [ uD"(co) ~ u(D"0)o do
Q Q
_ / (DuC + uD?C)é da.
Q

Thus D*(¢u) = D*ul+uD"(, as required. Note that on the LHS we have used the product
rule on (¢ since we cannot necessarily apply the product rule on u¢. > o7

Assume now for the induction hypothesis that [ < k and that formula @—h_dds for
all || < [ and all functions ( € C(2). Choose a multi-index a with |a| = [ 4+ 1. Then
a = [+ for some || = [, |7| = 1. Then for any ¢ € C2°(12),

/Q CuD“¢ dx = / DP(DV¢) dx

B/Z

o<p

( >D" (DP~uD"¢ dx

(by the induction hypothesis)

p)lBh / 3

o<p

( )D7 (D°¢DP~u) ¢ da

(by the induction hypothesis again)

a|/Z( ) DPCD&*Pu_FDUCDanu} ¢dl’

o<p

(where rho := o + )

= (=1)l /Q [Z (Z‘)Dowwu] ¢ dz,

o<«

20
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since

(2)+(0)-()

The proof is complete.

O

-1
Theorem shows that many of the familiar rules of calculus apply to weak deriva-
tives. The following theorem states that the Sobolev spaces are in fact Banach spaces.

Theorem 2.2.2. Foreach k € Nyand 1 < p < 400, the Sobolev space Wk»(Q) is a Banach space.

Proof.
i. We first of all check that || - ||y« () is @ norm. Clearly

[ Aullweno) = [Alllullwer )
forall A € R, and
HuHka(m =0 lf and only lf u=0L"—a.e.

Next assume that u,v € W*P(Q). Then if 1 < p < 400, Minkowski’s inequality implies

that
1
lu+ vllwer @) = Z D% + D[], g
o<k
1
M.I. :
< | 2 (10 ullzagey + 1Dl o)
o<k
M.I. '
< Z HDQUH’LP(Q) + Z ‘|Dav||1£p(9)
| <k o<k
= |lullwrr@) + 0]lwre)-
The case p = +oo follows immediately from the fact that || - ||z~ is @ norm. Thus

| - [[wra(q) is in fact a norm on W*#(Q).

ii. It remains to show that W"?(Q) is complete. Assume that {u,,},;>°, € W*?(Q) is a
Cauchy sequence. Then for each |a| < k, {D%u,, },'*, is a Cauchy sequence in L?((2). Since
L?(€2) is complete, for each multi-index a with |a| < k there exist functions u, € L?(2)

such that
D%y, — uy  in LP(Q).
In particular, notice that
0) = U in LP(Q)

iii. We now claim that
we WP (Q), D =u,, |af <k
To show this, fix ¢ € C°(2). Then

/ uD%¢ dx "2 lim [ w,D% dx
Q

m——+00 Q

= lim (—1)|Q/Daum<;5dx
Q

m——+00

(2.2.8) |{eg:2.2-8

21



Sobolev Spaces 2.3 — Approximation

L.I;C. 1\l de.
(—=1) /Quagb T

:2.2-8
Thus @ﬁ/alid, which shows v € W"?(Q). But then D*u,,, — D%u in L?(2) for all
multi-indices |a| < k, so that u,, — uin W"P(Q), as required. The proof is complete. [

2.3. Approximation. We want to avoid returning to the definition of weak derivatives in
the proofs of future results. We want to develop some systematic procedures for approx-
imating a function in a Sobolev space by smooth functions. The method of mollification
in §1.2 provides a way to do this.

To be more precise, we want conditions that also us to approximate a function v €
WHP(Q) by a sequence {u,,}/>% C C=(£2). The advantage is this. Smooth functions have
many “nice" properties, and being able to write a Sobolev function as the limit of smooth
functions allow us to exploit these properties, so long as we may apply a suitable conver-
gence theorem (usually Lebesgue’s Dominated Convergence Theorem) when we pass to
the limit of integrals.

For the remainder of this section, fix £ € Nand 1 < p < +oc0. Recall that

Q. = {x € Q: dist(z,00) > €}.

2.3.1. Interior Approximation by Smooth Functions.

Theorem 2.3.1 (Local Approximation by Smooth Functions). Assume that v € W"r(Q) for
some 1 < p < 400, and let
Ue =M xu i1 )
be the mollification of u. Then
(i) u. € C*(€) for all € > 0;
(ii) ue — win WP () as € — 0.
Proof.

. . " . . ~1
i. Assertion (i) is a direct consequence of Theorem @U
(ii). We next claim that if |a| < k, then

D%, =n.*x D in ., (2.3.1) |{eg:2.3-1

thatis, the ordinary ath— partial derivative of the smooth function . is the e—mollification
of the o™ —weak partial derivative of u. To see this, first notice that for any z € .,

Du,(a) = D (/w— Dul) dy )
/D"‘ ne(z —y))u(y) dy
= [=1"Dg .o = ))u) dy
— (-0 [ Dyoto — g)uty) dy.
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Now for any fixed x € (1, the function ¢(y) := n.(x — y) belongs to C:°(2), for supp(7n.) C
B(0, ¢). Consequently the definition of the a"—weak partial derivative of u implies that

/Q D2 (e — y))uly) dy = (~1) / ne(z — y)D%u(y) dy.
Thus
Dfug(z) = (~1) / D2 (e — y))uly) dy

= (—1)% /Qne(w —y)D%(y) dy

e = (ne * D*u)(x).
This proves '

iii. Now choose any open set U CC (). By Theorem @W) and @Te have that

%‘2.3—1
D%, =" D%, — D% in LP(U)

as e — 0, for each |a| < k. Consequently

e = ullfyrnry = D 1D ue = Dullf, ) —
la| <k
as € — 0. This proves assertion (ii). The proof is complete. O

-1
Note that we cannot expect Theorem ﬁtﬁ hold in the case p = +oo since C(U) is not
sense in L>(U) for any open set U C R".

2.3.2. Global Apprixmation by Smooth Functions. Next we show that we can find smooth
functions which approximate a function in W"*?(Q) and not just in W/”(Q). Note in the
following that we make no assumptions about the smoothness of 9.

Theorem 2.3.2 (Global Approximation by Smooth Functions). Assume that ) is bounded,
and suppose as well that u € WHP(Q) for some 1 < p < +oo. Then there exists a sequence
{um }+2, € C(Q) N WHFP(Q) such that

Uy — u in WEP(Q).

Note that we do not assert that u,, € ()
Before giving the proof of Theorem we need a definition.

Definition (Partition of Unity). Let Q2 C R™ be open and bounded, and let {U;};:% be any open
cover of ). A partition of unity of (2 subordinate to {U;},.% is a set {¢;}1F C C>(Q) such
that
(i) 0 < (i(x) < 1forall x € Q;
(ii) ¢ € C(U;) forall i € N;
(iii) S Gi(z) = 1 forall z € Q.
A partition of unity always exists whenever a space is Hausdorff and paracompact

(actually, this implies that the space is normal). Recall also that every metric space is
compact.
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Proof.
i. Put

1
U = {x € Q : dist(x,00Q) > —,} , 1E€N.
i
Note that 2 = U;ff U;. Write V; := U;,3 \ Ui41, and note that V; is open for all i € N.
Choose also any open set V, CC Q such that Q = [J;"% V;. Now let {(;},/5 be a smooth

partition of unity subordinate to the open sets {V;} %, that is,

+oo
021 ono. (2.3.2)
1=0

ext choose any function u € WHP(Q). Note that supp(¢;u) C V;, and, by Theorem
iv), Gu € WhP(Q) for all i € Ny.
ii. Fix 6 > 0. Choose then ¢; > 0 so small that u; := 7, * ((;u) satisfies

{Hul - CZUHW’“?(Q) < #7 (NS N07

233
Supp(uz) - VVi? 1€ N7 ( )

where W; := U;;4\U; D V;, i € N. Note that such u; exist by Theorem @_hote also that
u; € C(Q) for all 7 € Ny.

iii. Write v := 3% ;. Notice that v € C>(Q), since for each open set U CC Q there are
at most finitely many terms in the sum, since the seEuggcg_gWi}j"f is increasing. Since

u =¥ ¢u, we have for each open set U CC Q by

+oo
v —ullwrr@y < Z |w; — Coullwens @)
i—0

00 1
S 0 Z 2i+1
=0

= .

Taking the supremum over all open sets U CC (2, we conclude that
v — ullwrr@) <9,

which shows that C>*(Q) N W*P(Q) is dense in W*?(Q). The proof is complete. O

2.3.3. Global Approximation by Smooth Functions Up to the Boundary. We now want to ap-
proximate a function u € W*?(Q) by functions belonging to C>({2) rather than only
C>=(9). Assume that 2 is also bounded. Recalling that C>*(2) is then the collection of all
u € C*(92) such that D*u is uniformly continuous on §2 for any multi-index «, this means
that our approximating sequence is smooth up to 9€2. Therefore, such an approximation

requires some condition on 2.
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Theorem 2.3.3 (Global Approximation by Functions Smooth Up to the Boundary). Assume
that Q) is bounded, with 02 € C', and let uw € W*P(Q) for some 1 < p < +oo. Then there exists
a sequence {u,, },;->°, C C>(Q) N W*P(Q) such that

Uy — u in WEP(Q).

Proof.

i. Fix any point 2o € 99. Since 9 € C', there exist a radius » > 0 and a function vy €
C'(R"';R) such that, upon relabeling and reorienting the coordinate axes if necessary,
we have

QN B(zg,r) ={x € B(xo,7) : xp > y(T1,...,Tn1)}

Put U := QN B(xo, 5).
ii. Define the shifted point

T =T+ Xee,, x €U, €>0,

and note that, for some fixed, sufficiently large A > 0, the ball B(z., €) lies in Q N B(zy, )
for all z € U and e > 0 sufficiently small.

B(xe,e)

FIGURE 2.3.1. A ball around z( and z..

Define also the function u.(z) := u(x.), for all z € U. Note that u. is defined on U — \ee,,
and is the function u translated a distance \e in the ¢, direction. The idea is to “leave
room" to mollify within €.

iii. Since €2 is bounded, 02 is compact, and we may cover 02 with finitely many open
sets U; := QN B(z;,%3),7 = 1,...,N. Choose also any open set Uy CC €2 such that Q C
UﬁV:O Ui.

iv. Choose § > 0, and let {¢;}Y, be a smooth partition of unity subordinate to the open
sets {U;} Y, that is,

0<G <1, GelxUy,

N
Y. ¢G=1 onf.
i=0

Note in particular that u(, has compact support in U, CC 2. By mollifying u¢,, we may
find a function vy € C2°(12) such that

lvo — ulollwrr) < 9. (2.34) |{eg:2.3-4

Since vy € C°(12), then clearly vy € C*(12).
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v. Next, for each ¢ > 0, define vi = ne % u.(;. We claim that

lim lim v~7 u¢;  in WHP(Q). (2.3.5) [{eg:2.3-5

e—=0e—0

First notice, since ¢; € C2°(U;), and recalling that
supp(vz,) C supp(ne) + supp(uc;) C B(0, €) 4 supp(uc(;),

we may choose ¢ > 0 so small that v2, € C°(U;). Now observe that

[vE, — uGillwra) < [[vE. — ueillwrny + luel — ulillwrr@)-

Taking the ljmitas € — 0, the first term on the RHS vanishes by reasoning similar to that

of Theorem or the second term, we have by Theorem
[JueGi — uCl”Wkp Z D% (ueGi — uGi) [I7n
|| <K

=Y 1D ((ue = w)G)7s

|| <K
p
P> z(g)mue_uw@.
la|<k | B<c LP(Q)
<y Z( )ouDﬁ .
la|<k BLa

where the RHS follows because (; € C>°(U;). Since u, is a translation of u, D%u. = (D"u),
for all multi-indices 3, and translation is continuous in L?(f2), the RHS vanishes in the
limit as € =0 "J;h145 proves (VB) B

vi. By ([é 3. 4) and (2.35), there exist functions {v} ¥, C C>(Q2) such that

[|vi — UQ‘HWk,p(Q) <90

for each i = 0,...,N. Write v := Y jv;. Clearly v € C>®(Q). Since u = Zfio u¢;, then
evidently

N
”U - UHW’W(Q) < Z ”Uz - UQHWk,p(Q)
i=0

< (N +1)o.
The proof is complete. O

2.4. Extensions. We want to extend functions in the Sobolev space W'?() to functions
in the Sobolev space W?(R"), for 1 < p < +oo0.

This requires some caution. Notice for instance that simply extending a function v €
WP(Q) to be zero in R™ \ Q2 generally will not work, as this might create such a bad
discontinuity along OS2 that the extended function no longer has a weak first partial de-
rivative. We instead must formulate a way to extend functions v € WP(Q) in a way
which preserves the weak derivatives across 0f2.
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Theorem 2.4.1 (Extension Theorem). Assume that 1 < p < +oo, and also assume that € is
bounded with 0Q € C'. Choose any open set V. C R™ such that Q CC V. Then there exists a
bounded linear operator
E W (Q) — WP (R™) (2.4.1)
such that for each u € W'r(Q),
(i) Eu=uL"—a.e. in
(ii) Eu has support within V;
(iii) There exists a constant C' > 0, depending only on p, <), and V, such that
| Eullwir@ny < Cllullwis)
forall u € WHP(),
Definition (Extension). We call Eu an extension of u to R".

Remark. The construction in the following proof is called a strong 1—-extension operator, since the
same construction works for all 1 < p < +o0.

Proof.
i. Fix g € 02 and suppose first that
0Q is flat near z(, lying in the plane {x € R" : z,, = 0}. (24.2)

Then we may assume that there exists an open ball B, with center z, and radius » > 0,
such that

Bt =Bn{reR":z, >0} CQ,

B :=Bn{zeR":z, <0} CR"\ Q.

ii. Temporarily suppose also that u € C*(Q). Define then

+
() = 4 1) ve B, (2.4.3)
=3u(zy, ..., Tpo1, =) +4u(2y, .. Ty, =), r € B™.

We call @ a higher—order reflection of u from B* to B~. The number —3 associated with z,,
in the second term can actually be replaced by any number —\ with 0 < A < 1. Then the
numbers —3 and 4 will have to be adjusted accordingly in the following steps.
iii. We claim that
u € CY(B). o a (2.4.4)
Note that the only region of concern is {z,, = 0}. To see @;_déﬁne

u” = ulp-,
ut i=1lp+.

We first show that
. u, =u; on{x, =0} (2.4.5)
We calculate, by @'};3
u;; = U, (7),
and
Uy = g, (T1, .- o1, —Tp) — Uy, (:L‘l, ey Tpe1, —%) )
Thus
u;fn|{xn:0} = U, |{zp=0} = Uz, (T1, ..., Tn_1,0),
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4-5
which proves @_N‘ow since vt = u~ on {z,, = 0}, it is also clear that

Uy, |{xnr0} = ul,l |{wn—0} (331, ey X1, 0) (2.4.6) {eqg:2.4-¢

2.4-5 leq:2. 4—
fori=1,...,n — 1. But then (Z45) and Z.46) imply that

D“ qu’{xn:O} = D%~ ’{xnzo}
for every multi-index |a| < 1, and so @ € C'(B). This proves

iv. We next claim that
Ha”wl,p(B) < CHU‘|W1,p(B+), (2447_)3 {eq:2.4-7

for some constant C' > 0 which does not depend on u. To see this, we apply  to
calculate

|l , B)_/ |u|P dx:/ ut|P dg;+/ lu~|P dx
B Bt -
Tn,

p
= ||u||Lp (B+) —{—/B )—3u(:1:1,...,:1:n_1,—:rn) + 4u (xl,...,:xn_l,——>

2
p Ln
< ||uHL,, gy T4 / (|u(a:1,...,:cn,1,—:cn)\ + ‘u <x1,...,xn,1,——>
B

dx

>p dx

2

< Julltge + 4027 (/ U, o o1, —a) P d +

Tp\ [P
/_ ’u (xl,...,xn_l,—7> dx>

- HUHLP (BT) + 23p (/+ |U(ZE17 sy Ip—1, yn)|p dml o dxn—ldyn +
B

2/ lu(zy, ..oy T, Y|P dy - - d:rn_ldyn>
Bt

= llullZ sy + 2% - Bllullf p4
)

< Cp”“”m(gﬂ»
where C), > 0 is independent of u. Similarly, we can establish that

1D 7o) < Coll DullLo(p+y:
.4-7
This proves

v. Let us next consider the case that 0f is not necessarily flat near x,. Then, by §1.3,
there exists a C! mapping ®, with inverse U, such that ¢ flattens out 92 near .

Write y = ®(z), z = ¥(y), and v(y) := u(¥(y)). Choose a small ball B = B(yy, r) asin (i),
that is, with B contained in (2 in the positive y, —coordinate plane. Using steps (i)—(iv)
above, we extend v from B™ to a function v defined on all of B, such that v € C*(B), and
in addition we have the estimate

”T}HWLP(B) < CHU“WLP(BJr).

Let W := ¥(B), and define u(z) := v(V(x)). Then by the change of variables formula,
recalling that det DV = 1, we have

(T —— /W P + | Dadi? da
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- / @l + | DalP dz
¥(B)

< / ([5]” + C|D,o|P) - | det D¥| dy
B

<C ( / 3P + D, dy)
B

= Cllvlly 05

< Collvllynae)
< O3||“H%/1,p(wmg)
< 03”“”%/1,;7(9)-

Hence, we have obtained an extension u of u to W, with the estimate

HaH%/LP(W) < Huuwl,p(g). (248) {eqg:2.4-8

vi. Since 012 is compact, there exist finitely many points x; € 0(2, open sets W;, and
extensions u; of u to W;, ¢ = 1,..., N, as above, such that 92 C Uf\il W;. Choose any
Wy cC Qsothat Q) C Uij\i o Wi, and let {¢; N, be a smooth partition of unity subordinate

AN
to the open sets {]\I[/VZ}TO. N o ag
Define @ := ) ;" , ;u;, where uy = u. Then by (%Tve have that

N
[@llwro@ey < > lGE:Nwro@ny

~
[e=]

I
.MZ

Il
=)

Gt [ wowr
(2

N
C D llaillwraqw,
i=0

IN

Hence we obtain the estimate

HaHWLp(R”) S C||u|lwl,p(Q), (249) {eq:2.4—9

for some C' > 0 independent of .

Furthermore, by shrinking the radii r; > 0 in each B(z;, r;) if necessary, we can always
ensure that W; CC V for any Q2 CC V. Therefore, we can assume that suppu C V.

vii. Write E'u := u, and observe that the mapping u — Eu is linear.

Recall that so far we have assumed that u € C*°((2). Suppose now only thatu € WP((Q).
Since 992 € C', by Theorem ere exists a sequence {u, }h= C C(Q) NW'(Q) such
that u,, — uin W'?(Q). Now observe by (%'—ﬂﬁt

| Bty — Bug|lweogny < Clltm — wgllwisg) — 0

as m,k — +00, so that { Eu,, },,*) is a Cauchy sequence in W"?(R"). Since W"?(R") is
a Banach space (cf. Theorem , there exists u* € W'*(R") such that Eu,, — u* in
Whe(R").
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We claim that the limit «* is independent of the choice of approximating sequence
{un};:2,. To see this, suppose that {v,,};}®, C C>*(Q) N W?(Q) is such that v,, — v in
Whr(Q) also. Then the sequence

{ur, v1, ug, v} =: {wn, :;0:01

is also Cauchy in W'?(Q2), and hence Fw,, — u** in W'?(R" for some u** € W?(R").
But, since any subsequence of a convergent subsequence has the same limit,

u* = lim Fu, = lim Fw, =u" in W"(R"),
m——+00 m—-+00

as required.

Finally, we define Eu = u*, so that £ : W'P(Q) — W'P(R") is g linear gperator. It
remains only to show that E is bounded. Since u,, € C®(f), by %e have the
estimate

[ Etmlwrp@ny < Clltmllwrre)-
Passing to the limit as m — +o00, we obtain

[Eullwrir@e = [u*lwir@e < Cllut|lwre@),
so that £ € L(W'?(Q), WI?(R")). The proof is complete. O

Remark.

(i) Assume now that 9S) is C2. Then ® and W are C? maps, but for u € C®(Y), Eu as
constructed in steps (iii) and (iv) is not in general in C*(B). However, it may be shown
that Eu € W2P(B). Assuming this, we see that all future steps will follow immediately,
and we have the bound

| Eullw2emy < Cllullwzes).-
As in the proof, we consequently derive the estimate

| Eullwzr@ny < Cllullw2s @), (2.4.10)
provided that OQ is C?. Again, the constants C depend only on Q,V,n, and p, but not u.
Consequently E € L(W??(Q), W2P(R")).

(i) The above construction does not provide us with an extension for the Sobolev spaces

WHhP(Q), if k > 2. However, it is true that there exists an extension operator E €
L(WHEP(Q), WHP(R™)). The proof requires a more complicated higher—order reflection tech-

nique as outlined below.
To extend WHP(Q) for k > 2and 0Q € C¥, let 2’ := (1, ..., z,_1), and write

k+1 T
u ,7 n) = ) /7 —-= ) n < 0
In order to maintain C* continuity at x,, = 0, we need to obtain c;,i =0, ...,k + 1, from
k+1 1 m
> o <—> =1, form=0,1,... k.
2
i=1
Note that this is in the form Ac = b, where A is a Vandermonde matrix, and hence A~*

exists.
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